

Lecture Notes in Computer Science 3756
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Jiannong Cao Wolfgang Nejdl
Ming Xu (Eds.)

Advanced
Parallel Processing
Technologies

6th International Workshop, APPT 2005
Hong Kong, China, October 27-28, 2005
Proceedings

13

Volume Editors

Jiannong Cao
Hong Kong Polytechnic University
Hung Hom, Kowloon, Hong Kong, China
E-mail: csjcao@comp.polyu.edu.hk

Wolfgang Nejdl
University of Hannover, Information Systems Institute
Knowledge Based Systems (KBS), L3S Research Center
Appelstr. 4, 30167 Hannover, Germany
E-mail: nejdl@l3s.de

Ming Xu
National University of Defense Technology
Department of Networking Engineering, Computer College
Changsha, Hunan 410073, China
E-mail: xuming64@public.cs.hn.cn

Library of Congress Control Number: 2005934413

CR Subject Classification (1998): D, B, C, F.1-3, G.1-2

ISSN 0302-9743
ISBN-10 3-540-29639-5 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-29639-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11573937 06/3142 5 4 3 2 1 0

Preface

Welcome to the proceedings of APPT 2005: the 6th International Workshop on
Advanced Parallel Processing Technologies. APPT is a biennial workshop on
parallel and distributed processing. Its scope covers all aspects of parallel and
distributed computing technologies, including architectures, software systems
and tools, algorithms, and applications. APPT originated from collaborations
by researchers from China and Germany and has evolved to be an international
workshop. APPT 2005 was the sixth in the series. The past five workshops were
held in Beijing, Koblenz, Changsha, Ilmenau, and Xiamen, respectively.

The Program Committee is pleased to present the proceedings for APPT
2005. This year, APPT 2005 received over 220 submissions from researchers all
over the world. All the papers were peer reviewed by two to three Program
Committee members on their relevance, originality, significance, technical qual-
ity, and presentation. Based on the review result, 55 high-quality papers were
selected to be included in the proceedings. The papers in this volume represent
the forefront of research on parallel processing and related fields by researchers
from China, Germany, USA, Korea, India, and other countries. The papers ac-
cepted cover a wide range of exciting topics, including architectures, software,
networking, and applications.

The excellent program was the result of the hard work and the collective effort
of many people and organizations. We would like to express our special thanks
to the Architecture Professional Committee of the China Computer Federation
(APC-CCF), the Hong Kong Polytechnic University, the National University of
Defense Technology, China, and the Harbin Institute of Technology, China. We
would like to thank the general chair, Prof. Xingming Zhou, and the general
co-chairs, Prof. Xiaodong Zhang and Prof. David Bader, for their great support.
Thanks to all members of the Program Committee and all the other reviewers for
the time and hard work they put into the thorough reviewing of the large number
of papers. We appreciate the keynote speakers, Prof. Francis C.M. Lau and Prof.
Kurt Rothermel, for their strong support of the program. We would also like to
express our gratitude to Springer for its assistance in putting the proceedings
together. Last but not least, our thanks go to the Local Organizing Committee
for the great job it did in making the local arrangements and organizing an
attractive social program. Without their dedicated help and diligent work, the
workshop would not have been so successful.

We would like to take this opportunity to thank all the authors, many of
whom traveled great distances to participate in this workshop and make their

VI Preface

valuable contributions. We hope that all participants enjoyed the program and
found it worthwhile. We warmly welcome any comments and suggestions to
improve our work.

August 2005 Jiannong Cao
Wolfgang Nejdl

Ming Xu

Organization

APPT 2005 was organized mainly by the Department of Computing, Hong
Kong Polytechnic University and the National University of Defense Technology,
China.

Executive Committee

General Chair Xingming Zhou
(Member of Chinese Academy of Sciences,
National Lab for Parallel and Distributed
Processing, China)

General Vice Co-chairs Xiaodong Zhang
(College of William and Mary, USA)

David A. Bader
(Georgia Institute of Technology, USA)

Program Co-chairs Jiannong Cao
(Hong Kong Polytechnic University, China)

Wolfgang Nejdl
(University of Hannover, Germany)

Publicity Chair Cho-Li Wang
(University of Hong Kong, China)

Publication Chair Laurence T. Yang
(St. Francis Xavier University, Canada)

Local Organization Chair Allan K.Y. Wong
(Hong Kong Polytechnic University, China)

Finance/Registration Chair Ming Xu
(National Lab for Parallel and Distributed
Processing, China)

Sponsoring Institutions

Architecture Professional Committee of the China Computer Federation, China
Hong Kong Polytechnic University, China
National University of Defense Technology, China
Association for Computing Machinery, Hong Kong Chapter
Springer

VIII Organization

Program Committee

Srinivas Aluru Iowa State University, USA
Jose Nelson Amaral University of Alberta, Canada
Wentong Cai Nanyang Technological University, Singapore
Yiu-Keung Chan City University of Hong Kong, China
Tarek El-Ghazawi George Mason University, USA
Binxing Fang Harbin Institute of Technology, China
John Feo Cray Inc., USA
Guang Gao University of Delaware, USA
Ananth Grama Purdue University, USA
Manfred Hauswirth EPFL, Switzerland
Bruce Hendrickson Sandia National Laboratory, USA
Mehdi Jazayeri Technical University of Vienna, Austria
Zhenzhou Ji Harbin Institute of Technology, China
Ashfaq Khokhar University of Illinois, Chicago, USA
Ajay Kshemkalyani University of Illinois, Chicago, USA
Francis Lau University of Hong Kong, China
Xiaoming Li Peking University, China
Xinsong Liu University of Electronic Sciences and

Technology of China, China
Yunhao Liu Hong Kong University of Science and

Technology, China
Xinda Lu Shanghai Jiao Tong University, China
Siwei Luo Northern Jiao Tong University, China
Beth Plale Indiana University, USA
Bernhard Plattner Swiss Federal Institute of Technology,

Switzerland
Sartaj Sahni University of Florida, USA
Nahid Shahmehri Linköping University, Sweden
Chengzheng Sun Griffith University, Australia
Zhimin Tang Institute of Computing, CAS, China
Bernard Traversat Sun Microsystems, USA
Peter Triantafillou University of Patras, Greece
Xingwei Wang Northeastern University, China
Lars Wolf Technical University Braunschweig,

Germany
Jie Wu Florida Atlantic University, USA
Li Xiao Michigan State University, USA
Chengzhong Xu Wayne State University, USA
Weimin Zheng Tsinghua University, China

Table of Contents

Keynote Speech

Research Issues in Adapting Computing to Small Devices
Francis C.M. Lau . 1

Mobile Context-Aware Systems – Linking the Physical and Digital
World

Kurt Rothermel . 2

Architecture

A Data Transformations Based Approach for Optimizing Memory and
Cache Locality on Distributed Memory Multiprocessors

Xia Jun, Xue-Jun Yang . 3

A Fetch Policy Maximizing Throughput and Fairness for Two-Context
SMT Processors

Caixia Sun, Hongwei Tang, Minxuan Zhang . 13

A Loop Transformation Using Two Parallel Region Partitioning Method
Sam Jin Jeong, Jung Soo Han . 23

Criticality Based Speculation Control for Speculative Multithreaded
Architectures

Rahul Nagpal, Anasua Bhowmik . 31

Design and Implementation of Semantic Caching Coherency Control
Scheme Toward Distributed Environment

Hai Wan, Lei Li . 41

Energy Efficient United L2 Cache Design with Instruction/Data Filter
Scheme

Zhiqiang Ma, Zhenzhou Ji, Mingzeng Hu, Yi Ji . 52

Improving Latency Tolerance of Network Processors Through
Simultaneous Multithreading

Bo Liang, Hong An, Fang Lu, Rui Guo . 61

X Table of Contents

RIMP: Runtime Implicit Predication
YuXing Tang, Kun Deng, XiaoDong Wang, Yong Dou,
XingMing Zhou . 71

Static Partitioning vs Dynamic Sharing of Resources in Simultaneous
MultiThreading Microarchitectures

Chen Liu, Jean-Luc Gaudiot . 81

Algorithm and Theory

Autonomous-Centered Problem Allocation Oriented to Cooperation
Xiping Liu, Wanchun Dou, Guihai Chen, Shijie Cai,
Jiashan Tang . 91

Contention-Free Communication Scheduling for Irregular Data
Redistribution in Parallelizing Compilers

Kun-Ming Yu, Chi-Hsiu Chen, Ching-Hsien Hsu, Chang Wu Yu,
Chiu Kuo Liang . 101

Experiments on Asynchronous Partial Gauss-Seidel Method
Hiroshi Nishida, Hairong Kuang . 111

Improved Program Dependence Graph and Algorithm for Static Slicing
Concurrent Programs

Jianyu Xiao, Deyun Zhang, Haiquan Chen, Hao Dong 121

Parallelisation of Sequential Programs by Invasive Composition and
Aspect Weaving

Mikhail Chalabine, Christoph Kessler . 131

Revisiting the Election Problem in Asynchronous Distributed Systems
SungUoon Bauk . 141

Scheduling Scheme with Fairness and Adaptation in the Joint
Allocation of Heterogeneous Resources

Yu Hua, Chanle Wu, Mengxiao Wu . 151

Solving the Symmetric Tridiagonal Eigenproblem Using MPI/OpenMP
Hybrid Parallelization

Yonghua Zhao, Jiang Chen, Xuebin Chi . 164

Trust Management with Safe Privilege Propagation
Gang Yin, Huai-min Wang, Tao Liu, Ming-feng Chen,
Dian-xi Shi . 174

Table of Contents XI

Vector Space Based on Hierarchical Weighting: A Component Ranking
Approach to Component Retrieval

Gui Gui, Paul D. Scott . 184

System and Software

A High Availability Mechanism for Parallel File System
Hu Zhang, Weiguo Wu, Xiaoshe Dong, Depei Qian 194

A User-Guided Semi-automatic Parallelization Method and Its
Implementation

Chuliang Weng, Zhongguo Chen, Xinda Lu, Minglu Li, Yong Yin 204

CAPU: Enhancing P2P File Sharing System with Capacity Aware
Topology

Hongliang Yu, Weimin Zheng, Dongsheng Wang, Haitao Dong,
Lu Li . 214

Implementing Component Persistence in CCM Based on StarPSS
Jingbin An, Yan Jia, Zhiying Wang . 226

Load Balancing Design Issues on Prefetch-Based DSM Systems
Hsiao-Hsi Wang, Kuan-Ching Li, Kuo-Jen Wang, Ssu-Hsuan Lu,
Chun-Chieh Yang . 234

Task Assignment for Network Processor Pipelines Using GA
Shoumeng Yan, Xingshe Zhou, Lingmin Wang, Fan Zhang,
Haipeng Wang . 244

Test-Suite Reduction Using Genetic Algorithm
Xue-ying Ma, Bin-kui Sheng, Cheng-qing Ye . 253

Grid Computing

A Constellation Model for Grid Resource Management
Yinfeng Wang, Xiaoshe Dong, Xiuqiang He, Hua Guo, Fang Zheng,
Zhongsheng Qin . 263

An Effective Information Service Architecture in Grid Environment
Huashan Yu, Yin Luo, Xingguo Zhu, Xiaoming Li 273

XII Table of Contents

An Efficient Data Management System with High Scalability for
ChinaGrid Support Platform

Hai Jin, Wenjun Gong, Song Wu, Muzhou Xiong, Li Qi,
Chengwei Wang . 282

CGSP: An Extensible and Reconfigurable Grid Framework
Yongwei Wu, Song Wu, Huashan Yu, Chunming Hu 292

Early Experience of Remote and Hot Service Deployment with
Trustworthiness in CROWN Grid

Hailong Sun, Yanmin Zhu, Chunming Hu, Jinpeng Huai,
Yunhao Liu, Jianxin Li . 301

Grid Developing Environment in CGSP System
Weimin Zheng, Lisen Mu, Qing Wang, Yongwei Wu 313

Grid Job Support System in CGSP
Jinpeng Huai, Yu Wan, Yong Wang, Haifeng Ou 323

JFreeSim: A Grid Simulation Tool Based on MTMSMR Model
Hai Jin, Jin Huang, Xia Xie, Qin Zhang . 332

OOML-Based Ontologies and Its Services for Information Retrieval in
UDMGrid

Xixi Luo, Xiaowu Chen . 342

Networking

A Hybrid Integrated QoS Multicast Routing Algorithm in IP/DWDM
Optical Internet

Xingwei Wang, Jia Li, Min Huang . 353

An Efficient Distributed Broadcasting Algorithm for Ad Hoc Networks
Qiang Sun, Layuan Li . 363

Chaos-Based Dynamic QoS Scheme and Simulating Analysis
Qigang Zhao, Qunzhan Li . 373

Dynamic Delaunay Triangulation for Wireless Ad Hoc Network
Ming Li, XiCheng Lu, Wei Peng . 382

Energy Efficient Multipath Routing in Large Scale Sensor Networks
with Multiple Sink Nodes

Yuequan Chen, Edward Chan, Song Han . 390

Table of Contents XIII

FLC: A Novel Dynamic Buffer Tuner for Shortening Service Roundtrip
Time over the Internet by Eliminating User-Level Buffer Overflow on
the Fly

Wilfred W.K. Lin, Allan K.Y. Wong, Tharam S. Dillon 400

Intelligent Congestion Avoidance in Differentiated Service Networks
Farzad Habibipour, Ahmad Faraahi, Mehdi Glily 409

Rule-Based Anomaly Detection of Inter-domain Routing System
Peidong Zhu, Xin Liu, Mingjun Yang, Ming Xu 417

Transaction of Web Services Based on Struts
Gong-Xuan Zhang, Ping-Li Wang, Wen Chen . 427

Applied Technologies

A Method of Aggregate Query Matching in Semantic Cache for Massive
Database Applications

Jianyu Cai, Yan Jia, Shuqiang Yang, Peng Zou . 435

A Parallel Modular Exponentiation Scheme for Transformed Exponents
Chin-Chen Chang, Yeu-Pong Lai . 443

Content Selection Model for Adaptive Content Delivery
Chen Ding, Shutao Zhang, Chi-Hung Chi . 453

Dynamic Service Provisioning for Multiplayer Online Games
Jens Müller, Rafael Schwerdt, Sergei Gorlatch . 461

Principal Component Analysis for Distributed Data Sets with Updating
Zheng-Jian Bai, Raymond H. Chan, Franklin T. Luk 471

Priority Conscious Transaction Routing in a Real-Time Shared Disks
Cluster

Kyungoh Ohn, Sangho Lee, Haengrae Cho . 484

Probabilistic Continuous Update Scheme in Location Dependent
Continuous Queries

Song Han, Edward Chan . 494

SIP-Based Adaptive Multimedia Transmissions for Wired and Wireless
Networks

Weijia Jia, Man-Ching Yuen . 505

XIV Table of Contents

WM+: An Optimal Multi-pattern String Matching Algorithm Based
on the WM Algorithm

Xunxun Chen, Binxing Fang, Lei Li, Yu Jiang . 515

Author Index . 525

J. Cao, W. Nejdl, and M. Xu (Eds.): APPT 2005, LNCS 3756, p. 1, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Research Issues in Adapting Computing
to Small Devices

Francis C.M. Lau

Department of Computer Science, The University of Hong Kong, China
fcmlau@cs.hku.hk

Abstract. Advances in pervasive and mobile technologies are making
computing available to us at anytime anywhere. Availability however does not
automatically mean it is in a form that implies ease of use. Usability in the
mobile world amounts to a set of problems that are not so much precedented in
the history of computing. Handheld mobile devices that are thin-lean-mean for
instance present challenges that require fundamental changes in the way
computation is carried out, its architecture, or its supporting environment. A
practical goal is to minimize these changes, which calls for automatic or semi-
automatic adaptation of existent computing to the small devices. We discuss the
issues and research challenges of “X adapting to Y”, where X includes content,
data, code, computation, GUI, and so on, and the changes in semantics and/or
syntax due to the adaptation are to satisfy the constraints of Y. Some
experiments we have carried out for content and code adaptation provide some
useful illustration.

J. Cao, W. Nejdl, and M. Xu (Eds.): APPT 2005, LNCS 3756, p. 2, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Mobile Context-Aware Systems – Linking the Physical
and Digital World

Kurt Rothermel

Institute of Parallel and Distributed Systems and Centre of Excellence Nexus,
Universität Stuttgart, Germany

Kurt.Rothermel@informatik.uni-stuttgart.de

Abstract. The rapid miniaturisation and decline in prices of computer,
communication and sensor technology give rise to a number of interesting
developments, such as multifunctional mobile devices, sensor platforms
embedded into everyday things, and sensor nodes organised in a wireless
network. Those systems can capture and process sensory data and communicate
this information to other peers in their proximity or to an existing server
infrastructure. The sensory data are fed into spatio-temporal models of the
physical world, which build the basis for the promising class of context-aware
applications. Based on these developments it can be anticipated that there will
be billions of sensor systems in our physical environment near future.
Consequently, we envision most of the future applications to be context-aware,
sharing highly dynamic digital world models offered by a large number of
content providers. Obviously, the realisation of this vision will cause a number
of both technological and social challenges. Some of these challenges are
subject to the research of Nexus, a Centre of Excellence established at
University of Stuttgart in the year 2003. In this talk, we present the vision and
objectives of Nexus. Moreover, we will discuss some aspects of scaleable
context management.

J. Cao, W. Nejdl, and M. Xu (Eds.): APPT 2005, LNCS 3756, pp. 3 – 12, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Data Transformations Based Approach
for Optimizing Memory and Cache Locality

on Distributed Memory Multiprocessors∗

Xia Jun and Xue-Jun Yang

School of Computer Science, National University of Defense Technology,
Changsha 410073, Hunan, China

ddk@nudt.edu.cn

Abstract. Data locality is one of the key factors in affecting the performance of
parallel programs running on distributed memory multiprocessors. This paper
presents an approach for optimizing memory locality and cache locality of per-
fect or non-perfect loop nests using linear data transformations on distributed
memory multiprocessors. The approach optimizes memory locality with the
data space fusion technique and cache locality with the projection-delamination
technique, and combines the both techniques effectively to make the overheads
of remote memory accesses and local memory accesses as low as possible. We
conduct experiments with nine programs and the results show the approach is
effective in optimizing memory locality and cache locality simultaneously.

1 Introduction

Data locality has an important affection on the performance of parallel programs
running on distributed memory multiprocessors. Generally, the locality optimization
problem on distributed memory multiprocessors can be divided into two subproblems.
One is the memory locality optimization problem. For distributed memory multiproc-
essors, the memory access time from a processor to its own local memory is generally
much faster than the time to local memory of the other processors. Hence, an efficient
parallel executing program requires programmers or compilers to distribute code and
data carefully to reduce remote memory access overheads. The other is the cache
locality optimization problem. When a processor accesses its local memory, good
cache locality can improve cache hit rate and reduce local memory access overheads.

Over the last decade, a great number of researchers have paid attention to the
memory locality optimization problem for distributed memory multiprocessors [1-3].
Chen and Chang [1] present a skewed alignment instead of traditional dimension-
order alignment techniques to align arrays. Chang et al. [2] present two new align-
ment functions for loop iteration space and arrays with linear subscripts in three loop
index variables or quadratic subscripts. Xia and Yang [3] give an approach of effec-

* This research is supported by NNSF (National Natural Science Foundation grant No.

69825104).

4 X. Jun and X.-J. Yang

tive alignment of computation and data for a sequence of perfect loop nests. All the
above researchers only consider memory locality optimization and their approaches
are effective to reduce remote memory access overheads on distributed memory mul-
tiprocessors. As they don’t consider cache locality optimization, there may exist many
local memory access overheads because of bad cache locality, which may prevent the
whole performance of parallel programs from improving further.

Over the last decade, many researchers also used loop transformations [4-6], data
transformations [7-9] and combined loop and data transformations [10-12] to opti-
mize cache locality. We discuss the most related of their work in the following.

Loop Transformations. Wolf and Lam [4] show how to use unimodular loop trans-
formations followed by tiling loops that carry some form of reuse to improve locality.
McKinley et al. [5] present a method that considers loop fusion, distribution, permuta-
tion, and reversal for improving locality. Bik et al. [6] present a method that can si-
multaneously reshape the access patterns of several occurrences of multi-dimensional
arrays along certain desired access directions.

Data Transformations. Clauss et al. [7] use the parameterized polyhedra theory and
Ehrhart polynomials to provide a new array reference evaluation function to the com-
piler, such that the data layout corresponds exactly to the utilization order of these
data. Kandemir et al. [8] present a hyperplane based approach for optimizing spatial
locality in loop nests. Xia et al. [9] present a projection-delamination technique for
optimizing spatial locality and a data transformation framework based on it.

Combined Loop and Data Transformations. Cierniak and Li [10] use loop and array
dimension permutations in an exhaustive search to determine the appropriate loop and
data transformations. Kandemir et al. [11] give a matrix-based approach for optimizing
the global locality using loop and data transformations. Kandemir et al. [12] use integer
linear programming and the memory layout graph to find the best combination of loop
and data layout transformations for optimizing the global locality.

The above researchers only consider cache locality optimization and their ap-
proaches are effective to improve cache hit rate and reduce local memory access
overheads. As they don’t consider memory locality optimization, their approaches are
more suitable for use in uniprocessors or shared memory multiprocessors than in
distributed memory multiprocessors because of remote memory access overheads.

In this paper, we present an approach for simultaneously optimizing memory local-
ity and cache locality through linear data transformations on distributed memory mul-
tiprocessors. Through much research, we find the rows in linear data transformation
matrices have two different effects on improving locality. Some rows have the effect
of optimizing memory locality. They partition data space effectively and put depend-
ent data together to reduce remote memory access overheads. We call these rows as
memory locality optimizing rows (MLORs). The other rows have the effect of opti-
mizing cache locality. They reshape the access patterns of array references along
columns to reduce local memory access overheads (we assume the default memory
layout is column-major, but the approach can be applied to row-major memory layout

 A Data Transformations Based Approach for Optimizing Memory 5

too). We call these rows as cache locality optimizing rows (CLORs). In this paper, we
first present a theoretical framework of data space fusion, which is used to partition
data space effectively, and determine MLORs based on it. Then under the condition
of not affecting memory locality, we use the approach presented in [9] to reshape the
access patterns along columns for cache locality and determine CLORs accordingly.
At last, we combine MLORs and CLORs to form the final data transformation matri-
ces. The approach can handle not only perfect loop nests but also non-perfect loop
nests. It can simultaneously optimize memory and cache locality and can be naturally
integrated with data replication and offset alignment. Therefore, our approach can
reduce remote and local memory access overheads as much as possible. We conduct
experiments with nine programs and the results show our approach is effective.

2 Technical Preliminaries

The program model used here is a single perfect or non-perfect loop nest and contains
explicit information about which loop can be parallelized. An m -dimensional array
X defines an m -dimensional polyhedron, each point of which can be denoted by an

1×m column vector. Assume the number of all the loops enclosing a reference of X
is n , then the iteration space of this n -deep loop nest can be viewed as an n -
dimensional polyhedron where each point is denoted by an 1×n column vector

()T
niiiI ,,, 21 L= ; here, each ki denotes a loop index. We call I as the iteration vec-

tor. We assume all loop bounds and subscript expressions are affine functions of
enclosing loop indices and symbolic constants. Then, the reference can be denoted by

oIA + , nm × matrix A is called as the access matrix, and 1×m column vector o
is called as the offset vector [4]. Moreover, we assume at least one of the loops en-
closing each reference of each array can be parallelized.

We use { }lbbspan ,,1 L to denote the space spanned by vectors lbb ,,1 L , Q to

denote rational number field, nQ to denote the space composed of all the 1×n ra-

tional number vectors, and)dim(Ψ to denote the dimension of vector space Ψ . We

define { }Ψ∈+==Ψ+ ppbqqb , , where b is an 1×n column vector, and Ψ is

a vector space composed of 1×n column vectors.

3 Memory Locality Optimization

3.1 Data Space Decompositions

Given a reference of an m -dimensional array X , we assume the loop indices of all
the loops enclosing this reference are nii ,,1 L from outermost to innermost respec-

tively. Moreover, we assume loops
vpp ii ,,

1
L can be parallelized. We denote the gen-

eral form of the iteration space decomposition of this n -deep loop nest as

6 X. Jun and X.-J. Yang

{ }0,,,),,(
1111 nvvvv ppppppppX eespaneieiiiB LLL

+
+++= , where

jpe is an 1×n unit

column vector. We call { }QiiiiB
vv ppppX ∈,,),,(

11
LL as a linear computation

decomposition of the iteration space of this n -deep loop nest and define its parallel-
ism as v . We also call),,(

1 vppX iiB L as the iteration partition.

Definition 1. Given an m -dimensional array X , a set of 1×m column vectors

vγγδ ,,, 1 L , and a vector space XΩ composed of 1×m column vectors. Let

XvvvX kkkkD Ω++++= γγδ LL 111),((0≥v). Assume dim()X uΩ = and

uηη ,,1 L are a basis of XΩ . If 0=v or 0≠v and vj ≤≤∀1 ,
jγ can not be ex-

pressed as a linear combination of uvjj ηηγγγγ ,,,,,,,, 1111 LLL +− , then we call

{ }QkkkkD vvX ∈,,),,(11 LL as a linear data decomposition of the data space of

array X and the parallelism of this linear data decomposition is v . We also call
),(1 vX kkD L as the data partition.

Assume the reference of array X is XXX oIA + , where ()T
nX iiI ,,1 L= , and Let

jpγ =
jpX eA , then the data space accessed by iteration partition),,(

1 vppX iiB L is

{ }0,,,),,(
1111 nvvvv ppppppXppX spaniioiiD γγγγ LLL

+
++++= .

If vj ≤≤∀1 ,
jpγ can not be expressed as a linear combination of ,,,

11 −jpp γγ L

nj pp γγ ,,
1
L

+
, then from definition 1 we know { }QiiiiD

vv ppppX ∈,,),,(
11
LL is a

linear data decomposition of array X ’s data space and its parallelism is v . As the
data partitions accessed by any two different iteration partitions are different, each
iteration partition with its accessed data partition can be scheduled to the same proc-
essor to make the reference local.

If vj ≤≤∃1 ,
jpγ can be expressed as a linear combination of ,,,

11 −jpp γγ L

nj pp γγ ,,
1
L

+
. Let vv <≤ '0 . Without loss of generality, we assume '1 vj ≤≤∀ ,

jpγ can not be expressed as a linear combination of
njj pppp γγγγ ,,,,,

111
LL

+−
 while

vjv ≤≤+∀ 1' ,
jpγ can. Let ++++=

''11'1
),,('

vvv
ppppXppX iioiiD γγ LL

}0,,,{
1' nv

ppspan γγ L
+

, and then { }QiiiiD
vv

ppppX ∈
'1'1

,,),,(' LL is a linear data

decomposition of array X ’s data space and its parallelism is 'v . As

),,(),,(,,,
'111

'

vvv ppXppXpp iiDiiDQii LLL ⊆∈∀ and vv <' , there exist the cir-

cumstances that more than one iteration partition accesses the same data partition, and
therefore the data partitions have to be replicated to make the reference local.

Definition 2. Given a linear computation decomposition of the iteration space of a
loop nest and a linear data decomposition of an array referenced in the loop nest that

 A Data Transformations Based Approach for Optimizing Memory 7

is got by the linear computation decomposition, we assume the parallelism of the
linear computation decomposition is v and the parallelism of the linear data decom-
position is f . Then we call the replication degree of the linear data decomposition

relative to the linear computation decomposition is fv − .

We always hope the replication degree is as low as possible, because it will make
the amount of data needed to be replicated as small as possible and will reduce the
runtime overhead of maintaining the consistency of the replicated data.

3.2 Data Space Fusion

Given a loop nest with an m -dimensional array X ’s q references jjj XXX
oIA +

(qj ≤≤1), assume jX
I contains

jn elements and the parallelizable loops enclosing

all references of array X are all same. Let the loop indices of these parallelizable
loops are vii ,,1 L . qj ≤≤∀1 , we define a position function jX

ps for jX
I . The defi-

nition domain jΔ of jX
ps is composed of all the elements in jX

I , and jX
ps takes

the value of jn,,1L . ji Δ∈∀ , jX
ps returns the position of i in jX

I . Let

}},,{}0,,,{{),,()()(1)()(11 11

j
ips

j
ips

j
n

jj
ipsv

j
ipsvX vjXjXjvjXjX

j eeeespaneieiiiB LLLL −+++= .

According to Section 3.1, we can know { }QiiiiB vvX j ∈,,),,(11 LL is a linear

computation decomposition of the iteration space of the
jn -deep loop nest, which is

composed of all the loops enclosing reference jjj XXX
oIA + . Therefore for each

reference of array X , we can use the method presented in Section 3.1 to get the cor-
responding linear data decomposition of array X ’s data space. If 1>q , there will be

more than one linear data decomposition of array X ’s data space. As the linear data
decomposition of X should be unique (for we only consider static data decomposi-
tions in the paper and don’t consider data redistribution), therefore we have to fuse all
those linear data decompositions into a unique one. Assume the fused unique linear

data decomposition is { }QiiiiD
vv

hhhhX ∈
'1'1

,,),,(LL , where vv ≤≤ '0 and

vhh
v

≤≤ ',,1 1 L . Then it should satisfy the condition: qjQii v ≤≤∈∀ 1,,,1 L ,

there has),,(),,(
'11

v
jjj hhXvXXX

iiDiiBAo LL ⊆+ . It is possible that many linear

data decompositions satisfy the condition, and we want to acquire the one with the
highest parallelism, which will make the replication degree the lowest. We give the
algorithm of finding the fused unique linear data decomposition that satisfies the
condition and has the highest parallelism in Fig. 1.

From the algorithm we can see that as long as the loop indices of the parallelizable
loops enclosing all references of given arrays are same, the algorithm can be used to
get the fused unique linear data decompositions for these arrays respectively, other-
wise we can make them same by aligning parallelizable loops. As the limitation of the

8 X. Jun and X.-J. Yang

Input: a loop nest with array X ’s q references
qqq XXXXXX

oIAoIA ++ ,,111 L . The paralleliz-

able loops enclosing all references of array X are all same.

Output: array X ’s fused unique linear data decomposition.
Assume

jX
I contains

jn elements, the loop indices of these parallelizable loops are
vii ,,1 L

and
jkγ is the k th column of

jX
A , where qj ≤≤1 ,

jnk ≤≤1 .

}0{=θ ;

DO qj ,1=

}),,{},,({))(())((1 1 vjXjXj ipsjipsjjnj γγγγθθ LL −∪=

ENDDO
DO qj ,2=

 DO vk ,1=

}{))((1))((1 kXkjX
ipsipsj γγθθ −∪=

 ENDDO
ENDDO
DO qj ,2=

}{ 1XX
oo j −∪= θθ

ENDDO
{ }θspanX =Ω ;

XipsvipsXvX vXX

iioiiD Ω++++=))((1))((111 111
1),,(γγ LL ;

Let dim()X uΩ = and
uηη ,,1 L are a basis of

XΩ ;

Let vv ≤≤ '0 , without loss of generality, assume '1 vj ≤≤∀ ,
))((1 1 jX

ipsγ can not be expressed

as a linear combination of
uipsipsipsips vXjXjXX

ηηγγγγ ,,,,,,,, 1))((1))((1))((1))((1 1111111
LLL

+−
, while

vjv ≤≤+∀ 1' ,
))((1 1 jX

ipsγ can; let }},,{{))((1))((1
'

11'1 vXvX
ipsipsXX span γγ L

+
∪Ω=Ω and

'
))((1))((111

'

'1
'

11
1'),,(XipsvipsXvX

vXX

iioiiD Ω++++= γγ LL ;

Return ({ }QiiiiD
vvX ∈'' ,,),,(11

' LL)

Fig. 1. The algorithm of finding the fused unique linear data decomposition

space, the detailed steps of the alignment of parallelizable loops are omitted here. In
the following discussions, we assume the loop indices of the parallelizable loops en-
closing all references of all arrays are same.

3.3 Determining Memory Locality Optimizing Rows

Given an m -dimensional array X ’s multiple references, let array X ’s fused unique

linear data decomposition gotten by the algorithm given in Fig. 1. is

{ }QiiiioiiD vXvvXvX ∈Ω++++= ,,),,(1111 LLL γγ . The parallelism of this

linear data decomposition is v . We determine the MLORs for X in the following.

 A Data Transformations Based Approach for Optimizing Memory 9

If 0=v , array X has to be replicated over all dimensions of the processor space
to make all the accesses to X local. Therefore, we determine X ’s MLORs are null.
In the following, we will discuss the circumstance of 0≠v .

Assume uX =Ω)dim(and uηη ,,1 L are a basis of XΩ . If mvu <+ , we add

vum −− column vectors vmu −+ ηη ,,1 L to make vmv −ηηγγ ,,,,, 11 LL a basis of
mQ . Let { }0,,,1

'
vmX span −=Ω ηη L . We can find an orthogonal basis of '

XΩ ’s or-

thogonal space, which is assumed as vββ ,,1 L . Assume

vmkmvkvkvkk zzzz −+ +++++= ηηββγ LL 1)1(11 . Let),,(1 vC ββ L= ,

=
2

2
1

||||10

0||||1

v

P

β

β

L

MOM

L
, =

vvv

v

zz

zz

H

L

MOM

L

1

111

and jd be the j th row of

TCPH)(1− . vj ≤≤∀1 , we multiply jd by a smallest positive integer to make all

the elements in jd become integers, and we finally determine array X ’s MLORs are

vdd ,,1 L and the offset needed by the affine data transformation is Xo .

4 Cache Locality Optimization and the Determination of the Final
Linear Data Transformation Matrices

We use the approach presented in [9] to optimize cache spatial locality and continue
to use the notations used in Section 3.3 in the following discussion. Given a reference
of array X , assume the innermost loop index occurring in the subscript expressions
of this reference is ζ . Without loss of generality, we determine the CLORs and the

final linear data transformation matrix N for this reference in the following.

1. if 0=v , use the approach presented in [9] to find the data transformation matrix
M that can optimize the spatial locality of this reference. Let the rows of M from
the first to the last be mρρ ,,1 L respectively. We then determine mρρ ,,1 L are the

CLORs and N ’s rows from the first to the last are mρρ ,,1 L respectively with its

corresponding affine data transformation Nx .

2. if 0≠v and vj ≤≤∀1 , ji≠ζ , find vm − integer row vectors vmbb −,,1 L to

make T
vm

TT
v

T bbdd)(,,)(,)(,,)(11 −LL a basis of mQ and use them to compose a

non-singular square matrix E , where its first vm − rows from the first to the last are

vmbb −,,1 L respectively and its last v rows are vdd ,,1 L . Use)(XoxE − to do

affine transformation on the reference and let ϖ be the array composed of the first
vm − dimensions of the transformed reference. We use the approach presented in [9]

to find the)()(vmvm −×− non-singular data transformation matrix R that can

10 X. Jun and X.-J. Yang

optimize the spatial locality of array ϖ . Let ()TT
vm

T bbRM)()(1 −= L , and the

rows of M from the first to the last be vm−ρρ ,,1 L respectively. We determine

vm−ρρ ,,1 L are the CLORs and N ’s rows from the first to the last are ,,,1 vm−ρρ L

vdd ,,1 L respectively with its corresponding affine data transformation)(XoxN − .

3. if 0≠v and vj ≤≤∃1 , ji=ζ , find vm − integer row vectors vmbb −,,1 L to

make T
vm

TT
v

T bbdd)(,,)(,)(,,)(11 −LL a basis of mQ and use them to compose a

non-singular square matrix E , where its first 1+− vm rows from the first to the last

are vmj bbd −,,, 1 L respectively and its last 1−v rows are vjj dddd ,,,,, 111 LL +− .

Use)(XoxE − to do affine transformation on the reference and let ϖ be the array

composed of the first 1+− vm dimensions of the transformed reference. We use the
approach presented in [9] to find the)1()1(+−×+− vmvm non-singular data trans-

formation matrix that can optimize the spatial locality of array ϖ , and get matrix R
by replacing the first row of the above data transformation matrix with a

)1(1 +−× vm row vector where its first element is numeral one and all the others are

zeros. Let ()TT
vm

TT
j bbdRM)()()(1 −= L , and the rows of M from the sec-

ond to the last be vm−ρρ ,,1 L respectively. We determine vmjd −ρρ ,,, 1 L are the

CLORs and N ’s rows from the first to the last are ,,,, 1 vmjd −ρρ L

vjj dddd ,,,, 111 LL +− respectively with its corresponding affine data transformation

)(XoxN − . In this circumstance, jd is both the MLOR and the CLOR.

5 Experimental Results

We will present performance results for the following nine programs: matmult is a
matrix-multiplication routine; syr2k is a banded matrix update routine from BLAS;
stencil is a five-point stencil computing code; htribk is a test program from Eispack;
mxm, cholsky and cfft2d1 are three test programs from Spec92/NASA benchmark
suite; mxmxm is a routine from [10] that multiplies three matrices; transpose is a rou-
tine from a large computational chemistry application [13]. We conduct experiments
with FORTRAN versions of these programs. For each program, we experiment with
four different versions: the version with parallelization analysis only (denoted by o);
the version with parallelization analysis and memory locality optimization using the
method presented in Section 3 (denoted by o+m); the version with parallelization
analysis and cache locality optimization using the approach presented in [9] (denoted
by o+c); and the version with parallelization analysis and memory and cache locality
optimization using the approach presented in this paper (denoted by o+mc).

We report speedups for up to 64 processors on some distributed memory machine.
This machine has 32 nodes and each node has two processors. Shared memory archi-
tecture is adopted inside each node while distributed memory architecture is adopted
among nodes. Table 1 gives speedups of the test programs in different versions.

 A Data Transformations Based Approach for Optimizing Memory 11

Table 1. The speedups of the test programs in different versions

matmult syr2k stencil
pn

o o+m o+c o+mc o o+m o+c o+mc o o+m o+c o+mc
2 1.69 1.66 24.3 25.4 3.27 2.15 35.6 40.3 1.20 1.27 5.34 7.39
4 3.32 3.32 46.5 50.4 6.39 4.26 57.3 75.8 2.09 2.40 6.20 12.5
8 6.61 6.63 84.9 101 11.9 8.38 69.6 136 2.97 4.26 5.79 22.7

16 12.9 12.9 134 201 19.1 16.3 57.3 224 2.91 7.14 3.96 33.9
32 24.4 25.5 151 394 25.1 31.2 45.6 322 2.33 10.9 2.69 43.5
64 40.5 49.8 128 544 22.2 58.6 27.6 427 1.52 14.9 1.59 50.7

htribk mxm cholsky

pn
o o+m o+c o+mc o o+m o+c o+mc o o+m o+c o+mc

2 1.89 1.91 11.3 11.5 2.05 2.03 10.9 10.1 0.17 2.23 0.24 12.2
4 3.64 3.69 19.5 28.5 4.05 4.03 15.7 19.9 0.13 4.30 0.15 21.1
8 7.65 7.84 58.5 82.3 7.68 8.14 27.5 44.2 0.08 7.03 0.09 33.1

16 13.6 12.4 63.1 161 13.3 15.9 38.4 84.7 0.04 10.1 0.05 46.2
32 17.0 23.8 49.3 302 18.8 31.3 37.0 156 0.02 15.5 0.02 57.8
64 18.4 44.9 26.5 514 18.0 59.8 21.9 289 0.01 28.9 0.01 57.8

cfft2d1 mxmxm transpose

pn
o o+m o+c o+mc o o+m o+c o+mc o o+m o+c o+mc

2 0.27 3.32 0.72 3.32 8.07 2.07 26.6 27.4 0.50 1.47 0.71 11.8
4 0.24 4.39 0.50 4.24 5.90 4.03 49.2 54.6 0.57 2.81 0.69 23.5
8 0.19 5.59 0.30 5.59 8.83 8.24 82.7 108 0.52 5.05 0.56 41.7

16 0.13 6.47 0.17 9.46 14.9 16.2 108 212 0.38 9.00 0.39 92.2
32 0.07 7.23 0.09 15.4 30.1 32.3 108 412 0.24 14.0 0.24 179
64 0.04 7.23 0.05 20.5 39.2 64.6 75.3 761 0.12 19.8 0.13 342

pn denotes processor number. [matmult-2048×2048 matrices; syr2k-1024×1024 matrices;
stencil-2048×2048 matrices; htribk-1024×1024 matrices; mxm-1024×1024 matrices; cholsky-
the size parameters are set to 1000; cfft2d1-1024×1024 matrices and 2×1024 arrays; mxmxm-
1024×1024 matrices; transpose-4096×4096 matrices]

As the o versions have not been optimized for memory and cache locality, their
performance is bad for high remote and local memory access overheads. As the o+m
versions have been optimized for memory locality, the remote memory access over-
heads will be low. But as they have not been optimized for cache locality, high local
memory access overheads may prevent their performance from improving further.
Although the o+c versions have been optimized for cache locality to make local
memory access overheads low, there may exist high remote memory access overheads
for bad memory locality. Moreover, the remote memory access overheads may in-
crease with the increase of processor number. When the negative effect of remote
memory access overheads on the performance exceeds the positive effect of cache
locality optimization, the performance will get worse instead. As the o+mc versions
have been optimized for memory and cache locality simultaneously, there will be low
remote and local memory access overheads and therefore their performance should be
better than the other three versions’ performance. From Table 1 we can see that in all
nine programs, the o+mc versions’ performance is the best in four versions and for
most of the nine programs, with the increase of processor number, the gap of optimiz-
ing effect between the o+mc versions and the other three versions becomes larger.

12 X. Jun and X.-J. Yang

6 Conclusions

To solve the problems of memory and cache locality optimization on distributed
memory multiprocessors, we present an approach of optimizing memory and cache
locality simultaneously using data transformations in this paper. We first determine
MLORs for memory locality, then determine CLORs for cache locality and combine
MLORs and CLORs in some order to form the final linear data transformation matri-
ces that can optimize memory and cache locality simultaneously at last. The experi-
mental results show our approach is effective on distributed memory multiprocessors.

References

1. T.-S. Chen and C.-Y. Chang. Skewed data partition and alignment techniques for compil-
ing programs on distributed memory multicomputers. The Journal of Supercomputing,
21(2): 191-211, 2002.

2. W.-L. Chang, C.-P. Chu and J.-H. Wu. Communication-free alignment for array references
with linear subscripts in three loop index variables or quadratic subscripts. The Journal of
Supercomputer, 20(1): 67-83, 2001.

3. XIA Jun, YANG Xue-Jun and DAI Hua-Dong. Data space fusion based approach for ef-
fective alignment of computation and data. In Proc. of 5th International Workshop on Ad-
vanced Parallel Processing Technology, Xiamen, China, pp. 215-225, 2003.

4. M. Wolf and M. Lam. A data locality optimizing algorithm. In SIGPLAN91 Conference
on Programming Language Design and Implementation, Toronto, Canada, pp. 30-44,
1991.

5. K. McKinley, S. Carr and C.W. Tseng. Improving data locality with loop transformation.
ACM Transactions on Programming Languages and Systems, 18(4): 424-453, 1996.

6. A.J.C. Bik and P.M.W. Knijnenburg. Reshaping Access Patterns for Improving Data Lo-
cality. In Proc. of 6th Workshop on Compilers for Parallel Computers, 1996.

7. P. Clauss and B. Meister. Automatic memory layout transformations to optimize spatial
locality in parameterized loop nests. ACM SIGARCH Computer Architecture News,
28(1): 11-19, 2000.

8. M. Kandemir, A. Choudhary, N. Shenoy, P. Banerjee and J. Ramanujam. A hyperplane
based approach for optimizing spatial locality in loop nests. In Proc. of 1998 ACM Inter-
national Conference on Supercomputing (ICS’98), Melbourne, Australia, pp. 69-76, 1998.

9. XIA Jun, YANG Xue-Jun, ZENG Li-Fang and ZHOU Hai-Fang. A projection-
delamination based approach for optimizing spatial locality in loop nests. Chinese Journal
of Computers, 26(5):539-551, 2003.

10. M. Cierniak and W. Li. Unifying data and control transformations for distributed shared
memory machines. In SIGPLAN95 Conference on Programming Language Design and
Implementation, La Jolla, CA, pp. 205-217, 1995.

11. M. Kandemir, A. Choudhary, J. Ramanujam and P. Banerjee. A matrix-based approach to
global locality optimization. Journal of Parallel and Distributed Computing, 58:190-235, 1999.

12. M. Kandemir, P. Banerjee, A. Choudhary, J. Ramanujam and E. Ayguade. Static and dy-
namic locality optimizations using integer linear programming. IEEE Transactions on Par-
allel and Distributed Systems, 12(9): 922-940, 2001.

13. High Performance Computational Chemistry Group. NWChem: A computational chemis-
try package for parallel computers, version 1.1. Pacific Northwest Laboratory, 1995.

J. Cao, W. Nejdl, and M. Xu (Eds.): APPT 2005, LNCS 3756, pp. 13 – 22, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Fetch Policy Maximizing Throughput and Fairness
for Two-Context SMT Processors

Caixia Sun, Hongwei Tang, and Minxuan Zhang

College of Computer, National University of Defense Technology,
Changsha 410073, Hunan, P.R. China

{cxsun_nudt, hwtang_nudt}@yahoo.com.cn
mxzhang@nudt.edu.cn

Abstract. In Simultaneous Multithreading (SMT) processors, co-scheduled
threads share the processor’s resources, but at the same time compete for them.
A thread missing in L2 cache may hold a large number of resources which other
threads could be using to make forward progress. And as a result, the overall
performance of SMT processors is degraded. Currently, many instruction fetch
policy focus on this problem. However, these policies are not perfect, and each
has its own disadvantages. Especially, these policies are designed for processors
implementing any ways simultaneous multithreading. The disadvantages of
these policies may become more serious when they are used in two-context
SMT processors.

In this paper, we propose a novel fetch policy called RG-FP (Resource Gat-
ing based on Fetch Priority), which is specially designed for two-context SMT
processors. RG-FP combines reducing fetch priority with controlling shared re-
source allocation to prevent the negative effects caused by loads missing in L2
cache. Simulation results show that our RG-FP policy outperforms previously
proposed fetch policies for all types of workloads in both throughput and fair-
ness, especially for memory bounded workloads. Results also tell that our pol-
icy shows different degrees of improvement over other fetch policies. The in-
crement over PDG is greatest, reaching 41.8% in throughput and 50.0% in
Hmean on average.

1 Introduction

Simultaneous Multithreading (SMT) processors [1,2,3] improve performance by
allowing running instructions from several threads simultaneously at a single
cycle. Co-scheduled threads share some resources, such as issue queues, physical
registers, and functional units. The way of allocating shared resources among the
threads will affect the overall performance of SMT processors. Currently, shared
resources allocation in SMT processors is dynamically decided by the instruction
fetch policy.

In SMT processors, the number of shared resources is limited, so if a thread holds
critical resources for a long time, other threads may run slower than they could or
even stall because of lack of resources. A load missing in L2 cache usually causes this

14 C. Sun, H. Tang, and M. Zhang

happen. Many instruction fetch policies have been proposed to address this problem,
some of which are well known, such as STALL, FLUSH [4], DG and PDG [5]. A
newly proposed fetch policy called DWarn [6] is also very efficient to handle L2
cache misses. However, these policies are not perfect, and each has its own disadvan-
tages. Especially, these policies are very general, that is to say, they are designed for
processors implementing any ways simultaneous multithreading. The disadvantages
of these policies may become more serious when being used in two-context SMT
processors. For example, FLUSH deallocates all the resources allocated to the thread
with L2 cache misses and makes them available to the other threads. It will produce
resource under-use when the resources deallocated are not required by any other
thread. For two-context SMT processors, the pressure on shared resources is not high,
so resource under-use will be more serious.

It is well known that many commercial processors implement two-way simultane-
ous multithreading, like Intel Xeon [7] and IBM Power5 [8]. Furthermore, in SMT
processors with more than two hardware contexts, it is very common that only two
threads are running together because there are not enough thread-level parallelisms.
Therefore, we believe it is very important to specially design a fetch policy for two-
context SMT processors. Certainly, when there are more than two hardware contexts,
such a fetch policy can also be combined with other policies to achieve better per-
formance.

In this paper, we propose a novel fetch policy called RG-FP, which is specially
used in two-context SMT processors. RG-FP is built on top of ICOUNT, and com-
bines reducing fetch priority with controlling shared resource allocation to prevent the
effects of loads that miss in L2 cache. In out policy, a thread with cache misses would
not be stalled immediately, but executes at a lower fetch priority. Thus, resource un-
derutilization and idle cycles are reduced greatly. Furthermore, resources are allocated
between threads based on the fetch priority, and a thread with cache misses will be
gated when it attempts to exceed its assigned resources. In this way, we can prevent
resource monopolization.

This paper is organized as follows. Section 2 introduces the related work. In Sec-
tion 3 we detail our policy. Sections 4 and 5 present the methodology and the results.
Finally, concluding remarks are given in Section 6.

2 Related Work

ICOUNT [2] prioritizes threads with few instructions in decode, rename, and the
instruction queues. It presents good results for threads with high ILP(Instruction
Level Parallelism). However, ICOUNT could not address the problems caused by L2
cache misses. As long as the fetch priority of a thread is the highest, ICOUNT will
fetch instructions from this thread, even if this thread is experiencing L2 cache
misses. The reason that we introduce ICOUNT here is the following policies that
handle L2 cache misses are all based on it.

STALL [4] attempts to prevent the threads with L2 cache misses occupying most
of available resources. It detects that a thread has a pending L2 miss and stalls fetch-

 A Fetch Policy Maximizing Throughput and Fairness 15

ing from this thread to avoid resource abuse. However, L2 miss detection may be so
late that shared resources have been clogged. Furthermore, it is possible that the
resources allocated to a thread are not required by any other thread, so stalling fetch-
ing from this thread will produce resource under-use. Obviously, for two-context
SMT processors, it is easier to cause resource abuse or produce resource under-use.

FLUSH [4] is an extension of STALL. It tries to correct the case in which an L2
miss is detected too late by deallocating all the resources of the offending thread,
making them available to the other executing threads. However, compared to STALL,
it is more likely to produce resource under-use for FLUSH. Furthermore, extra fetch
and power are required to redo the work for the flushed thread. For two-context SMT
processors, the pressure on shared resources is not high, so resource under-use will be
more serious.

Data Gating (DG) [5] attempts to reduce the effects of loads missing in the L1 data
cache by stalling threads on each L1 data miss. However, there is not resource abuse
when an L1 miss does not cause an L2 miss. Thus, to stall a thread every time it ex-
periences an L1 miss may be too severe. For two-context SMT processors, another
problem is that it is very easy to produce idle cycles, because the probability of two
threads simultaneously experiencing L1 cache misses is high.

Predictive Data Gating (PDG) [5] works like STALL, that is, it prevents a thread
from fetching instructions as soon as a cache miss is predicted. By using a miss pre-
dictor, they avoid detecting the cache miss too late, but resource under-use still exists.
Furthermore, cache misses prove to be hard to predict accurately [9]. Like DG, it is
also very easy to produce idle cycles for two-context SMT processors.

DCache Warn (DWarn) [6] uses a hybrid mechanism. When less than two threads
run, the priority of the thread missing in L1 data cache miss is reduced. After that, if
the L1 miss turns to an L2 miss, its thread is gated. When the number of execution
threads is higher than 2, DWarn only reduces the priority of the threads with cache
misses. For two-context SMT processors, the problem of DWarn is there exist idle
cycles of the processor when two threads are all gated. Furthermore, although the
fetch priority of threads with cache misses is reduced, these threads are stalled until
L2 miss is declared, which may still be too late to prevent shared resources being
clogged.

The main problems of fetch policies previously introduced are summed up as fol-
lows: First, not to effectively prevent shared resources being monopolized by threads
with pending L2 misses; Second, to produce resource under-use when preventing a
thread occupying resources which are not required by any other thread; Third, to
produce idle cycles of the processor when all threads are stalled because of cache
misses; Fourth, the most important one, the three problems above may become more
serious when these policies are used in two-context SMT processors.

3 RG-FP Fetch Policy

RG-FP is specially designed for two-context SMT processors. It attempts to prevent
the effects of loads that miss in L2 cache, and at the same time to avoid the problems
of the fetch policies above.

16 C. Sun, H. Tang, and M. Zhang

3.1 Basic Idea

RG-FP is built on top of ICOUNT. Furthermore, it is based on the combination of two
ideas, namely, reducing fetch priority and controlling shared resources allocation.

Reducing Fetch Priority. RG-FP supports three priority levels for each thread, from
Level 1 to Level 3. Level 1 is the highest and Level 3 is the lowest. At the beginning,
all threads are at the highest priority, Level 1. If a thread is experiencing an L1 data
cache miss, its fetch priority is reduced to Level 2. After that, if the L1 cache misses
finally turns to an L2 cache miss, the fetch priority of the thread is reduce further to
Level 3. The transition of fetch priority is detailed in Figure 1. The threads at the
same priority level are sorted by ICOUNT.

Fig. 1. Transition of the fetch priority

Controlling Shared Resource Allocation. The number of resources allocated to
threads with cache misses is restricted to a certain value and threads with no out-
standing cache misses can use as many resources as that are available. If a thread with
cache misses is exceeding its assigned resources, it is gated until it releases some of
the allocated resources or it is allowed to occupy more resources.

By reducing the fetch priority of threads with cache misses instead of stalling
fetching from them, on one hand, the opportunity of keeping the fetch bandwidth fully
used is given the thread with no outstanding cache misses, which implies the im-
provement of throughput; on the other hand, threads with pending cache misses are
not stalled, so resource under-use and idle cycles of the processor are reduced greatly.

However, resources monopolization may still happen if we only reduce the fetch
priority. Therefore, the idea of controlling resource allocation [10] is added to our
policy. Because the resources allocated to threads with cache misses are limited, it is
impossible that shared resources are monopolized by these threads. Furthermore,
controlling resource allocation between threads may achieve a better throughput-
fairness balance [10,11].

3.2 Resource Allocation Mechanism

We can use two methods to allocate shared resources between threads: static resource
allocation (SRA) and dynamic resource allocation (DRA). In our simulations, we

 A Fetch Policy Maximizing Throughput and Fairness 17

implement these two methods respectively. In the rest of this paper, we call RG-FP
using static resource allocation RG-FP-S, and RG-FP using dynamic resource alloca-
tion RG-FP-D.

In static resource allocation, the number of resources allocated to threads at Level 2
and Level 3 is fixed, all equal to T divided by N, where T is the total number of some
resource and N is the number of running threads. Because we only talk about two-
context SMT processors, N is two.

In dynamic resource allocation, shared resources are dynamically allocated to
threads based on each thread’s fetch priority. The number of some resource allocated
to thread i (i=0, 1) Mi is given in the equation (1), where T is the total number of some
resource and PLi is the fetch priority level of thread i.

T
PLPL

PL
M

ii

i
i *

1−+
= (1)

Table 1 shows an example of the resource allocation for all cases. We can see that
in static resource allocation, the thread with cache misses can only occupy one half of
some resource at most. In dynamic resource allocation, the thread with lower priority
can borrow resources from the thread with higher priority, and as a result, the former
can use the resources not required by the latter to reduce resource under-use.

Table 1. Resource allocation values for a 32-entry resource. “-” represents the thread can use as
many resources as that are available.

SRA DRA
PL0 PL1 M0 M1 M0 M1
1 1 - - - -
1 2 - 16 - 21
1 3 - 16 - 24
2 1 16 - 21 -
2 2 16 16 16 16
2 3 16 16 13 19
3 1 16 - 24 -
3 2 16 16 19 13
3 3 16 16 16 16

3.3 Implementation

To implement RG-FP, each thread requires two cache miss counters, which are used
to track L1 data misses L2 misses respectively, and 5 resources usage counters. Each
instruction occupies an active list entry and maybe a physical register before commit-
ting. It uses an entry in the issue queues if its operands are not ready, and also require
a functional unit. But each thread can have its own active list and functional units are
pipelined. Therefore we only need to restrict the usage of issues queues and physical
registers by threads with cache misses. There are three kinds of issue queues: integer,
fp and load/store, so each thread requires three issue queues usage counters. Two
more resource usage counters are required to track physical registers (integer and fp)
per thread. The additional complexity required to introduce these counters depends on

18 C. Sun, H. Tang, and M. Zhang

the particular implementation, but we do not expect it to be more complex than other
hardware counters already present in most processors [10].

L1 data miss counters are incremented every time a thread experiences an L1 cache
miss and decremented when the data caches fill occurs. L2 miss counters are incre-
mented every time an L1 miss turns to an L2 miss and decremented when L2 cache
fill occurs. If the L2 miss counter of a thread is nonzero, this thread is at Level 3,
otherwise if the L1data miss counter is nonzero, it is at Level 2. Only when the L1
data miss counter and the L2 miss counter are all zero, is the thread at Level 1. Issue
queues usage counters are incremented in the decode stage and decremented when an
instructions is issued for execution. Physical registers usage counters are incremented
in the decode stage and decremented in the commit stage.

In RG-FP, we use ICOUNT2.8 as the basic fetch policy. Each cycle, RG-FP
fetches as many instructions as possible from the thread with higher priority, then fill
in with instructions from the other thread, up to eight totally. If a thread at Level 2 or
Level 3 is allocating more resources, it is fetch-stalled.

Now, we concern how to implement resource allocation between threads. For SRA,
the number of resources allocated threads with cache misses is fixed, so extra circuit
is not needed. For DRA, simple control logic is needed. DRA can be implemented in
two ways. One is using combinational circuit to implement equation (1). The inputs of
this circuit include fetch priority of each thread and the total number of some re-
source. This circuit gives the number of resources allocated to each thread with cache
misses. The second way is using a direct-mapped table indexed by fetch priority of
each thread. This table has 9 entries, as shown in Table 1. By searching this table, we
can acquire the number of resources allocated to each thread with cache misses.

4 Methodology

Table 2 summarizes the benchmarks used in our simulations. All benchmarks are
taken from the SPEC2000 suite [12] and use the reference data sets as inputs. It is
time-consuming to simulate the complete SPEC benchmark suit. So we follow the
idea proposed in [13] to run the most representative 300 million instruction segment
of each benchmark. Benchmarks are divided into two groups based on their cache
behaviors: those experiencing between 0.02 and 0.12 L2 cache misses per instruction,
on average, over the simulated portion of the code are considered memory-intensive
applications, and the rest have lower miss rates and higher inherent ILP. Table 3 lists
the multithreaded workloads used in our simulations. All of the simulations in this
paper either contain threads all from the first group (the MEM workloads in Table 3),
or all from the second group (ILP), or an equal mix from each group (MIX).

Execution is simulated on an out-of-order superscalar processor model derived
from SMTSIM [14]. The simulator models all typical sources of latency, including
caches, branch mispredictions, TLB (Translation Lookaside Buffer) misses, etc. It
also carefully models execution down the wrong path between branch misprediction
and branch misprediction recovery. The baseline configuration of our simulator is
shown in Table 4.

 A Fetch Policy Maximizing Throughput and Fairness 19

Table 2. Benchmarks used

Type Benchmark
MEM mcf, twolf, vpr, parser, ammp, applu, art, swim
ILP aspi, fma, eon, gcc, gzip, vortex, crafty, bzip2

Table 3. Multithreaded Workloads used

Type Applications
ILP {gzip, bzip2}, {gcc, aspi}, {vortex, fma}, {eon, crafty}, {gzip, vortex},

{aspi, bzip2}, {gcc, crafty}, {fma, eon}
MIX {gzip, vpr}, {gcc, ammp}, {art, vortex}, {fma, parser}, {aspi, twolf},

{crafty, art}, {bzip2, swim}, {eon, applu}
MEM {mcf, vpr}, {ammp, parser}, {twolf, art}, {mcf, swim}, {vpr, applu},

{ammp, art}, {parser, twolf}, {swim, applu}

Table 4. Baseline configuration of the simulator

Parameter Value
Fetch Width 8 instructions per cycle
Basic Fetch Policy ICOUNT2.8
Instruction Queues 32 int, 32 fp, 32 load/store
Functional Units 6 int, 3 fp, 4 load/store
Renaming Physical Registers 100 int, 100 fp
Active List Entries 256 per thread
Branch Predictor 2K gshare
Branch Target Buffer 256 entries, 4-way associative
RAS 256 entries
L1I cache, L1D cache 64KB, 2-way, 64-bytes lines, 1 cycle access
L2 cache 512KB, 2-way, 64-bytes lines, 10 cycles latency
Main Memory Latency 100 cycles

We use two metrics to make a fair comparison: IPC and the Harmonic Mean
(Hmean). Just as stated in [4], IPC may be a questionable metric if a fetch policy
favors high IPC threads. Hmean is the harmonic mean of the relative IPC of the
threads in a workload and it attempts to avoid artificial improvements achieved by
giving more resources to threads with high ILP.

5 Results

Because we implement two mechanisms to allocate shared resources in our policy,
we will first compare RG-FP-S with RG-FP-D. After that, we compare our policy
with some fetch policies used widely, including STALL, FLUSH, DG, PDG and
DWarn.

20 C. Sun, H. Tang, and M. Zhang

5.1 RG-FP-S vs. RG-FP-D

Figure 2 shows the throughput/Hmean results of RG-FP-D compared to RG-FP-S. We
can see that RG-FP-D outperforms RG-FP-S in both throughput and fairness, by 3.3%
and 4.2% on average, respectively. This is because when deciding the number of
resources that a thread can use, static resource allocation only examines the cache
behaviors of this thread, and ignores the other one. While dynamic resource allocation
examines the two threads simultaneously. Therefore, DRA can make better use of the
shared resources.

The results also show that the improvement of RG-FP-D over RG-FP-S is higher
for MIX workloads, especially in fairness. The key point is that from Table 1, we can
see that only when the fetch priority of two threads is not equal, are there differences
between SRA and DRA. Table 5 gives how often threads in two-thread workloads are
either at the same fetch priority or at different fetch priority. We can see that for MIX
workloads, it is more common that two threads are at different priority levels than ILP
and MEM workloads.

Table 5. Distribution of threads in fetch
priority for two-thread workloads

Workload
Type

The same
level

Different
Level

ILP 53.8 46.2
MIX 24.8 75.2
MEM 64.4 35.6

0
1
2
3
4
5
6
7

ILP MIX MEM Avg.

In
cr

em
en

t (
%

)

Throughput Hmean

Fig. 2. Throughput/Hmean results of RG-
FP-D compared to RG-FP-S

5.2 RG-FP vs. Other Policies

Figure 3(a) shows the throughput improvement of RG-FP over other policies. We
only give the results of RG-FP-S. Combining the results in Figure 2, we can easily
acquire the improvement of RG-FP-D over other policies.

Results show that RG-FP-S outperforms each of the other policies, especially
PDG, by 41.8% on average, and DG takes second place, by 20.7% on average. This is
because in DG, a thread is gated on each L1 data miss. In fact, the pressure on shared
resources is not high in two-thread workloads. Therefore, resource under-use is very
serious in DG. In our policy, a thread with cache misses would not be stalled immedi-
ately, but executes at a lower priority, and is gated only when this thread attempts to
exceed its assigned resources. Thus, resource underutilization is reduced greatly. For
PDG, it suffers the same problem as DG. In addition, cache misses prove to be hard to
predict accurately, which reduces further the advantage of this technique.

Figure 3(b) depicts the Hmean improvement of RG-FP-S over other policies. Simi-
larly, RG-FP-S outperforms all the other policies for all types of workloads. The key

 A Fetch Policy Maximizing Throughput and Fairness 21

point is our policy never stalls or squashes a thread with cache misses directly, but
lets this thread run at a lower priority. As a result, the thread with cache misses can
use the resources that are not required by the other thread. Therefore, under the condi-
tion of not significantly affecting a thread, our policy tries to improve the perform-
ance of the other thread as highly as possible.

From Figure 3 (a) and (b), we can also observe that our policy outperforms
other policies mainly for MIX and MEM workloads. Recall that the difference
between RG-FP and previously proposed policies is RG-FP can avoid such prob-
lems as resource under-use, resource monopolization, and idle cycles of the proc-
essor. We know that these problems are produced when cache misses take place.
Therefore, compared to other policies, our policy works better for memory-
bounded applications.

41.865.848.6

0

5

10

15

20

25

30

IL
P

MIX
MEM

Avg
.

(a) Throughput

In
cr

em
en

t (
%

) STALL
FLUSH
DG
PDG
Dwarn

5088.647.6

0

5

10

15

20

25

30

IL
P

MIX
MEM

Avg
.

(b) Hmean

In
cr

em
en

t (
%

) STALL
FLUSH
DG
PDG
Dwarn

Fig. 3. The improvement of RG-FP-S over STALL, FLUSH, DG, PDG and DWarn

6 Conclusions

In SMT processors, a thread experiencing a miss in L2 cache may hold a large num-
ber of resources which other threads could be using to make forward progress. As a
result, the overall performance of processors is degraded. Currently, many instruction
fetch policies focus on this problem, such as STALL, FLUSH, DG, PDG and DWarn.
However, these policies are not perfect, and each has its own disadvantages, mainly
including resource monopolization, resource under-use and idle cycles of the proces-
sor. The disadvantages of these policies will become more serious when being used in
two-context SMT processors.

Our contribution is that we propose a novel fetch policy called RG-FP. Our policy
is specially designed for two-context SMT processors to prevent the negative effects
of loads missing in L2 cache, and at the same time to avoid the problems of
previously proposed fetch policies. Simulation results show that:

22 C. Sun, H. Tang, and M. Zhang

1. RG-FP outperforms previously proposed policies for all types of workloads in
both throughput and fairness. Especially for MIX and MEM workloads, the im-
provement is more obvious.

2. RG-FP shows different degrees of increment over other policies. The increment over
PDG is most significant, 41.8% in throughput, and 50.0% in Hmean, on average.

3. When using DRA to allocate resources between threads, RG-FP can outperform
other policies further. Compared with SRA, the additional improvement achieved
by using DRA in throughput is 3.8% for ILP workloads, 3.9% for MIX work-
loads and 2.3% for MEM workloads; in harmonic mean is 3.4% for ILP work-
loads, 6.6% for MIX workloads and 2.5% for MEM workloads.

Acknowledgements

This work was supported by “863” project No. 2002AA110020, Chinese NSF No.
60376018, No. 60273069 and No. 90207011. The authors would like to thank
Peixiang Yan and Yi He for their work on the simulator.

References

1. D. Tullsen, S. Eggers and H. Levy: Simultaneous multithreading: Maximizing on-chip
parallelism. In Proc. ISCA-22(1995)

2. D. Tullsen, S. Eggers, et al.: Exploiting choice: Instruction fetch and issue on an imple-
mentable simultaneous multithreading processor. In Proc. ISCA-23(1996)

3. S. J. Eggers, J. S. Emer, et al.: Simultaneous Multithreading: a Platform for next-
generation processors. IEEE Micro, 17(5):12-19(1997)

4. D. Tullsen and J. Brown: Handling long-latency loads in a simultaneous multithreaded
processor. In Proc. MICRO-34(2001)

5. A. El-Moursy and D. Albonesi: Front-end policies for improved issue efficiency in SMT
processors. In Proc. HPCA-9(2003)

6. F. J. Cazorla, A. Ramirez, et al.: DCache Warn: an I-Fetch policy to increase SMT effi-
ciency. In Proc. IPDPS-18(2004)

7. D. Koufaty and D. T. Marr: Hyperthreading technology in the Netburst microarchitecture.
IEEE Micro (2003)

8. R. Kalla, B. Sinharoy and J. Tendler: IBM POWER5 chip: a dual-core multithreaded
processor. IEEE Micro (2004)

9. A. Yoaz, M. Erez et al.: Speculation techniques for improving load related instruction
scheduling. In Proc. ISCA-26(1999)

10. F. J. Cazorla, A. Ramirez, et al.: Dynamically controlled resource allocation in SMT proc-
essors. In Proc. MICRO-37(2004)

11. F. J. Cazorla, et al.: Implicit vs. explicit resource allocation in SMT processors. In Pro-
ceedings of the Euromicro Symposium on Digital System Design (2004)

12. The standard performance evaluation corporation, WWW cite: http://www.specbench.org.
13. T. Sherwood, E. Perelman and B. Calder: Basic block distribution analysis to find periodic

behavior and simulation points in applications. In Proceedings of the International Confer-
ence on Parallel Architectures and Compilation Techniques (2001)

14. D. Tullsen: Simulation and modeling of a simultaneous multithreading processor. In Pro-
ceedings of 22nd Annual Computer Measurement Group Conference (1996)

J. Cao, W. Nejdl, and M. Xu (Eds.): APPT 2005, LNCS 3756, pp. 23 – 30, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Loop Transformation Using Two Parallel Region
Partitioning Method

Sam Jin Jeong and Jung Soo Han

Division of Information and Communication Engineering, Cheonan University,
Anseo-dong 115, Cheonan City, Korea 330-704
{sjjeong, jshan}@cheonan.ac.kr

Abstract. Loop parallelization is an important optimization issue in the execu-
tion of scientific programs. This paper proposes loop transformation techniques
for finding parallel regions within nested loops with non-uniform dependences in
order to improve parallelism. By parallelizing anti dependence region using
variable renaming, there remains only flow dependence in the loop. We then
divide the iteration space into FDT (Flow Dependence Tail set) and FDH (Flow
Dependence Head set). By two given equations, we show how to determine
whether the intersection of FDT and FDH is empty or not. So, we can find two
parallel regions for doubly nested loops with non-uniform dependences. In the
case that FDT does not overlap FDH, we will divide the iteration space into two
parallel regions by a line.

1 Introduction

Computationally expensive programs spend most of their time in the execution of
DO-loops. Therefore, an efficient approach for exploiting potential parallelism is to
concentrate on the parallelism available in loops in ordinary programs and has a con-
siderable effect on the speedup [1]. Current parallelizing compilers pay much of their
attention to loop parallelization.

Some techniques, based on Convex Hull theory [6], are the minimum dependence
distance tiling method [4], [5], the unique set oriented partitioning method [3], and the
three region partitioning method [2], [8].

Fig. 1(a) shows the dependence patterns of Example 1 in the iteration space.
This paper will focus on loop transformation techniques of perfectly nested loops

with non-uniform dependences. Especially, it shows us how to find two parallel regions
in doubly nested loops with non-uniform dependences by two given equations.

Example l.
do i = 1, 10

 do j = 1, 10
 A(i+j, 3*i+j+3) = . . .

 . . . = A(i+j+1, i+2*j+4)
 enddo

enddo

24 S.J. Jeong and J.S. Han

 (a) (b)

Fig. 1. (a) Iteration Spaces (b) CDCH of Example 1

The rest of this paper is organized as follows. Chapter two describes our loop model,
and introduces the concept of Complete Dependence Convex Hull (CDCH). In chapter
three, we define the properties of FDT (Flow Dependence Tail set) and FDH (Flow
Dependence Head set). We show how to find FDT and FDH, to determine the inter-
section of FDT and FDH, and to divide iteration space into two parallel regions by a
line. Chapter four shows comparison with related works. Finally, we conclude in
chapter five.

2 Program Model and Dependence Analysis

The loop model considered in this paper is doubly nested loop program of the form
shown in Figure 2. For the given loop, l1 (l2) and u1 (u2) indicate the lower and upper
bounds respectively, and should be known at compile time. We also assume that the
program statements inside these nested loops are simple assignment statements of ar-
rays. The dimensionality of these arrays is assumed to be equal to the nested loop depth.
To characterize the coupled array subscripts, the array subscripts, f1(I, J), f2(I, J), f3(I,
J), and f4(I, J), are linear functions of the loop index variables.

do I = l1, u1
 do J = l2, u2
 A(f1(I, J), f2(I, J)) = . . .
 . . . = A(f3(I, J), f4(I, J))
 enddo

enddo

Fig. 2. A doubly nested loop model

The most common method to compute data dependences involves solving a set of
linear diophantine equations with a set of constraints formed by the iteration bounda-
ries. The loop in Fig. 2 carries cross iteration dependences if and only if there exist four
integers (i1, j1, i2, j2) satisfying the system of linear diophantine equations given by (1)

 A Loop Transformation Using Two Parallel Region Partitioning Method 25

and the system of inequalities given by (2). The general solution to these equations can
be computed by the extended GCD or the power test algorithm [7] and forms a DCH
(Dependence Convex Hull).

f1(i1, j1) = f3(i2, j2) and f2(i1, j1) = f4(i2, j2) (1)

l1 i1, i2 u1 and l2 j1, j2 u2 (2)

There are two approaches to solve the system of Diophantine equations of (1). One
way is to set i1 to x1 and j1 to y1 and get the solution of i2 and j2.

a21i2 + b21j2 + c21 = a11x1 + b11y1 + c11
a22i2 + b22j2 + c22 = a12x1 + b12y1 + c12

We have the solution as
i2 = 11x1 + 11y1 + 11
j2 = 12x1 + 12y1 + 12

where
11 = (a11b22 - a12b21)/(a21b22 - a22b21)
11 = (b11b22 - b12b21)/(a21b22 - a22b21)

11 = (b22c11 + b21c22 - b22c21 - b21c12)/(a21b22 - a22b21)
12 = (a21a12 - a11a22)/(a21b22 - a22b21)
12 = (a21b12 - a22b11)/(a21b22 - a22b21)

12 = (a21c12 + a22c21 - a21c22 - a22c11)/(a21b22 - a22b21)

The solution space is the set of points (x, y) satisfying the equations given above. The
set of inequalities can be written as

l1 i1 u1 and l2 j1 u2 and

l1 11x1 + 11y1 + 11 u1 and l2 12x1 + 12y1 + 12 u2
(3)

where (3) defines a DCH denoted by DCH1.
Another approach is to set i2 to x2 and j2 to y2 and solve for the solution of i1 and j1.

a11i1 + b11j1 + c11 = a21x2 + b21y2 + c21
a12i1 + b12j1 + c12 = a22x2 + b22y2 + c22

We have the solution as
i1 = 21x2 + 21y2 + 21
j1 = 22x2 + 22y2 + 22

where
21 = (a21b12-a22b11)/(a11b12-a12b11)
21 = (b12b21-b11b22)/(a11b12-a12b11)

21 = (b12c21+b11c12-b12c11-b11c22)/(a11b12-a12b11)
22 = (a11a22-a12a21)/(a11b12-a12b11)
22 = (a11b22-a12b21)/(a11b12-a12b11)

22 = (a11c22+a12c11-a11c12-a12c21)/(a11b12-a12b11)

The solution space is the set of points (x, y) satisfying the solution given above. In
this case the set of inequalities can be written as

26 S.J. Jeong and J.S. Han

l1 i2 u1 and l2 j2 u2 and

l1 21x2 + 21y2 + 21 u1 and l2 22x2 + 22y2 + 22 u2
(4)

where (4) defines another DCH, denoted by DCH2.
The above two sets of solutions are both valid. Each of them has the dependence

information on one extreme. For some simple cases, for instance, since there is only
one kind of dependence, either flow or anti dependence, one set of solution (i.e. DCH)
should be enough. Punyamurtula and Chaudhary used (3) for their technique [4], while
Zaafrani and Ito used (4) for their technique [8]. For those more complicated cases,
where both flow and anti dependences are involved and dependence patterns are ir-
regular, we need to use both sets of solutions.

If iteration (i2, j2) is dependent on iteration (i1, j1), then we have a dependence dis-
tance vector d(x, y) with

di(x, y) = i2 - i1, dj(x, y) = j2 - j1 (5)

For DCH1, we have

di(x1, y1) = (11 - 1)x1 + 11y1 + 11, dj(x1, y1) = 12x1 + (12 - 1)y1 + 12 (6)

For DCH2, we have

di(x2, y2) = (1 - 21)x2 - 21y2 - 21, dj(x2, y2) = - 22x2 + (1 - 22)y2 - 22 (7)

Clearly if we have a solution (x1, y1) in DCH1, we must have a solution (x2, y2) in
DCH2, because they have been solved from the same set of linear Diophantine equa-
tions (1). The union of DCH1 and DCH2 is called Complete Dependence Convex Hull
(CDCH), and all dependences lie within the CDCH. Fig. 1(b) shows the CDCH of
Example 1.

We can write these dependence distance functions in a general form as

d(i1, j1) = (di(i1, j1), dj(i1, j1)), d(i2, j2) = (di(i2, j2), dj(i2, j2))

di(i1, j1) = p1*i1 + q1*j1 + r1, dj(i1, j1) = p2*i1 + q2*j1 + r2

di(i2, j2) = p3*i2 + q3*j2 + r3, dj(i2, j2) = p4*i2 + q4*j2 + r4

(8)

where pi, qi, and ri are real values and i1, j1, i2, and j2 are integer variables of the it-
eration space. The properties of DCH1 and DCH2 can be found in [3].

The set of inequalities and dependence distances of the loop in Example 1 are
computed as follows.

 DCH1 : 1 i1 10 DCH2 : 1 j2/2 10

 1 j1 10 1 i2 + j2/2+1 10

 1 –i1 + j1 –1 10 1 i2 10

 1 2i1 10 1 j2 10
 di(i1, j1) = –2i1 +j1–1 di(i2, j2) = i2– j2/2
 dj(i1, j1) = 2i1–j1 dj(i2, j2) = –i2 + j2/2–1

 A Loop Transformation Using Two Parallel Region Partitioning Method 27

3 Two Parallel Region Partitioning Method

We define the flow dependence tail set (FDT) and the flow dependence head set (FDH)
as follows.

Definition 1. Let L be a doubly nested loop with the form in Fig. 2. If line di(i1, j1) = 0
intersects DCH1, the flow dependence tail set of the DCH1, namely FDT(L), is the
region H, where H is equal to

DCH1 {(i1, j1) | di(i1, j1) 0 or di(i1, j1) 0 } (9)

Definition 2. Let L be a doubly nested loop with the form in Fig. 2. If line di(i2, j2) = 0
intersects DCH2, the flow dependence head set of the DCH2, namely FDH(L), is the
region H, where H is equal to

DCH2 {(i2, j2) | di(i2, j2) 0 or di(i2, j2) 0 } (10)

Property 1. Suppose line di(i, j) = p*i+q*j+r passes through CDCH. If q > 0,
FDT(FDH) is on the side of di(i1, j1) 0 (di(i2, j2) 0), otherwise, FDT(FDH) is on the
side of di(i1, j1) 0 (di(i2, j2) 0).

Fig. 3(b) shows FDH and FDT of the loop in Example 1 after variable renaming.
In our proposed algorithm, Algorithm Region_Partition, we can determine whether

the intersection of FDT and FDH is empty by position of two given lines di(i1, j1) = 0
and di(i2, j2) = 0, and two real values q1 and q3 given in (8). If the intersection of FDT
and FDH is not empty, we divide the iteration space into two parallel regions and one
serial region by two appropriate lines as given in the three region partitioning method
[5], [7]. If the intersection of FDT and FDH is empty, we divide the iteration space into
two parallel regions by the line di(i1, j1) = 0 or di(i2, j2) = 0.

From property 1, we know that the real value q1(q3) determines whether the position
of FDT(FDH) is on side of the line di(i1, j1) 0(di(i2, j2) 0) or not. The line is the
bounds of two parallel loops.

(a) (b)

Fig. 3. (a) D ependence and Anti Dependence unique set, (b) FDT and FDH of Example 1

28 S.J. Jeong and J.S. Han

Algorithm Region_Partition
INPUT: two lines (d

i
(i

1
, j

1
) = 0, d

i
(i

2
, j

2
) = 0) and two real values

(q
1
, q

3
)

OUTPUT: two parallel regions
BEGIN
IF (line d

i
(i

1
, j

1
) = 0 is on the left side of line d

i
(i

2
, j

2
) =0)

 IF (q
1
 > 0 and q

3
 < 0){

 /* AREA1 does not overlap AREA2 */
 AREA1: {(i

1
,

j
1
) | d

i
(i

1
, j

1
)

• 0}

 AREA2: {(i
1
,

j
1
) | d

i
(i

1
, j

1
)

< 0} }

ELSE IF (d
i
(i

1
, j

1
) = 0 is on the right side of d

i
(i

2
, j

2
) = 0)

 IF (q
1
 < 0 and q

3
 > 0) {

 /* AREA1 does not overlap AREA2 */
 AREA1: {(i

1
,

j
1
) | d

i
(i

1
, j

1
)

• 0}

 AREA2: {(i
1
,

j
1
) | d

i
(i

1
, j

1
)

> 0} }

ELSE Use Three Region Partitioning Method
END Region_Partition

Fig. 4. Algorithm of determining the intersection of FDT and FDH

In this algorithm, the line di(i1, j1) = 0 is expressed by j = Ai+B , where A =
(1- 11)/ 11, B = - 11/ 11, which are derived from (5). We know that the line can be the
upper or lower bound in the transformed loops based on the corresponding region of the
loop technique. The line di(i1, j1) = 0 is the upper boundary in AREA2 and lower
boundary in AREA1 in Example 1. In this case, the iteration space is divided into two
parallel regions, AREA1 and AREA2, by line j = 2i1 +1 as shown in Fig 3(b). The
execution order is AREA1 AREA2. Transformed loops are given as follows.

AREA1

 do i l1 u1

do j max l2 2*i+1 u2

A(i+j, 3*i+j+3) = . . .
 . . . = A(i+j+1, i+2*j+4)

enddo
 enddo

AREA2

 do i l1 u1

do j l2 min u2 2*i+1
A(i+j, 3*i+j+3) = . . .

 . . . = A(i+j+1, i+2*j+4)
enddo

 enddo

Fig. 5. Transformation of the loop by two parallel region partitioning method in Example 1

 A Loop Transformation Using Two Parallel Region Partitioning Method 29

4 Performance Analysis

Theoretical speedup for performance analysis can be computed as follows. Ignoring the
synchronization, scheduling and variable renaming overheads, and assuming an unlim-
ited number of processors, each partition can be executed in one time step. Hence, the
total time of execution is equal to the number of parallel regions, Np, plus the number of
sequential iterations, Ns. Generally, speedup is represented by the ratio of total sequential
execution time to the execution time on parallel computer system as follows:

Speedup = (Ni * Nj)/(Np + Ns)

where Ni, Nj are the size of loop i, j, respectively

By using an example given in Example 1, we compare the performance of our
proposed method with that of related works.

Fig. 6. Regions of the loop partitioning by the unique sets oriented partitioning in Example 1

Applying the unique set oriented partitioning to this loop illustrates case 4 of this
technique [3], which is the case that there are two kinds of dependence and DCH1
overlaps with DCH2, and there is at least one isolated unique set. Fig. 6 shows one
possible partitioning case of this method. AREA2 contains only flow dependence
heads, and AREA1 contains flow dependence tails and anti dependence heads and tails
by the line j = i+1. So, the speedup for this method is (10*10)/(45+2) = 2.1.

Applying the minimum dependence distance tiling method to this loop illustrates
case 2 of this technique [4], which is the case that line di(i, j) = 0 and dj(i, j) = 0 pass
through the IDCH. The minimum values of di(i, j), dimin, and dj(i, j), djmin, occur at the
extreme point (1, 1) and both dimin = 1 and djmin = 1. There is only serial region, and no
speedup for this method.

This example is the case which FDT does not overlap the FDH. In this case, we
apply our proposed method - two parallel region partitioning method. After variable
renaming, there remains flow dependence tail set (FDT) and flow dependence head set
(FDH) separately. Thus, a line di(i, j) = 0 between two sets divides the iteration space
into two parallel areas as shown in Fig. 4(b). The iterations within each area can be fully
executed in parallel. The speedup for this method is (10*10)/2 = 50.

In the above comparisons, our proposed partitioning method exploits more paral-
lelism than the other related methods.

30 S.J. Jeong and J.S. Han

5 Conclusions

In this paper, we have studied loop transformation techniques for finding parallel regions
within nested loops with non-uniform dependences in order to maximize parallelism.

When there are both flow and anti dependence sets within the doubly nested loop,
we eliminate anti dependence sets by variable renaming. After variable renaming, there
remains only flow dependence in the nested loop. We then divide the iteration space
into FDT (Flow Dependence Tail set) and FDH (Flow Dependence Head set).

In our proposed algorithm, we can determine whether the intersection of FDT and
FDH is empty by position of two given lines di(i1, j1) = 0 and di(i2, j2) = 0, and two real
values. If the intersection of FDT and FDH is not empty, we divide the iteration space
into two parallel regions and one serial region by two appropriate lines. If the inter-
section of FDT and FDH is empty, we divide the iteration space into two parallel re-
gions by the line di(i1, j1) = 0 or di(i2, j2) = 0. The iterations within each area can be fully
executed in parallel.

In comparison with some previous partitioning methods, our proposed method leads
to better speedup compared with other methods such as minimum tiling method and
unique set oriented partitioning method.

References

1. D. Kuck, A. Sameh, R. Cytron, A. Polychronopoulos, G. Lee, T. McDaniel, B. Leasure, C.
Beckman, J. Davies, and C. Kruskal, "The effects of program restructuring, algorithm change
and architecture choice on program performance," in Proceedings of the 1984 International
Conference on Parallel Processing, pp. 129-138, August 1984.

2. C. K. Cho and M. H. Lee, "A loop parallization method for nested loops with non-uniform
dependences", in Proceedings of the International Conference on Parallel and Distributed
Systems, pp. 314-321, December 10-13, 1997.

3. J. Ju and V. Chaudhary, "Unique sets oriented partitioning of nested loops with non-uniform
dependences," in Proceedings of International Conference on Parallel Processing, vol. III,
pp. 45-52, 1996.

4. S. Punyamurtula and V. Chaudhary, "Minimum dependence distance tiling of nested loops
with non-uniform dependences," in Proceedings of Symposium on Parallel and Distributed
Processing, pp. 74-81, 1994.

5. S. Punyamurtula, V. Chaudhary, J. Ju, and S. Roy, "Compile time partitioning of nested loop
iteration spaces with non-uniform dependences," Journal of Parallel Algorithms and Appli-
cations, October 1996.

6. T. Tzen and L. Ni, "Dependence uniformization: A loop parallelization technique," IEEE
Transactions on Parallel and Distributed Systems, vol. 4, no. 5, pp. 547-558. May 1993.

7. M. Wolfe and C. W. Tseng, "The power test for data dependence," IEEE Transactions on
Parallel and Distributed Systems, vol. 3, no. 5, pp. 591-601, September 1992.

8. A. Zaafrani and M. R. Ito, "Parallel region execution of loops with irregular dependences," in
Proceedings of the International Conference on Parallel Processing, vol. II, pp. 11-19, 1994.

Criticality Based Speculation Control
for Speculative Multithreaded Architectures

Rahul Nagpal and Anasua Bhowmik

Department of Computer Science and Automation,
Indian Institute of Science, Bangalore, India

{rahul, anasua}@csa.iisc.ernet.in

Abstract. Unending quest for performance improvement coupled with
the advancements in integrated circuit technology have led to the devel-
opment of new architectural paradigm. Speculative multithreaded archi-
tecture (SpMT) philosophy relies on aggressive speculative execution for
improved performance. However, aggressive speculative execution comes
with a mixed flavor of improving performance, when successful, and ad-
versely affecting the performance (and energy consumption) because of
useless computation in the event of mis-speculation. Dynamic instruc-
tion criticality information can be applied to control and guide such an
aggressive speculative execution.

In this paper, we propose a model to determine the dynamic instruc-
tion criticality of SpMT execution. We have also developed two novel
techniques, utilizing the criticality information, namely delaying the non-
critical loads and the criticality based thread-prediction for reducing use-
less computations. Our experiments with criticality based speculation
control show a significant reduction in useless computation with little
reduction in speedup.

1 Introduction

Speculative multithreaded (SpMT) execution paradigm [2] takes a step ahead
in aggressive ILP based execution. In SpMT execution model, a sequential pro-
gram is divided into threads by combination of hardware and software techniques
and the threads are executed in parallel on multiple out-of-order superscalar
processing elements (PEs). SpMT processors allow threads to run speculatively
in presence of ambiguous control and data dependencies and recover upon the
detection of dependency violations. Control speculation allows the future threads
to be predicted and speculatively started. Data speculation allows memory op-
erations to be speculatively performed on a buffer or cache and later commit-
ted to memory, if found successful. However, the thread mis-prediction leads to
squashing of the mis-predicted thread as well as all the subsequent threads. Sim-
ilarly data dependence violation leads to squashing and re-execution of threads
or instructions violating the dependence. Thus aggressive speculative execution
comes with a mixed flavor of improving the performance when correctly specu-
lated and adversely affecting the performance and energy consumption by doing
useless computation in the event of mis-speculation.

J. Cao, W. Nejdl, and M. Xu (Eds.): APPT 2005, LNCS 3756, pp. 31–40, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

32 R. Nagpal and A. Bhowmik

As energy consumed by the processor is fast becoming an important per-
formance parameter, it is necessary that the speculation should be done judi-
ciously in order to reduce the energy wastage while maintaining the program
performance. Identification of the dynamic critical instructions and performing
the speculation depending on the instruction criticality can reduce the risk of
redundant computation. This can help to achieve a balance between power and
performance. Whereas the earlier works on determining and exploiting dynamic
critical paths have targeted out-of-order superscalar processor models, in this pa-
per, we propose an analytical model for determining the dynamic critical path of
programs for SpMT execution paradigm. We have analyzed the dynamic critical
path information in detail to get the insight about the behavior of the pro-
grams under SpMT execution model and then used that knowledge to perform
both the control speculation and the data speculation in an aggressive SpMT
processor.

In order to restrict the control speculation, we do not speculatively execute
the next thread when that thread is dependent on low confidence non-critical
branch. Our experiments with this scheme has resulted in 40.44% reduction
in useless computation while the IPC degraded by only 6.52%. Similarly, data
speculation is controlled by delaying the non-critical speculative loads and the
experimental evaluation reveals 26.5% savings in redundant execution with 8%
reduction in IPC. These results also validate our criticality model.

The rest of the paper is organized as follows. We discuss the related work
in section 2. Section 3 presents our graph model for determining the dynamic
critical path for SpMT processors. Section 4 presents the detail measurement
and analysis of critical path information. In section 5, we describe the specula-
tion control techniques using the critical path information and also present the
experimental results. Section 6 contains the conclusions and future works.

2 Related Work

Critical path analysis, which is traditionally used by compiler, has been recently
adopted by architectural community to control aggressive optimization. Tune et
al.[3] have proposed various heuristics based on micro-execution events to decide
on the criticality of instructions. Their heuristic based critical instruction predic-
tion have been shown to be effective for driving various optimization techniques
such as instruction steering in a clustered architecture, value prediction, and re-
ducing power consumption. Fields et al.[1] follow a modeling based approach for
predicting critical instructions. They proposed a graph model to capture hard-
ware constraints such as finite reorder buffer, and branch mis-prediction apart
from traditional data dependencies. They have used this model to develop a
token passing based predictor and used it for selective value prediction and in-
struction steering for a clustered architecture. They have shown that the model
based approach is generic and more accurate than a heuristic based approach[1].
Though our model is based on the model proposed of Fields et al. [1], it is sig-
nificantly more challenging to accurately model and determine critical paths in

Criticality Based Speculation Control for SpMT 33

SpMT processors, since there exist many parallel paths of execution through
different threads at the same time.

Reducing energy in microprocessors is an active area of research and many
power optimization techniques have been proposed. The works that are clos-
est to our work are [4], [7]. Manne et. al.[4] introduced the idea of pipeline
gating and used branch confidence estimator to reduce wrong-path instructions
in the pipeline to save energy and [7] reduces processor power dissipation by
throttling the different pipeline stages selectively based on branch confidence
estimation.

3 Modeling the Critical Path for SpMT Processor

The central idea behind SpMT is to execute multiple threads obtained from
a sequential program in parallel. SpMT architectures generally supports both
control speculation and data speculation as well as recovery mechanism to handle
incorrect speculations. This enables parallelization of applications, despite any
compile-time uncertainty about (control or data) dependences that may exist
between the threads running in parallel.

A typical SpMT processor consists of a collection of simpler processing ele-
ments (PEs) that are connected by an interconnection network. Each PE has its
own fetch, decode, and execution units. Each individual PE follows the out-of-
order execution. A thread spawns the next successor thread speculatively based
on thread level prediction. A spawned thread becomes active after a PE becomes
available. At any point of time only one thread executes non-speculatively (the
head thread). Although instructions are executed out-of-order, they are commit-
ted in program order. A speculative thread (and all the subsequent threads)
can be squashed before committing because of mis-prediction or dependence
violation.

To determine the critical path in a program, we capture the micro-execution
of the program in the SpMT processor by building a dynamic dependence graph
(DDG) at run-time. The critical path is the longest path in the dynamic de-
pendence graph and the nodes lying on the critical path constitute the critical
instructions. Each instruction in the DDG is represented by three nodes namely
F, E, and C nodes. A F node represent the event of an instruction fetched,
decoded, and put in the reorder buffer (ROB). Instructions in the same thread
are fetched in order subject to limited fetch bandwidth and ROB space. In-
structions in the different currently active threads are fetched in parallel. A E
node represents the event of execution of an instruction. Decoded instructions
are executed in parallel in each active PE subject to the availability of input
operands, functional units, and under the constraint on limited issue width. A
C node represents the commit event of an instruction. Instructions are commit-
ted in program order across all the threads. An edge between two nodes depict
the dependence between them and the edge weight represent the resultant de-
lay. The edges between the nodes in the instruction execution model are listed
in Table 1. There are inter-thread as well as intra thread edges depicting the

34 R. Nagpal and A. Bhowmik

Table 1. List of edges for instruction execution in SpMT execution model, Xj,i refer
to node X of ith instruction in jth thread

Edge type No. Constraint modeled Name Edge

Intra-thread 1. In-order Fetch FFi Fj,i−1 → Fj,i

2. Finite Size ROB CFi Cj,i−R → Fj,i,
R is the size of ROB buffer

3. Control Dependence EFi Ej,i−1 → Fj,i, if instr i − 1 is
the mis-predicted branch

Inter-thread 4. Next Thread activation FFI Fj−1,1 → Fj,1
5. Finite PE CFI Cj−N,l → Fj,i

N is the number of PEs
6. Control/data mis-speculation EFI Ej,i → Fj+1,1

Intra-thread 7. Execute Follow Fetch FEi Fj,i → Ej,i

8. Data Dependency EEi Ej,m → Ej,n, m < n
Inter-thread 9. Data Dependency EEI Ek,m → Ej,n, k < j

Intra-thread 10. Commit Follow Execution ECi Ej,i → Cj,i

11. In-order Commit CCi Cj,i−1 → Cj,i

Inter-thread 12. In-order Commit CCI Cj−1,l → Cj,1

interaction between the threads running in parallel. Our critical path model
takes into consideration micro-architectural constraints of dynamic execution in
the SpMT processor. Next we precisely describe the constraint modeled by each
of the edge.

1. FFi models the constraint of in order fetch within a thread. So for all threads
j there is an edge between the fetch nodes of successive instructions in the
thread. If the two instructions can be fetched in the same cycle then the edge
weight is zero.

2. CFi models the limited size ROB within each PE, since the fetch of the
instruction i is possible only after commit of instruction i-R within the PE
where R is the size of ROB buffer.

3. EFi models the intra-thread branch mis-prediction where fetch of an in-
struction following a branch is not possible till the outcome of the branch is
known.

4. FFI models the activation of successive threads in program order. A thread
can not start fetching instructions until its immediate predecessor have
started fetching the instructions. This is modeled by an edge between the
fetch nodes of the instructions of successive threads.

5. The number of threads simultaneously active are limited by number of avail-
able PEs. CFI represent this constraint as an edge between the commit of
the last instruction of thread j−N to first instruction of the thread j, where
N is the number of available PEs. Only after commit of the last instruction
of thread j − N th thread the jth thread can be activated.

6. EFI constraint models the thread mis-prediction that limit the fetch of in-
structions in the next thread. In case of thread mis-prediction by jth thread,
the first instruction from the (j + 1)th thread can be fetched only after exe-
cuting the instruction i 1 in thread j, that detects the thread mis-prediction.

1 The instruction could be branch, jump, call or return.

Criticality Based Speculation Control for SpMT 35

7. FEi models that an instruction can be executed only after it is fetched
decoded and put into RUU.

8. EEi models intra-thread data dependency.
9. EEI models inter-thread data dependency.

10. ECi represents commit follow execution constraint.
11. CCi models in order commit within the thread.
12. CCI models the in-order commit across threads The first instruction of

thread j can be committed only after the last instruct l of thread (j − 1) is
committed. This is represented by Cj−1,l → Cj,1.

3.1 Example of Graph Model

In this subsection we give a detailed example of our dependence graph model for
finding the critical path. Figure 1(a) shows a dynamic program segment consist-
ing of four threads T1, T2, T3, and T4. Figure 1(b) shows the corresponding
dependence graph model assuming two PEs and a fetch width of 2 and ROB
buffer size of 3 instructions. Note that in the graph we have shown all the edges
but not all the weights. The critical path in that graph is shown with the thick
arrows.

Let us consider that the correct execution order of threads be T1, T2, and
T4. T1 is allocated in PE1 and fetched there. The edges between the F nodes
are shown and since the issue width is 2, instructions I1 and I2 are fetched
in the same cycle so the delay of the F1,I1F1,I2 is 0. The edges E1,I1E1,I2 and
E1,I1E1,I3 show the intra-thread data dependency due to register r1. The edge
C1,I1F1,I4 shows the ROB buffer size constraint, i.e., since the buffer size is
only 3, instruction I4 can not be fetched until I1 commits. The intra-thread
edges between commit nodes model the in-order commit and the edge weights
are always 0, since there is no restriction on number of commits possible in one
cycle.

The inter-thread edge F1,I1F2,I1 models the fact that thread T2 is predicted
from T1 and it takes 2 cycles to start execution of T2 in PE2. Similarly T2 pre-
dicts T3. The edge C1,I4F3,I1 models the limited number of PEs. Thread T3

branch
I3:

I2:
branch;

r5 = r4 + r0;
r7 = r2 + r4;I1:

I3:

F

E

C

F

E

C

F

E

C

F

E

C

F

E

C

F

E

C

F

E

C

F

E

C

F

E

C
0 0

0 01

I3: I4:

PE1

0
I1: I2:

0 0

0 1

I1: I1:I2: I3:

10

2
T1 T2 T4T3

PE2 PE1 PE1

I1:

r2 = r1 + r3;
load r1, A

r4 = r1 * r1;

I1:
I2:

I4:

T2

T1

(a)

r5 = r7 + r4;I1: r6 = r5 + r2;I1:T3 T4

2

(b)

Fig. 1. Example of critical path modeling (a)Example of program threads (b)The de-
pendence graph for two PEs

36 R. Nagpal and A. Bhowmik

can not start execution unless the last instruction of T1 commits and PE1 be-
comes available. The edges E1,I2E2,I1 and E1,I3E2,I2 represent the inter-thread
data dependency. The weight of E1,I3E2,I2 is 10 assuming that multiplication
operation needs 10 cycles.

In this example, T4 is the correct thread to be executed after T2 and not T3.
The branch instruction at the end of T2 detects the thread mis-prediction and
T3 gets squashed and T4 starts executing in PE1. Since the first instruction of
T4 can be fetched only after the branch instruction of T2 gets executed there is
an edge from E2,I3 to F4,I1. Note that there is no out going inter-thread edge
from T3 and this ensures that no nodes from T3 will come into the critical path.
If the number of PEs in the system be n, the out going inter-thread edges from
the threads Tk to be squashed can only span at most next n − 2 threads2 and
all these n − 2 threads will be squashed along with Tk since there existence is
dependent on Tk. This ensures that no nodes from the squashed threads come
into critical path.

4 Detection and Analysis of Critical Path

In this section, we present a detailed analysis of the critical path that is necessary
in order to evaluate the potential and effective mechanism for speculation control
under the SpMT execution model. We have implemented the dynamic depen-
dence graph model in a cycle accurate simulator of the multiscalar[2] processor
developed at University of Wisconsin that simulates an SpMT processor. The
parameter of the simulated architecture are given in table 2.

Table 2. Hardware parameters used in experimental evaluation

Component Description
PEs 2-way issue, 32-entry ROB, 2 integer, 1 FP, 1 branch, 1 memory

Intra-task prediction gshare with 16-bit history, 64K-entry table of 2-bit counters
Inter-task prediction path-based with 16-bit history, 64K-entry table of 2-bit counters

Register Ring 2 values per cycle, bypass same cycle between adjacent PEs
Memory Buffer 32 entries/PE, 32 x No. of PE bytes/entry fully associative, 2 cycle hit

L1 I-cache 16 * No. of PE KB , 2-way associative, 32 byte blocks, 1cycle hit
L1 D-cache 16 * No. of PE KB, 2-way associative, 32 byte blocks, 2 cycle hit

Figure 2 presents the percentage of dynamic instructions that are critical
in 4 PE, 8 PE, and 12 PE SpMT configurations. We have found that on the
average 40.87%, 21.14%, and 17.52% instructions are critical for 4, 8, and 12
PEs respectively. Each bar in Figure 2 is further broken down into three parts
showing the fetch, execute, and commit critical instructions. An instruction is
fetch critical if its F node comes into the critical path. From Figure 2, we see
that approximately half of the critical instructions in all three configurations are
fetch critical. The percentage of execute critical instructions are 7.35%, 5.89%,
and 5.63% for 4, 8, and 12 PEs respectively.
2 When Tk is the thread following the head thread.

Criticality Based Speculation Control for SpMT 37

Fig. 2. % breakup of dynamic instructions found critical

From Figure 2 we also observe that the number of critical instructions de-
crease with increasing number of PEs. With more number of PEs, more opera-
tions are executed in parallel, decreasing the number of critical instructions. Most
of the reduction is due to effective increase in fetch bandwidth that reduces the
number of fetch critical instructions. Increasing number of PEs in effect relaxes
the CFI constraint described in Table 1, i.e. more instructions could be fetched
and executed without waiting for commit. We also observe that thread mispre-
diction increases marginally with increase in the number of PEs. and hence the
EFI constraint does not offset the benefits of relaxing the CFI constraint.

Fig. 3. % breakup of execute critical in-
structions

Fig. 4. % breakup of squash loss time

Figure 3 presents the breakup of execute critical instructions based on the
reason for their criticality. An instruction could be execute critical if it needs
to wait for the operands (data dependency) or gets delayed due to limited issue
width despite the availability of data values. From the Figure 3 we see that
the average percentage of instructions that become execute critical due to data
dependency in a 8 PE SpMT model is 81.68%. Due to space constraints, we do
not show the results for 4 and 12 PE model. We have observed that the data
dependence fraction of execute critical instructions increase with more number of
PEs due to the increased effect of inter-thread communication. With increasing
number of PEs, threads that are far ahead in the execution get free PEs and then
wait for the earlier threads to supply the data. Therefore, the data dependence
fraction of execute critical instructions are increased with increasing number of
PEs. The existence of significant amount of issue conflict in Figure 3 implies the

38 R. Nagpal and A. Bhowmik

scope for performance improvement by giving priority to critical instructions
while scheduling.

Our experiments have found that for 8 PE model on the average 18.77% of
load instructions and 12.76% of store instructions are critical and the average
numbers of mispredicted branches that are on the critical path is 32.98%. To gain
further insight into the cause of useless computation, we have also measured the
time spent in useless computation due to thread squashing. The results for 8
PE configuration are shown in Figure 4. where squash loss time (SLT) due to
the memory dependence violation and branch mis-prediction are presented un-
der each bar separately. The instructions causing memory dependence violation
(i.e. load/store instructions) and branch mis-prediction are again classified into
critical and non-critical instructions. From Figure 4 we see that on the average,
critical load-store contributes for only 3.03% of the squashing where as 59.42% of
squashing is caused due to non-critical loads. The figure also shows that on the
average 24.0% of squashing is caused due to critical branch type instructions that
are mis-predicted and 13.52% of squashing is attributed to non-critical branches.
The high percentage of non-critical load-store instructions in Figure 4 points to-
ward the possibility of avoiding speculative execution of such instructions in
order to reduce power consumption due to unnecessary computation. Similarly
the high percentage of non-critical mis-predicted branches points toward the
possibility of avoiding speculation across these branches.

5 Using Instruction Criticality for Speculation Control

In this section we propose and evaluate two speculation control techniques using
the instruction criticality information to reduce the useless computation. We
present results only for the 8 PE configuration. We observe similar results for
the 4 PE and the 12 PE configurations.

5.1 Reducing Useless Computation by Delaying Non-critical Loads

In SpMT processors a load instruction is speculatively executed assuming that
the store on which the load is dependent has already taken place. The processor
loads the value from either the memory or the intermediate buffer and continues
execution. If an earlier store to the same location is executed after the load,
the processor detects a memory dependence violation and squashes the violating
load and its dependent instructions and this causes dynamic energy wastage.
Although, speculative loads may lead to dynamic energy wastage, they are nec-
essary to speedup the execution. Our experiments have shown that nearly 18% of
all load instructions lie on the critical path. Therefore speculative loads can not
be removed altogether. However, from Figure 4, we see that in all the programs
a significant percentage (avg. 59.42%) of squashing is due to non-critical loads.
Since the total execution time is not likely to depend on the non-critical loads,
we delay the non-critical loads (we call this scheme DL) in order to reduce dy-
namic energy wastage without affecting the speedup, We determine the average

Criticality Based Speculation Control for SpMT 39

time between issue of loads and resultant squashing (average time to squash or
ATS) and the non-critical loads are delayed by this duration.

From Figures 6 and 5 we see that the average reduction of squash loss time is
26.43% with IPC reduction of 8.11% for delayed load scheme. The degradation in
IPC is happening mainly because at present we delay all the non-critical loads in
a program by a fixed ATS and this is not very efficient, since different non-critical
loads should be delayed by different amount. We are currently experimenting
with a on line time-to-squash predictor that predicts the required load delay
cycles for each load individually and we expect that this we will further improve
the IPC.

Fig. 5. IPC values Fig. 6. % reduction in squash loss time

5.2 Reducing Useless Computation Due to Thread Mis-prediction

In SpMT processor a thread mis-prediction leads to the squashing of the mis-
speculated thread and all the subsequent threads thus causing huge wastage of
dynamic energy. From Figure 4 we can see that a significant portion of squash
loss is due to branch mis-prediction. Earlier works have used confidence estima-
tor for speculation control[5,7]. However, our experiments show that confidence
based prediction alone is not sufficient for speculation control in SpMT thread
prediction. Therefore we have combined criticality information with the confi-
dence estimation to perform speculation control. In confidence based prediction
mechanism, speculation is done only for branches with high confidence value
whereas the combined criticality and confidence based prediction mechanism
speculates across branches with low confidence as well if its found on the crit-
ical path of the program. We have implemented a 5 bit JRS[6] predictor with
resetting counter for confidence estimation. We experiment with both purely con-
fidence based predictor (CBP) and a combined confidence and criticality based
predictor(CCBP) and compare the result with the base line performance (i.e.,
no confidence estimator).

From Figure 6 we see that a purely confidence based predictor is able to get
a maximum reduction in squash loss time (on the average 55%) but suffers from
intolerably high performance penalty (29.81% reduction in IPC). The confidence
estimator identifies many correct predictions as low confidence branches and by
not speculating on those predictions the processor misses parallelism opportuni-
ties. This result is in agreement with the earlier studies[5] done in the context

40 R. Nagpal and A. Bhowmik

of superscalar processors. On the other hand, our combined criticality and con-
fidence based predictor is able to reap most of the benefits of purely confidence
based predictor in terms of reducing SLT (on the average, reduction is 40.44%
for CCBP compared to 54.44% of CBP) with much less performance penalty
(6.52% for CCBP compared to 29.81% of CBP).

6 Conclusions and Future Work

Whereas the earlier work on critical path analysis of program is limited to out-of-
order superscalar processors, we have developed a model to identify the dynamic
critical instructions in SpMT execution. We proposed two novel techniques that
use the criticality information for speculation control. Our experiments show
significant reduction in useless computation with little performance degradation.
The future extension of this work involves development of on-line criticality
predictor and estimation of the exact energy savings gained by criticality based
speculation.

References

1. B. Fields, S. Rubin, and R. Bodik. Focusing Processor Policies via Critical-path
Prediction. In Proc. of Intl. Symp. on Computer Architecture, 2001.

2. M. Franklin. Multiscalar Processors. Kluwer Academic Publishers, 2002.
3. E. Tune, D. M. Tullsen, and B. Calder. Quantifying Instruction Criticality. In Proc.

of Intl. Conf. on Parallel Architectures and Compilation Techniques, 2002.
4. S. Manne, A. Klauser, and D. Grunwald. Pipeline Gating: Speculation Control For

Energy Reduction. In Proc. of Intl. Symp. on Computer Architecture, 1998.
5. D. Grunwald, A. Klauser, S. Manne, and A. Pleszkun. Confidence Estimation for

Speculation Control. In Proc. of Intl. Symp. on Computer Architecture, 1998.
6. E. Jacobsen, E. Rotenberg, J. E. Smith. Assigning Confidence to Conditional Branch

Predictions. In Proceedings of Intl. Symp. on Microarchitecture, 1996.
7. J. L. Aragon, J. Gonzalez, and A. Gonzalez. Power-Aware Control Speculation

Through Selective Throttling. In Proc. of Intl. Symp. on High Performance Com-
puter Architecture, 2003.

8. G. Ascia, V. Catania, M.Palesi, and D. Patti. A System-level Framework for Eval-
uating Area/Performance/Power Trade-offs of VLIW-based Embedded Systems. In
Asia and South Pacific Design Automation Conference, 2005.

J. Cao, W. Nejdl, and M. Xu (Eds.): APPT 2005, LNCS 3756, pp. 41 – 51, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Design and Implementation of Semantic
Caching Coherency Control Scheme

Toward Distributed Environment

Hai Wan1,2,∗ and Lei Li2

1 Department of Computer Science and Technology, SUN YAT-SEN University,
Guangzhou 510275, PRC

2 Software Research Institute of SUN YAT-SEN University, Guangzhou, 510275, PRC
whwanhai@163.com

Abstract. Semantic caching is very attractive for use in distributed computing
environments based on historical queries and their descriptions, one of whose
important issues is how to best maintain semantic caching using a coherency
control scheme. With the object of applying semantic caching into practice, the
cache coherency problems including the data between the server and its caching
as well as the cached data and their semantic descriptions are analyzed. This
paper presents conflicts existing in semantic caching and their formal defini-
tions, proposes the semantic caching model, and coherency control scheme,
meanwhile derives update list optimization algorithm adopted in server and co-
herency control algorithm used in clients. Finally, the performance of the se-
mantic caching coherency control scheme is examined and analyzed through a
simulation study in detail.

1 Introduction

Semantic caching is a kind of cache technology, which is based on historical queries
and their descriptions. Because of the low bandwidth and high expense of wireless
network in distributed systems and mobile computing environments, caching of fre-
quently accessed data at clients plays an important role due to the reduced network
traffic and the improved response time. As one of the most important caching tech-
nique, semantic caching can maintain the cache in client both semantic descriptions
and results of previous queries. Unlike other caching such as: page or tuple caching
whose clients only cache data without semantic descriptions, since semantics about
the cached items are stored in a semantic cache, the client is able to reason from the
local cache to determine whether a query can be totally answered, how much it can be
answered, and what data are missing [1]. Hence, Semantic caching is very attractive
and important for ensuring efficient access to widely distributed data in mobile, nar-
row bandwidth, frequent disconnection environments.

Because the essence of caching technology maintains many duplicates of server in
cache nodes, how to maintain those coherencies is a key technology. Furthermore,

∗ Corresponding author.

42 H. Wan and L. Li

that not only the results are cached in semantic caching but also their semantic de-
scriptions make semantic caching control more complex, which is also the bottleneck
of applying semantic caching technique. Accordingly, an important issue to semantic
caching is the maintenance of coherency, including the data between the server and its
caching as well as the cached data and their semantic descriptions.

Semantic caching has been studied in previous literature, including research on
semantic cache coherency. Qun Ren presented a formal semantic caching definition,
explored the semantic caching query processing strategies[1]. In [2,3],Wu tingting
presented QPID algorithm which can find cache items related to the query at first,
classify them, and then process data. Considering the factors of bandwidth, overload,
and reliability, the client may allow the cache to maintain weak coherency [4]. Paper
[5] proposed a semantic cache coherency asynchronous scheme. On the other hand,
data caching has been widely researched, paper [6] presented a scheme which sup-
ports for speculative update propagation; paper [7] proposed validation-based reproc-
essing scheme for updating spatial data in mobile environments; Huang analyzed
distributed data cache systems and presented coherency control scheme[8].

From what we have discussed so far, it is clear that research on semantic caching
coherency is very important and necessary. According to the practicality request of
semantic caching, we present conflicts existing in semantic caching and their formal
definitions, propose the semantic caching model and its coherency control scheme,
and meanwhile derive update list optimization algorithm adopted in server and coher-
ency control algorithm used in clients.

The rest of this paper is organized as follows: in section 2, we analyze previous the
cache coherency problems on semantic caching as well as other related issues and
present some formal definitions which can help us study these problems. A formal
semantic cache model and its coherency control scheme are proposed in section 3.
Section 4 discusses semantic caching coherency control algorithm adopted in server
and coherency control algorithm used in clients. Section 5 proposes semantic caching
interfaces and protocol. Performance of coherency control scheme and optimization
Update list are examined and analyzed through a simulation study in section 6. Fi-
nally, we summarize our work and discuss future research in section 7.

2 Semantic Caching Coherency Problems

Like traditional cases, semantic caching can also become obsolete because tuples
have been updated either in the clients or in the server. On the other hand, when some
newly inserted/modified/updated tuples satisfy the semantic descriptions, they must
be added to the caching even though they were not in it before, which also causes the
caching to be out-dated. In brief, the situation of semantic caching coherency control
is complicated. We argue that this complexity can be reduced significantly by classi-
fying those situations as data error conflict and data non-integrity conflict. We have
termed our classifications in order to define semantic cache coherency.

Definition 1. Data error conflict and data non-integrity conflict.

(1) Data error conflict: is that some tuples or results do not belong to the data set
represented by the cached semantic descriptions; (2) Data non-integrity conflict: is

 Design and Implementation of Semantic Caching Coherency Control Scheme 43

that the data set in client represented by the cached semantic descriptions does not
contain the same data obtained in server by executing the same semantic descriptions.

We present a coherency control approach to avoid these two kinds of conflicts.

Theorem 1. If there are no data error conflict and data non-integrity conflict seman-
tic caching, its coherency is satisfiable.

Proof. Consider t is a tuple cached in semantic caching DCrs, DCp is the semantic
description of DCrs, and satisfies DCrs= DCp(DCR); SP is the same description as DCp,
but executing in server SR and satisfies Srs= Sp(SR). If there is no data error conflict,
for any t DCrs, it has t Sp(SR), so DCrs ⊂ Sp(SR). On the other hand, if there is no
data non-integrity conflict, for any t DCp(DCR), it has t Srs, so DCrs ⊃ Sp(Srs).
Accordingly, we can conclude DCrs= Sp(SR) and this theorem can be proved.

From Theorem 1, we can define Semantic Caching Coherency as follows.

Definition 2. Semantic caching coherency.

Given a database server S, and S has <SR,SP,Srs>, which satisfies Srs= Sp(SR),
SR ⊂ S; Consider DC is a semantic caching of S, and has <DCR,DCP,DCrs>,which satisfies
DCrs= DCp(DCR),DCR ⊂ S.

If DC can satisfy: (1) Cached data in semantic caching can maintain coherency whenever
inserting/modifying/updating in S or DC, i.e. ∀ query q, Srsq= Sq(SR) is satisfiable in S,
and meanwhile DCrsq= DCq(DCR) is satisfiable in DC; (2) Cached data in semantic cach-
ing can match the semantic descriptions whenever inserting/modifying/updating in S or DC, i.e.
∀query q, DCrsq= DCq(DCR) is satisfiable;

We say semantic caching coherency is satisfiable.
For the semantic caching coherency, maintaining the semantic description firstly

and then updating the cached data is usually adopted. Nevertheless, we can demon-
strate this method is unsatisfiable through the following examples.

 Table 1. A relation in server Table 2. Cached data in semantic caching

Consider a relation R in the server (shown in table 1), and the client has cached
data DCT (shown in table 2) and its semantic description T: EduLevel =’Bachelor’ .

(1) When the client obtain an update operation:

Update R Set EduLevel= ‘master’ where EduLevel=’ bachelor’

Tnew: EduLevel = master , and Tnew is relevant with T, SCT can also update along
with the server; however after updating, the Data error conflict will happen.

(2) When the client obtain an update operation:

Update R Set Age=24 where Age=22

44 H. Wan and L. Li

Tnew: “Age=22 , However, Tnew is irrelevant with T, so DCT can not update along
with the server, which will lead to Data non-integrity conflict.

So we can conclude in order for the semantic caching coherency update the data
firstly and then maintain their semantic descriptions should be adopted. As Definition
2 denotes the operations of update, delete and insert will initiate the Data error con-
flict or Data non-integrity conflict situation. We argue that the complexity of those
operations can be reduced significantly by substituting update with the operations of
delete and insert. To test this hypothesis satisfying the semantic coherency, we devel-
oped specification 1 and Theorem 2 as follows.

Specification 1. (1) Substitute update with the operations of delete and insert; (2)
When some tuples cached in the client are deleted in the server, we delete the cached
tuples directly regardless of their semantic descriptions; (3) When insert happens in
the server, all cached semantic descriptions should be traversed; because the cached
semantic descriptions DCp are irrelevant with each other, if the insert semantic de-
scription match one of the DCp, the tuples should be inserted into DCrs.

Let us reprocess the above update situations using specification 1:
1) Update in the server, and the results are shown in table 3.

 Table 3. An updated relation in server Table 4. Updated semantic caching

In the client, Substitute “Update R Set Age=24 where Age=22” with:
Step 1: “Delete from R where Age=22”; Step 2: “Insert into R (001,’Victor’,’Male’,

3000,’Bachelor’,24)” and “Insert into R (006,’Susan’, ‘Female’,7000,’Bachelor’,24)”.
Do Step 1 firstly, and compare T: EduL evel=’Bachelor’ with tuples to be inserted,

Because they are relevant, do Step 2 and the updated DCT is shown in table 4.
2) Update in the server, and the results are shown in table 5.

Table 5. An updated relation in server

In client, Substitute “Update R Set EduLevel= ‘master’ where EduLevel=’ Bachelor’”

with: Step1:“Delete from R where EduLevel=’ Bachelor’”; Step2:“Insert into R (001,’Victor’,’Male’,
3000,’ Master’, 22)” and “Insert into R (006,’Susan’, ‘Female’, 7000,’Master’, 22)”

Do Step 1 firstly, and compare T: EduLevel =’Bachelor’ with the tuples to be in-
serted. Because they are irrelevant, do not process Step 2 and the updated DCT is .

 Design and Implementation of Semantic Caching Coherency Control Scheme 45

Both of processes can stay coherency, and we can prove the specification 1 by
theorem 2 given as follows.

Theorem 2. After the operations of delete or insert, the semantic coherency of DC is
satisfiable.

Proof. We first prove the operation of delete is satisfiable. Consider t is the tuple to
be deleted, and t DCrs; after deleting t, DCrs will change to <DCR, DCP,DCrs-{t}>.
Consider A is the data set in the server before the operation of delete, i.e.
A=Srs= Sp(SR), and t Sp(SR); after deleting t, Srs will change to <SR,SP,Srs-{t}>.
Because the coherency of SCrs is satisfiable, we have A=SCrs, then B=A-{t} =SCrs-
{t}. So the semantic coherency after delete operation can be proved.

Next, we prove the operation of insert is satisfiable. Consider t is the tuple to be in-
serted in the server, if abandoning the operation of insert, i.e. t can not satisfy any
semantic descriptions cached in client, it has t∉DC rs, and t∉ Sp(SR). If so, never are
semantic descriptions affected by insert t to SR in the server. If t is the tuple to be
inserted in the caching, according to the insert specification, t must match one of the
semantic descriptions of DCR. Suppose DC is <DCR,DCP,DCrs> before inserting, then
DC will change to <DCR,DCP,DCrs {t}> after that operation. Consider A=DCrs,
because t satisfy the semantic descriptions of DC and t DCp(DCrs), then B= Sp(SR)=
A {t}. Because SC satisfy coherency before inserting, B=A {t}= SCrs {t}. So the
semantic coherency after insert operation can be proved.

Because of the complexity of semantic caching coherency and so many factors that
have to be considered, some constraint conditions are given as following to simplify
the problems. (1) We argue that the semantic caching model and processing can be
reduced significantly by using Embedded Database to store data and their semantic
descriptions. (2) Either the server or its clients should process the operations of
query/update/insert/delete, in which we should term out semantic caching coherency
control scheme to do with update/insert/delete. To simplify, we argue if the opera-
tions of update/insert/delete happen in client, they should be sent to server and com-
mitted. If the server commits successfully, it is the updated/inserted/deleted data in
the server which should be considered how to maintenance coherency between the
server and its clients. (3) The cached semantic descriptions should stay original with-
out being changed by coherency control scheme. (4) We should optimize the commit-
ted processes in the server when the network is disconnected.

3 Semantic Caching Model

According to we have discussed, to construct semantic caching model, the following
objectives and goals should be achieved: (1) Both results of previous queries and their
semantic descriptions should be stored and processed; meanwhile, the semantic cach-
ing coherency defined in definition 2 should be satisfiable; (2) It is easy to process the
operations of trimming, evaluation, combination, and replacement. Fig 1 illustrates
the semantic caching model consists of client model and server model.

Because we argue that it is easy to process projection in clients, we simplify the
model by caching the whole tuples without projection, where F is the semantic

46 H. Wan and L. Li

Fig. 1. Frame of semantic caching model

descriptions discussed in this article and we only consider one relation or view, al-
though the proposed model can be easily extended to handle other more complicated
queries. Unlike other semantic caching models, failure query is cached as well in our
client model, which could further reduce the accessing to the database and simplify
the sub expressions in Where clause.

Definition 3. Query Q is <QR,QP,Qrs>, where QR is the relation or view to be que-
ried;QP is the semantic description, i.e., F; Qrs= Qp(QR), QR ⊂ SA; where SA is the
semantic caching and query Q does not process projection.

Definition 4. Query Result Caching DC

DC is previous query results and their semantic descriptions queried/trimmed
/combined/replaced at one time. Every DCi has the unique corresponding semantic
description DCPi; DC is <DCR,DCP,DCrs>.where DCrs= DCp(DCR), DCR ⊂ SA.

Definition 5. Result Caching SC

SC is one of the server relation or view cached in client; SC is <SCR,SCP,SCrs>,
where SCR= DCiR; SCP= DCip (1 i n); SCrs,= SCp(SCR); and SC is composed
of DCi with the same relation or view.

Fig 2 shows the SC made up of 3 DCi, obviously, SCR = DCiR (i=1, 2, 3).
We design and implement semantic caching based on Embedded Database. Con-

sequently, we show how to implement it in detail in Fig 3.

Fig. 2. Frame of semantic caching model Fig. 3. E-R diagram of Semantic caching in clients

 Design and Implementation of Semantic Caching Coherency Control Scheme 47

The objective to design server model is to determine which client is relevant to the
query/delete/insert processes in the server and optimize query/delete/insert processes
when network is disconnected.

Definition 6. Client Index CI

CI is <S, Q, C>, where S is all relations or views in the server, Q is a query, C is
the client which is the results queried by R, i.e., C = Q(S);

Definition 7. Update List Ui

Ui is the update queue made up of the operations of update, delete and insert corre-
sponding to one client.

Ui is Ui= {U1i, U2i, …, Uji,}, and any two Uhi Uki (1 h,k j,h k) are irrelevant.
That is to say,
1) If Uhi Uki is Insert, i.e. Insert into R tuples Ahi (or Aki), then Ahi Aki is satisfi-

able.
2) If Uhi Uki is Delete, i.e. Delete from Rhi (or Rki) where Thi,Tki, then
 Rhi Rki; or when Rhi=Rki, Thi Tki = ø is satisfiable.
3) If Uhi Uki is Update, i.e.Update Rhi (or Rki) set Ahi(or Aki) where Thi(Tki), then
 Rhi Rki; or when Rhi=Rki, Ahi Aki ø ; or when Rhi=Rki and Ahi Aki = ø,

then Thi Tki = ø is satisfiable.

4 Semantic Caching Coherency Control Scheme

Based on semantic caching model given in section 3, we propose formal definitions
and control scheme associated with semantic caching coherency, which consist of
update list control scheme, client coherency control scheme, etc. Our scheme is be-
long to weak coherency control scheme [4].

4.1 Update List Control Scheme

As discussed in section 2.3 and 3.2, when there is an operation (update/delete /insert)
committed successfully in the server, we would use update list control scheme to
optimize the update list. When the network connection is reliable, every successfully
committed operation will be sent to corresponding clients directly. However, when
the network is disconnected, all of those operations will store in update list to wait for
the network reconnected again, meanwhile, we can optimize the update operation by
the Update List Optimization Algorithm as follows, with which we can combine and
replace relevant update lists to save bandwidth cost.

Algorithm 1. Update List Optimization Algorithm
(1) ∃Unew, Unew is when there is an operation update committed successfully in

the server, we can know which client i is associated with Unew by retrieving client
index-CI defined in definition 6; or in update list and to be sent to client I, if the
network is disconnected, Unew should be added into update list.

(2) If Ui is empty, Unew will be added into Ui and execute (4); if not, go on (2);

48 H. Wan and L. Li

(3) If Uhi (Uhi Ui,1 h j), Rhi Rnew is satisfiable; or if Rhi=Rnew, Ahi Anew is
satisfiable; or if Rhi=Rnew and Ahi=Anew,Thi Tnew = ø is satisfiable, then execute
Ui=Ui+Unew; and go on (4).

(4) If ∃ Uhi (Uhi Utemp,1 h j), when Rhi=Rnew, Ahi=Anew Thi Tnew ø is satisfiable,
then suppose Utemp=Unew, and go on executing:

while (Utemp ø, Uhi (Uhi Utemp,1 h j))
{if ((Rhi Rnew) (Rhi=Rnew, Ahi Anew) (Rhi=Rnew, Ahi=Anew Thi Tnew = ø)) then

{Ui=Ui+Unew; Utemp= Utemp-Uhi; }
else if(Rhi=Rnew, Ahi=Anew Thi=Tnew) then
 {Ahi= Anew; Ui=Ui-Uhi; Utemp= Utemp+Uhi;}}
if (Utemp ø) then k=the number of Uhi (Uhi Utemp)
for (i=1;i=i+1;i<k)
 {Thi= Thi-Thi Tnew; Tnew= Tnew+Thi Tnew; Update Uhi;}

 (5) If the network is reconnected again, send update items to corresponding client
i and update.

By Algorithm 1, we can the update irrelevant items, which can save the network
bandwidth and optimize update operation in clients.

4.2 Client Update Control Scheme

When the network connection is reliable, the committed operations including update/
delete/insert in the server will be sent to corresponding clients. According to Specifi-
cation 1 and Theorem 2, we should process Client Update Control Algorithm:

Algorithm 2. Client Update Control Algorithm
 (1) If the received operation is delete, process it directly in SCR;
 (2) If the received operation is insert, analyze it into atom insert operation; i.e.

Insert into R tuples (Ai (i=1,2,..., n));
Traverse cached semantic description and compare atom insert with every

SCP;
If ∀ DCPj, DCPj⊆ SCP; meanwhile ∀Ai, and Ai ⊆DCPj , then process insert;

f not, abandon the operation.
 (3) If the received operation is update,

 Analyze and substitute it with delete and insert;
Process delete firstly as (1) shows;

 And then do with insert as (2) describes.

5 Semantic Caching Interfaces and Protocol

We design semantic caching interface and protocol. The update list component is built
in the server or agents, which communicates with the client through interface. We de-
sign SCP (Semantic caching Protocol) to support the communication between the serv-
ers or agents and the clients, belonging to the application layer of TCP/IP protocol.

SCP Data Pack is composed of HEADER (the length of message, 4 bytes) and
DATA. Field Meanings of DATA are showed in table 6 and 7:

 Design and Implementation of Semantic Caching Coherency Control Scheme 49

Table 6. Field meanings of data Table 7. Opecode and Op-data

6 Performance Study

We design a simulation study to examine the performance of the semantic caching
coherency control scheme, especially effects analysis of optimization Update list and
coherency control scheme. (1) Semantic caching model: we use Ebase database
researched and designed by Software Research Institute of SUN YAT-SEN University
as the embedded database in semantic caching model. The system is modeled to be
composed of a server, a client and a network connecting them, in which the server’s
OS is Sun Solaris7 and database is Oracle9i, the client’s OS is windows 2000 in
which semantic caching is built.2) Simulation Environment: the simulator is imple-
mented in C++, which simulates a simple but typical client-server model and is com-
posed of Query Generator module, Update Generator module, Network Manager
Module and Statistic Analysis module. 3) Experiment Data: we use a modified Wis-
consin Benchmark[9] to examine the performance. The benchmark database contains
one single relation, R, with 5,000 tuples; each tuple has a size of 256 bytes, all of
which are stored in the server (as shown in table 8).

Table 8. Main parameters of the simulation experiments

We compare the performance of semantic caching coherency control scheme with
the case when there is no Update list in the server, and then demonstrate the effects
optimization Update list

1) Effects analysis of coherency control scheme (as Fig 4 shows)
For examining the performance of semantic caching service, we compare the re-
sponse time of queries from a client to retrieve in a replication: one is with semantic
caching service, while the other is without. With 60 kinds of different query types
and numbers, 11 sets of test tuples, and the results of the experiments are shown in
Fig 4.

50 H. Wan and L. Li

Fig. 4. Effects analysis of semantic caching service

Obviously, the change in Query complexity and the number of Query items have
impact on the both response time, but semantic caching service can improve retriev-
ing process, save response time and make replication more efficient.

2) Effects analysis of optimization Update list (as Fig 5 shows)
As we can see, with the help of optimization Update list, we can optimize the Update
list and process efficiently, even though the growth of update items.

Fig. 5. Effects analysis of optimization Update list

7 Conclusions and Future Work

We have examined and analyzed one critical aspect of the semantic caching technol-
ogy – semantic caching coherency control scheme from the respects of definition,
conflicts analysis, semantic model, coherency control scheme, interface and protocol,
and performance evaluations.

For the future research, we plan to extend our semantic caching coherency control
scheme to include more complicated update such as multiple R or materialized views,
etc, which increase the complexity in coherency control processing.

References

1. Qun Ren, Margaret H. Dunham, Semantic Caching and Query Processing, IEEE transac-
tions on knowledge and data engineering,vol.15,No.1,January/February 2003 192-210

2. Wu Tingting, Zhou Xingming, Extracting Query Results from Semantic Cache, Chinese
Computer Journal, 2002, 10:1104-1110

 Design and Implementation of Semantic Caching Coherency Control Scheme 51

3. Wu Tingting, Zhang Wensong, Zhou Xingming Answering Query through Cache during
Disconnection, Chinese Computer Journal,2003,10: 1393-1399

4. Wu Tingting, Zhang Wensong, Zhou Xingming, Weak Cache Coherency in Mobile Envi-
ronments, Computer Engineering & Science Vol.26,No.4,2004:59-61

5. Wu Hengshan, Deng Zhifeng, A semantic Cache coherency Schemes in Mobile computing
Environments, Computer Engineering, May 2003:126-127

6. U.Cetintemel, P.J. Keleher Support for Speculative Update Propagation and Mobility in
Deno, Proc.IEEE Int’1 Conf. Distributed Computing Systems, 2001.

7. Dong Hyun Kim Validation-Based Reprocessing Scheme for Updating Spatial Data in Mo-
bile Computing Environments Proceedings of the17th International Conference on Ad-
vanced Information Networking and Applications (AINA’03)

8. Huang Shi-neng, Xi Jian-qing, distributed data cache systems Huang Shi-neng, Xi Jian-
qing, Journal of software 2001,12(7):1094-1100

9. J. Gray, The Benchmark Handbook. Morgan Kaufmann, 1993.

J. Cao, W. Nejdl, and M. Xu (Eds.): APPT 2005, LNCS 3756, pp. 52 – 60, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Energy Efficient United L2 Cache Design with
Instruction/Data Filter Scheme

Zhiqiang Ma, Zhenzhou Ji, Mingzeng Hu, and Yi Ji

Department of Computer Science and Technology of Harbin Institute of Technology,
150001 Harbin, China

{mzq, jzz, mzhu, jiyi}@pact518.hit.edu.cn

Abstract. The on-chip caches usually consume a significant amount of energy
in modern microprocessors. This paper presents an I/D filter scheme to reduce
the energy consumption of united L2 caches shared by instructions and data. By
adding an I/D indicator bit, the cache block is classified into I-block and D-
block. For instruction and data accesses, only the corresponding blocks instead
of all the blocks in the same set selected are accessed. By this method, we can
easily filter the unnecessary way activities and save the energy consumption.
This technique uses a small amount of additional hardware without increasing
the cache access latency, and the area overhead is negligible. Simplescalar
simulator and CACTI were used to evaluate the performance of our proposed
architecture, the results shows that the I/D filter scheme is energy efficient for
set-associative caches.

1 Introduction

The need in low-power processor design is growing due to the reliability problem for
high frequency, high temperature processor chip and expanding market for battery
powered mobile devices. The on-chip cache memory is one significant source of
power consumption to which many researchers have paid attention. For example, the
21264 DEC Alpha chip dissipates 21% [1] and the ARM 920T dissipates 44% [2] of
its total power in caches. For this reason the on-chip caches become the most attrac-
tive targets for power reduction.

As a result, numerous structural techniques have been proposed to conserve the
power dissipated by caches. Sub-banking and bit-line segmentation divides the data
into sub-segments. In each cache access, only those sub-segments that contain the
desired data can be read out [3][4]. Block buffering [3], multiple line buffer [4], and
filter cache [5] place a small cache (i.e., L0 cache) or output latches between the proc-
essor and the L1 cache to exploit the spatial locality of reference and reduce L1 cache
activities, thereby saving power consumption. Reconfigurable cache [6] and selective
cache ways [7] dynamically reorganize the cache architecture (size and associativity
et.) for the intended application. A subset of cache components can be disabled to
reduce the power consumption when they are not required to achieve good perform-
ance. FVC [8][9] and DZC [10] employ compression in cache memory array. Values
are stored in an encoded form occupying only a few bits, power can be saved by not

 Energy Efficient United L2 Cache Design with Instruction/Data Filter Scheme 53

driving the other unused bits. There are still some techniques to save power consump-
tion by reducing the way activities, such as way-predicting [11] and sentry-tag [12].
Fortunately, to a significant extent these techniques are orthogonal to each other.

In this paper, we propose an I/D filter scheme to reduce the power consumed by
united L2 (ul2) caches shared by instruction and data. By using an I/D indicator bit to
classify each cache block into I-block and D-block. For instruction and data accesses,
only the corresponding blocks instead of all the blocks in the same set selected are
accessed. By this method, we can easy filter the unnecessary way activities and save
the power consumption efficiently.

The rest of the paper is organized as follows. Section 2 identifies the problems of
the conventional implementation of ul2 caches. Section 3 describes details of our
proposed I/D filter scheme and cache architecture. Section 4 gives evaluation results
for all benchmarks taken from SPECint95. Section 5 concludes the paper.

2 Conventional Cache Design

In a conventional cache design as shown in Fig. 1, all the cache ways are accessed at
the same time to minimize the access delay. In other words, in a W-way set-
associative cache (a direct-mapped cache when W = 1), there are always W-way ac-
tivities per cache access. In other words, in a four-way set-associative cache, there are
always four-way activities per cache access, as shown by the gray blocks in Fig. 1.
This parallel access scheme is good for the performance, but it is not optimized from
the viewpoint of power consumption. This if because that at best only one way would
be hit per access, the other (W – 1) ways access would result in a lot of unnecessary
way activities, thus large power consumption, especially, when W grows large.

Fig. 1. Conventional four-way set-associative cache architecture (the gray blocks represent the
active ways)

Form the perspective of united caches shared by instruction and data, cache blocks
can be classified into two categories: I-block which holds the instruction values and
D-block which holds data values. For instruction and data accesses, only the corre-
sponding blocks instead of all the blocks in the same set selected should be accessed.
In other words, for instruction requires resulted from il1 misses, the accesses of D-
blocks are unnecessary, it’s same for data requires. If we know this result before start-

54 Z. Ma et al.

ing the conventional cache access, we can filter the unnecessary cache activities. For
example, in a four-way set-associative cache, the attribute vector of the desired four
blocks is “I, D, D, I”, then we may only enable way 0 and 3 for an I-access, and way 1
and 2 for a D-access, instead of accessing all the four ways, thus, the cache power
consumption can be reduced.

3 I/D Filtered Cache

In this section, we present the I/D filter scheme and the low-power ul2 cache structure
in detail. We also present the necessary circuit changes required to implement the I/D
filter scheme and discuss the effect of the circuit changes on area and delay.

3.1 Filter Scheme

To distinguish between an I-block and D-block, we add an additional I/D indicator bit
for each cache block, an I/D indicator bit of ‘1’ indicates an I-block, and ‘0’ a D-
block. By pre-comparing the access type with what’s I/D indicator bit contents, we
can effectively identify which ways activities are unnecessary, then disable these
cache ways in the following cache access, thus, the cache power consumption can be
decreased. The I/D indicator bit is stored in a single 8T latch. After the bit value is
written into the latch, its content is stable as long as power is supplied. A ‘1’ should
be written to the I/D indicator bit if the required block was previously reloaded from
the lower level memory for a instruction request miss, otherwise, a ‘0’ should be
written for a data request miss.

Decoder output m
atch

G1

G2

Decoder output world
line

tag data

world
line

tag data

driver

new driver

(a)

(b)

Fig. 2. Control circuit of: (a) Conventional cache and (b) Cache with I/D filter scheme

Unlike in the conventional cache design shown in Fig. 2 (a), the word line is de-
rived from the set decoder directly, additional control circuit was added to en-
able/disable the cache way access. As shown in Fig. 2 (b), we use a XOR gate (G1) to
verify whether the I/D require signal match the content of the I/D indicator or not,
then the match signal is use to assert or disable the selected word line though an
NADD gate (G2). The world line signal goes active only when the required block’s

 Energy Efficient United L2 Cache Design with Instruction/Data Filter Scheme 55

I/D indicator and I/D require signal matched, otherwise, the cache way is disabled
automatically. It is easy to decide what the current I/D require value is, the value is
‘1’ if the access require comes from L1 instruction cache, and ‘0’ from L1 data cache.

3.2 Cache Architecture with I/D Filter Scheme

Fig. 3 depicts a four-way set-associative cache with the proposed I/D filter scheme.
Compared to the conventional set-associative caches, the hardware augmentations
include only I/D indicator arrays and the control circuit. As shown in Fig. 3, we sup-
pose an instruction access is asserted (the I/D require signal is ‘1’), the selected I/D
indicator vector is “1, 0, 0, 1”, then the unmatched way 1 and 2 are disable by the
control block shown in Fig. 2 (b). Thus, 50% way activities could be reduced for the
current access.

Fig. 3. Four-way set-associative cache architecture with I/D filter scheme (the gray blocks
represent the active ways)

3.3 Area and Delay Overhead

The match verification of required blocks is determined in parallel with normal set
decoder, the verification time can be completely hidden by the decoder. Conse-
quently, the augmentation of XOR gate will not prolong the cache access latency. But
comparing with the origin word line driver, the new driver would increase the driving
delay of world line since the NAND gate contains more transistors than an inverter.
Fortunately, the total increase to the cache critical path can be avoided if the NAND
gate transistor size is tripled, which does not represent a significant overall area in-
crease since those transistors didn’t occupy much area to begin with [9]. Thus, we can
maintain the same cache access delay with the new cache line driver. Our cache
architecture will not increase the cache access latency.

We use the transistor number as measurement in the area overhead analysis. As de-
scribed above, the I/D indicator bit was implemented with the 8T latch, in addition,
we added a XOR gate and a NADN gate for each cache block to control whether the
selected word line should be asserted or not, the area overhead for each cache block is
approximately 8 + 6 + 6 = 20 transistors. In this paper, we use the 6T SRAM cell to

56 Z. Ma et al.

implement the tag and data array, the area spent in a single cache block is approxi-
mately (B × 8 × 6 + T × 6) transistors, in which B is the block size in byte and T is the
number bits of tag used. For the base ul2 cache configuration described in the next
section, the area overhead is 20 / (64 × 8 × 6 + T × 6) < 1%, thus, it is negligible.

4 Experiments

In this section we make experiments to evaluate the performance of our proposed
architecture. We first describe the simulation environment and benchmark selection.
We then present the results and give some analysis.

4.1 Configurations Studied

We use SimpleScalar [13] to model the ul2 cache with I/D filter scheme in an out-of-
order microprocessor. PISA instruction set is adopted in the simulator, and the simu-
lator can simulate the execution of any instruction on each pipeline stage accurately.
The necessary modifications to the ul2 cache have been implemented to measure the
efficiency of I/D filter scheme. For our base case, the ul2 cache is assumed to be a
256KB, W-way set-associative unified on-chip cache with a block size of 64 bytes.
We assume a 16KB, direct-mapped Ll I-cache and a 16KB, 4-way set-associative Ll
D-cache. The line sizes for both of these caches are set to 32 bytes. A buddy replace-
ment algorithm, approximating LRU, was used for all the set-associative caches.

Table 1. Benchmarks

Benchmark Spec dir. Input data set Simulation insts
gcc ref -o3 genrecog.i 116 million
compress - 40000 e 2231 124 million
go - 9 9 133 million
ijpeg train vigo.ppm 166 million
li test test.lsq (queens 7) 202 million
perl train scrable.pl < scrable.in 108 million
m88ksim train -c < ctl.in 119 million
vortex train vortex.in 101 million

4.2 Benchmarks

All SPECint95 benchmarks were selected for the further analysis and presentation in
our studies. The benchmarks used in this paper are compiled with Simplescalar com-
piler, which is a derivation of gcc-2.7.2. All the benchmarks were simulated from the
start to the end. The detail input data set is listed in Table 1. Since the train run of
benchmark perl is too shorter than the other benchmarks, we modified the train input
file "scrabble.in" and add two words "abodome" and "evilds", now the file contains
{zed, veil, vanity, abodome, evilds}.

 Energy Efficient United L2 Cache Design with Instruction/Data Filter Scheme 57

4.3 Average Filter Rate

The I/D filter scheme reduces the cache power consumption by eliminating the un-
necessary cache activities, the amount of power savings by this method depends on
the average filter rate (Rfilter), which can be defined as the ratio of the average unnec-
essary way activities to the number of cache ways. By definition, the average filter
rate is given by

Rfilter = Waccess / W . (1)

Where Waccess is the average number of accessible ways in each cache access.
The higher value of Rfilter means that the I/D filter scheme is more efficient in filter-

ing out the unnecessary way activities. Fig. 4 plots the filter rates of ul2 cache over a
range of associativities on all our eight workloads. We found that W play a key rule in
the filter efficiency. The filter rate differences between a direct mapped (W=1) and a 8-
way (W=8) associative cache are quite significant, especially, we got a very low filter
rate (average 2.23%) under direct mapped cache. This is because that decreasing the
cache associativities will lower the probability for the co-existence of instruction and
data in the same set. As a result, from the viewpoint of filter rate, this technique will be
more suitable for highly-associative cache design. For example, the average filter rates
are about 24.93%, 33.74% and 38.91% for 2-, 4- and 8-way set-associative caches.

gcc compress go ijpeg li perl m88ksim vortex average
0

5

10

15

20

25

30

35

40

45

50

55

60

65

F
ilt

er
 R

at
e

[%
]

 W=1
 W=2
 W=4
 W=8

Fig. 4. Filter rates for various numbers of cache ways

Form Fig. 4, we also found that the filter rates vary greatly between different appli-
cations, and the filter scheme benefits little for a few applications, especially, the filter
rates for compress are totally lower than 1%. The reason is that it is out of balance for
instruction/data accesses and storage. Fig. 5 gives the access and storage occupations
of I-block and D-block in 4-way set-associative ul2 cache. For compress, D-block
occupies nearly all the ul2 cache accesses (99.93%) and storage (99.54%), the ul2
cache could nearly be seen as a level 2 data cache, obviously, fewer unnecessary way
activities can be save. Fortunately, except for quite a few applications, our propose

58 Z. Ma et al.

technique get an ideal reduction of way activities for most other applications, since on
the whole many applications, such as gcc, go, li, perl, m88ksim and vortex, are in-
struction dominated (occupy more than 50%) for cache accesses however data domi-
nated for cache storage. It is means that a lot of D-block activities in these applica-
tions can be filtered for instruction accesses that dominate the ul2 cache accesses.

average

vortex

m88ksim

perl

li

ijpeg

go

compress

gcc

0 10 20 30 40 50 60 70 80 90 100

(a) Access Occupations [%]

 I-block D-block

average

vortex

m88ksim

perl

li

ijpeg

go

compress

gcc

0 10 20 30 40 50 60 70 80 90 100

(b) Stroage Occupations [%]

 I-block D-block

Fig. 5. (a) Access and (b) Storage occupations of I-block and D-block in four-way set-
associative ul2 cache

4.4 Energy Savings

Our main goal is to reduce energy consumed by the unnecessary way activities. As
mentioned above, the overall energy saving depends on the average filter efficiency.
Then the average energy savings per access can be given by

Esave = Rfilter × Eways . (2)

Then the energy saving in percentage is given by

Rsave = Rfilter × (Eways / Ecache) . (3)

Where (Eways / Ecache) is the fraction of the full ways power dissipated in the con-
ventional cache. We used CACTI 3.0 [14] to simulate the energy consumption for the
base cache configurations at a 0.18um feature. For all the various numbers of ways
used above, the simulation results are illustrated in Table 2.

Table 2. Energy consumption for various numbers of ways

Ways Eways [nJ] Ecache [nJ] Eways / Ecache [%]
W = 1 1.50600 2.13314 70.60
W = 2 1.52634 2.12812 71.72
W = 4 1.52542 2.16190 70.56
W = 8 1.81505 2.72149 66.69

 Energy Efficient United L2 Cache Design with Instruction/Data Filter Scheme 59

By using (3), the ul2 cache energy savings of every application are shown in Fig. 6,
which is similar to the form of the filter rate shown in Fig. 4, since programs with
higher filter rates can reduce more way activities. On average, for direct-mapped
cache only 1.57% of cache accessing energy can be saved, but about 17.88%, 23.81%
and 25.95% can be saved for 2-, 4- and 8-way set-associative caches. Our proposed
filter scheme will be more suitable for set-associative cache design.

gcc compress go ijpeg li perl m88ksim vortex average
0

5

10

15

20

25

30

35

40

45

E
ne

rg
y

S
av

in
gs

 [%
]

 W=1
 W=2
 W=4
 W=8

Fig. 6. Energy savings for various numbers of cache ways

5 Conclusion

The on-chip caches usually consume a significant fraction of total power dissipation
in modern processors. Form the perspective of united caches shared by instructions
and data, cache blocks can be classified into two categories: I-block which holds the
instruction values and D-block which holds data values. For instruction or data access
we need only read the corresponding blocks instead of all the blocks in the same set
selected. Base on this observation, in this paper we propose an I/D filter scheme to
reduce the ul2 cache power consumption. By using an I/D indicator bit to classify
cache block into I-blocks and D-block, we can easy reduce the unnecessary way ac-
tivities, thus, the cache power consumption can be reduced.

This technique uses a small amount of additional hardware without increasing the
cache access latency, and the area overhead (less than 1%) is negligible. From additional
experiments we conclude that the I/D filter scheme will be suitable for the set-associative
cache design and reduce the ul2 cache power consumption efficiently. In the baseline
cache configurations, on average, about 1.57%, 17.88%, 23.81% and 25.95% of cache
accessing energy can be reduced for 1-, 2-, 4- and 8-way set-associative caches.

References

1. Edmondson, J.F. et al.: Internal Organization of the Alpha 21164, A 300-MHz 64-bit
Quad-issue CMOS RISC Microprocessor. Digital Tech. J., Vol. 7 (1995)

2. Montenaro, J. et al.: A 160MHz 32b 0.5W CMOS RISC Microprocessor. Int. Solid-State
Circuits Conf. (1996)

60 Z. Ma et al.

3. Su, C.L. Despain, A.M.: Cache Design for Energy Efficiency. in Proc. 28th Int. System
Sciences Conf. (1995)

4. Ghose, K. Kamble, M.B.: Reducing Power in Superscalar Processor Caches Using Sub-
banking, Multiple Line Buffers and Bit-line Segmentation. in Proc. Int. Low Power Elec-
tronics and Design Symp. (1999)

5. Kin, J. Gupta, M. Mangione-Smith, W.H.: The Filter Cache: An Energy Efficient Memory
Structure. in Proc. 30th Int. Microarchitecture Symp. (1997) 184–193

6. Ranganathan, P. Adve, S. Jouppi, N.: Reconfigurable CACHEs and their Application to
Media Processing. International Symposium on Computer Architecture (IACA), (2000)
214–224

7. Albonesi, D.H.: Selective CACHE Ways: On Demand CACHE Resource Allocation.
IEEE/ACM International Symposium on Microarchitecture (MICRO-32) (1999) 248–259

8. Yang, J. Gupta, R.: Energy Efficient Frequent Value Data Cache Design. Int. Symp. on
Microarchitecture (2002)

9. Zhang, C. Yang, J. Vahid, F.: Low Static-Power Frequent-Value Data Caches. Design,
Automation and Test in Europe Conference (DATE '04), Paris, France (2004) 214–219

10. Villa, L. Zhang, M. Asanovic, K.: Dynamic Zero Compression for Cache Energy Reduc-
tion. IEEE/ACM International Symposium on Microarchitecture (MICRO-33) (2000)
214–220

11. Inoue, K. Ishihara, T. Murakami, K.: Way-predicting Set-associative Cache for High Per-
formance and Low Energy Consumption. in Proc. Int. Low Power Electronics and Design
Symp. (1999) 273–275

12. Chang, Y.J. Lai, F. Ruan, S.J.: An Efficient Two-level Filter Scheme for Low Power
Cache. IEEE/ACM 11th Int. Logic and Synthesis Workshop, New Orleans, LA (2002)

13. Burge, D. Austin, T.: The Simplescalar Tool Set, Version 2.0. Technical Report CS-TR-
97-1342, Univ. of Wisconsin, Madison (1997)

14. Shivakumar, P. Jouppi, N.: CACTI 3.0: An Integrated Cache Timing, Power, and Area
Model. COMPAQ Western Research Lab (2001)

J. Cao, W. Nejdl, and M. Xu (Eds.): APPT 2005, LNCS 3756, pp. 61 – 70, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Improving Latency Tolerance of Network Processors
Through Simultaneous Multithreading

Bo Liang1, Hong An1,2, Fang Lu1, and Rui Guo1

1 Department of Computer Science and Technology,
University of Science and Technology of China, Hefei 230026, China
{boliang, lufang, timmyguo}@mail.ustc.edu.cn

han@ustc.edu.cn
2 Computer Architecture Laboratory, Institute of Computing Technology,

Chinese Academy of Sciences, Beijing 100086, China

Abstract. Existing multithreaded network processors architecture with multiple
processing engines (PEs), aims at taking advantage of blocked multithreading
technique which executes instructions of different user-defined threads in the
same PE pipeline, in explicit and interleave way. Multiple PEs, each of which is
a multithreaded processor core, process several packets in parallel to hide long
memory access latency. Most of them are optimized for throughputs mostly in
data-plane. In future network workloads, the boundaries between data-plane and
control-plane become blurred, so that PEs are demanded not only wire speed
packet forwarding on data-plane, but also highly intelligent and increased
complex packet processing function on control-plane. In this paper, we analyze
SMT’s short latency tolerance potential when used in out-of-order and dynamic
scheduling PE cores. We show in this paper that 2~4 issue SMT provides an
excellent short memory and branch latency tolerance, which gain higher
instructions throughout as well as much simpler structures.

1 Introduction

Network processors (NPs), such as Intel’s IXP [1], IBM’s PowerNP [2], and
Motorola’s C-Port [3], are programmable microprocessors designed specifically to
build packet switches and optimized for a variety of packet processing functions such
as IP forwarding, filtering, network address translation, metering and policing,
supporting for virtual private networks, protocol translation, and others. NPs consists
of multiple execution engines, each of which is a multithreaded processor core
processing several packets in parallel to hide long memory access latency (usually
more than 100 cycles) and to increase their overall computing power. In general,
processing engines are intended to carry out data-plane functions. Control-plane
functions could be implemented in a co-processor or a host processor. At least, above
three major NP offering (IXP, Power NP and C-Port) fall in this broad architecture.
Multiple NPs may be combined to form a distributed packet switch.

Each of multithreaded processing engines (usually called PE or ME) with above
NPs architecture features is connected to link-layer interfaces and to the packet
buffers. Additional storage is also present in the form of SRAM and DRAM to store

62 B. Liang et al.

program data. Because handling of one packet is largely independent of another,
multithreading can successfully hide various data access latency. However, since the
conflicts of storage resource sharing among multiple threads, one of the problems of
multithreading is the degradation of the memory system performance, both in terms of
miss latency and bandwidth requirements. In addition, NPs keep on growing their
capabilities to exploit thread-level parallelism in order to gain higher wire speed
packet processing, which makes the negative impact of memory latencies on
performance even higher. To alleviate this problem, most current NPs, combined with
using multiprocessing and multithreading, devote a high fraction of their transistors to
on-chip memory system and sophisticated data access mechanism in order to reduce
the average data access time.

Existing multithreaded NPs architecture which PE is usually designed simple
(maybe in-order and low issue-width core) in order to reduce issue logic complexity,
aims at taking advantage of blocked multithreading (BMT) technique (sometimes also
called coarse-grain multithreading) which execute instructions of different user-
defined threads in the same pipeline, in explicit and interleave way. It means that a
single thread is executed until it reaches a situation that triggers a context switch.
Usually such situation arises when the instruction execution reaches a long-latency
operation or a situation where a long latency may arise.

At the same time, another key observation is that over the past few years, several
vendors have been releasing NPs having a number of different architectures, but most
of them are optimized for throughputs mostly in data-plane. Also, existing benchmark
suites for network processors primarily contain data-plane workloads, e.g.
CommBench[4] and NetBench[5], which perform packet processing for a forwarding
function. Although NPs have initially been targeted for data-plane applications, they
also play a major role in the control-plane. In fact, future network interfaces not only
demand wire speed packet forwarding on data-plane, but also require highly
intelligent traffic management and increased complex packet processing function on
control-plane. The boundaries between data-plane and control-plane have become
blurred [6]. The recent trend is that some control-plane activities, such as TCP and
SSL applications, are being considered as a commodity. For example, a new network
benchmark NpBench, target towards control-plane (e.g., traffic management, quality
of service, etc.) as well as data plane workloads [6].

This work would like to present a simultaneous multithreading (SMT)
microarchitecture to tolerate the short latency after the packets have been loaded onto
the chip. We believe that SMT include out-of-order and dynamic scheduling
techniques, will show to be an effective technique to boost the ILP from future
network workloads in which data-plane and control-plane activities have become
blurred. In this paper, we analyzed SMT’s short latency tolerance potential when used
in out-of-order and dynamic scheduling PE cores. We show in this paper that 2~4
issue SMT provides an excellent short memory latency and branch latency tolerance,
which gain higher instructions throughout as well as much simpler structures.

The rest of the paper is organized as follows. Section 2 provides the related work
on network processors and benchmarks. Section 3 introduces our Simulation
Methodology. Section 4 presents our simulation results. And we conclude the paper
give out the future work of this study in section 5. Finally, section 6 is our
Acknowledgement.

 Improving Latency Tolerance of NPs Through Simultaneous Multithreading 63

2 Related Works

Tzi-Cker evaluated a series of three progressively more aggressive routing-table
cache designs in [9]. He found that the incorporation of hardware caches into network
processors, when combined with efficient caching algorithms, can signifi-cantly
improve the overall packet forwarding performance due to a sufficiently high degree
of temporal locality in the network packet streams.

Intel’s IXP [1] provide several types of on-chip memory or buffers which have
different capacities and access speed, the data used frequently was kept in the fastest
memory while the data used not frequently was kept in the slower memory.

Timothy Sherwood proposed a pipelined memory design that emphasizes worst-
case throughput over latency in [10], and he concluded the pipelined memory design
is efficient for improving the throughput of NP.

Joan-Manuel Parcerisa and Antonio Gonzalez explored the latency tolerance of
SMT architecture through decoupling technology in [12], but the latency referred in
[12] is L2 cache access latency, it is not suite for network processors, and the
benchmark used in [12] is SPEC which is greatly different from the network
processing workload.

Hily examined the behavior of three of the best performing branch prediction
strategies (bimod, Gshare, Gselect) while executing several threads of instructions
simultaneously Simulation Methodology in [13], and found that in
multiprogramming environment if the sizes of the tables (PHT and BTB) are
proportional to the number of active threads, there are very few interactions, be they
destructive or constructive.

Matt Ramsay evaluate, in [14], the prediction accuracy of four branch predictor
configurations: (1) a totally shared predictor, (2) a completely split predictor, (3) a
predictor with a shared history and split BHT, and (4) a predictor with a shared BHT
and separate history registers, each for two static prediction schemes, a generic 2-bit
predictor, a share predictor, and a YAGS predictor. He also concluded that system
performance is only marginally affected by branch prediction accuracy in a
multithreaded environment because thread-level parallelism allows for the hiding of
long latency hazards, such as branch mispredicts.

3 Simulation Methodology

3.1 Simulator

The simulator used in our investigation is called ss-smt[7], a SMT simulator modified
from simplescalar [8]. As Figure 1 shows, the instruction queues (i-queues) are per
thread distributed, and both RUU and LSQ buffer can be ether shared by all threads or
per thread distributed, and they are configured as shared in our simulation. The Fetch
stage fetches instructions from the il1-cache, giving priority to the thread that has few
instructions in the pipeline. This technique, called ICOUNT in [11], achieved better
performance.

64 B. Liang et al.

Fig. 1. SMT architecture: (1) i-queue is per thread distributed. (2) Instruction fetch schedule is
ICOUNT. (3) RUU and LSQ buffer are shared by all threads.

3.2 Benchmark

NpBench[6] includes 10 applications which can be categorized into three functional
groups: traffic-management and quality of service group (TQG), security and media
processing group (SMG), and packet processing group (PPG). This categorization is
presented in Table 1. We can see that the suite includes several control plane
functions as they are missing from the available NP workloads.

3.3 Experimental Framework

The author of NpBench has studied the instruction mix of the 10 applications, and
found that the memory access instruction took a portion of 28.2% (19.3% of Load and
8.9% of Store) of the total instructions, while branch instructions took 16.2%. In other
words, there is one memory access instruction in each 3.5 instructions, and one
branch instruction in each 6 instructions. Additionally the memory access latency is
usually longer (tens of cycles) than the branch latency. And all of this told us that
NpBench is memory access sensitive.

For a single-issue core, to tolerate a p cycles’ latency, we need find p independent
instructions, while for a w-issue core, to tolerate the same p cycles’ latency, we will
have to find p*w independent instructions. Here we can presume that the capability of
latency tolerance is an inverse ratio to the issue-width.

We have investigated the memory access latency tolerance and branch latency
tolerance. Since the simulator is very slow and the average code size processing a
packet is very small (11890 instructions), we run only a portion of 50 M (million)

 Improving Latency Tolerance of NPs Through Simultaneous Multithreading 65

instructions of each thread, after skipping an initial start-up phase and all the threads
execute the same application with the same input in a test.

In the experiment of memory access latency, we examined memory access latency
tolerance of an idea superscalar (32-issue superscalar, SS-32), a typical superscalar
(4-issue superscalar, SS-4), a single-issue SMT (a degraded SMT, SMT-1), a 2-issue
SMT (SMT-2) and a 4-issue SMT (SMT-4) respectively. Branch predictor is modeled
as always correct (perfect) in this test; therefore, branch pollution effects are not taken
into account.

Table 1. Descriptions of the NpBench Suite

Group Application Descriptions
Data
Plane

Control
Plane

WFQ
Weighted Fair Queuing is a queue
scheduling algorithm

X X

RED
Random Early Detection is an active
queue management algorithm which
drops arriving packets probabilistically

X X

SSLD
Secure Sockets Layer Dispatcher is an
example of content-based switching
mechanism

X X

TQG

MPLS
Multi Protocol Layer Switching is a
forwarding technology using short labels

X X

MTC

Media Transcoding is the process that a
media object in one representation is
converted into another representation for
wide spectrum of client types

X X

AES

Advanced Encryption Standard
(RijnDael) is a block cipher that encrypts
and decrypts 128, 192 and 256 bits
blocks

X

MD5

Message Digestion algorithm takes as
input a message of arbitrary length and
produces as output a 128-bit fingerprint
or message digest of the input

X

SMG

DH

Diffie-Hellman key exchange allows two
parties who have not met to exchange
keys securely on an insecure
communication path

X

FRAG
FRAG is a packet fragmentation
application

X

PPG
CRC

Cyclic Redundancy Check is used in
Ethernet and ATM Adaptation Layer 5
(AAL-5) checksum calculation

X

66 B. Liang et al.

In the experiment of branch latency, we examined the branch tolerance of SMT-1
architecture with a Gshare predictor, with a bimodal predictor and without any
predictor respectively, and each thread has an independent predictor in order to
evaluate the max performance of each predictor. The PHT (patter history table) size
of the Gshare predictor is 1024 and the GHR is 10 bits. The bimodal predictor was
configured as having 512 entries. Similar to a previous experiment, the memory
access latency was configured as 1 cycle’s, and therefore, the memory access
pollution effects are not taken into account either.

4 Test Result

4.1 The Memory Latency Hiding Effectiveness of SMT

4.1.1 Superscalar Core
For the purpose of comparison, the memory access latency tolerance of the
superscalar architecture is firstly investigated. From the simulated result shown in
Figure 2(a), it can be seen that even SS-32 only gets an IPC of 4.67 with 1 cycle’s
memory access latency, and then drops to an IPC of 1.63 when the latency increases
up to 40 cycles. For a typical superscalar, SS-4, the situation follows the same pattern:
its IPC gets a max value of 2.45 when the memory access latency is only 1 cycle, and
drops rapidly to 1.17 at 10 cycles latency, and 0.72 at 20 cycles, and 0.41 at 40.

It means that the superscalar architecture, though considered an ideal architecture,
cannot deal well with the memory access latency in NpBench. And for a multi-issue
superscalar architecture, the memory access latency will lead to a large waste in chip
resources.

4.1.2 Single Issue SMT
Strictly speaking, “a single issue SMT” is not an accurate term, while SMT is
proposed to improved latency tolerance of a superscalar core. When the issue width
decreased to 1, the superscalar core degrades to a scalar core, and the SMT degrades

Fig. 2. (a) Memory access latency tolerance of superscalar architecture; (b) Memory access
latency tolerance of SMT-1

 Improving Latency Tolerance of NPs Through Simultaneous Multithreading 67

Fig. 3. (a) Memory access latency tolerance of SMT-2; (b) Memory access latency tolerance of
SMT-4

to coarse-grain-like multithreading accordingly. But in the following part of this paper
we will continue to use the term “single issue SMT” for the sake of consistency.

Figure 2(b) shows the performance of the single-issue SMT core, from which we
can see that IPC get it max value of 0.77 at 1-cycle latency, and with the increase of
the latency, we can keep IPC almost unchanged by adding threads until the latencies
beyond 20 cycles, in other words, by exploiting the thread level parallelism (TLP) we
can hide most of the latencies in the range of 1 to 40 cycles. For example, a 4-threads
single-issue SMT can keep almost the same IPC when the latency is smaller than
10cycls, or 20 cycles for 8 threads.

4.1.3 2-Issue and 4-Issue SMT
Figure 3 presents the memory access latency tolerance of SMT-2 and SMT-4. As we
have discussed in subsection 3.3, SMT-2 have a more strong capability of tolerating
latency than SMT-4: for 8 threads, the SMT-2 core can well hide almost all the
latency of 10 cycles, SMT-4, in comparison, 3 cycles. Furthermore, the performance,

Fig. 4. Branch latency tolerance of Gshare predictor

68 B. Liang et al.

measured in IPC, of SMT-2 is quite satisfactory, which almost doubles SMT-1’s
when memory access latency is shorter than 10 cycles. Thus, we can say that SMT-2
is a good choice if the memory access latency is short than 10 cycles.

4.2 The Branch Latency Hiding Effectiveness of SMT

4.2.1 Gshare, a Two Level Branch Predictor
Figure 4 show the IPC of SMT-1 with a complex two-level branch predictor, Gshare.
As we can see, IPC of some applications (aes, iaes, dh, frag, mtc, red and wfq) picks
up with the increase of the number of threads, while IPC of some applications drop
(such as mplsu and mplsd), mainly because of the conflict and disturbance resulting
from the sharing use of some on-chip resources between threads. But altogether the
average good predict rate is above 98%, which turns out to be a fairly good result.

4.2.2 Bimod-512 Branch Predictor
Figure 5 show the performance of using a bimodal branch predictor with 512 entries.
IPC shows in figure 5 are more similar to, even better than, that in figure 4, and which

Fig. 5. Branch latency tolerance of bimodal predictor

Fig. 6. Tolerate branch latency without any predictor

 Improving Latency Tolerance of NPs Through Simultaneous Multithreading 69

told us that the bimodal predictor can tolerate the branch latency in NpBench as well
as Gshare, although it is simpler.

4.2.3 None Predictor
At last, figure 6 shows the simulation results of without any predictor. In this
situation, the 2cycle’s branch latency was tolerated only by exploring TLP. And we
can see that IPC of all the 10 applications have a remarkable increase (average 33.8%)
when the number of threads changed form 1 to 2; IPC of most applications have a
increase of average 6.7% when the number of threads changed from 2 to 4; while IPC
of most application bears almost no changes when the number of thread changed from
4 to 8. That is to say that 4 threads are enough to hide the 2cycles’ branch latency and
the performance can be as good as using Gshar or bimodal predictor.

5 Conclusion and Future Work

We have explored the latency tolerance of SMT architecture when used in out-of-order
and dynamic scheduling network processors PE cores. From the simulation result we
can conclude that: (1) NpBench workload is memory-sensitive in the environment of
SMT; (2) the impact of branch latency to system performance is marginal in SMT
environment; (3) SMT architecture can well tolerate the short memory access latency
(1~20 cycles) in NpBench with the hardware’s support for rapid content switching; (4)
2~4 issue SMT provides an excellent short memory and branch latency tolerance, which
gain higher instructions throughout as well as much simpler structures.

In our simulation, however, we find that the size of RUU is a systemic bottleneck,
especially when the number of thread is over 4. How to solve this problem is the main
task in the next steps.

Furthermore, the simulator we used in this investigation is a simulator of GPP,
which is not optimized for the network processing. Therefore, in the future, we will
adopt a more accurate NP simulator. This work will include the optimization of the
instruction set of the simulator, add special function unit for some special application,
and some other work.

Acknowledgement

This work has been supported by the National Natural Science Foundation of China
under Grant No.60373043; the Natural Science Foundation of Anhui Province of
China under Grant No.050420206; the National High Technology Development
Program of China under Grant No.2001AA111100; 2002AA110010.

References

1. Intel Corporation: Intel IXP2400 Network Processor Family Hardware Reference
Manual.(June 2001)

2. IBM Corporation: The Network Processor: Enabling Technology for High-Performance
Networking. IBM Microelectronics (1999)

70 B. Liang et al.

3. C-Port Corporation: C-5 Digital Communications Processor. from
http://www.cportcorp.com /solutions/docs/c5brief.pdf (1999)

4. T. Wolf and M. Franklin: CommBench - A Telecommunications Benchmark for Network
Processors. International Symposium on Performance Analysis of Systems and Software
(Apr. 2000).

5. G. Memik, W. Mangione-smith and W. Hu: NetBench: A Benchmarking Suite for
Network Processors. 2001 IEEE/ACM International Conference on Computer-Aided
Design (2001)

6. Byeong Kil Lee: NpBench: A Benchmark Suite for Control plane and Data plane
Applications for Network Processors. IEEE International Conference on Computer Design
(October 2003)

7. Ronaldo Gonçalves, Eduard Ayguadé, Mateo Valero, Philippe Navaux: A Simulator for
SMT Architectures: Evaluating Instruction Cache Topologies. SBAC-PAD, Brazil
(2000)

8. Simplescalar Simulator, from http://www.simplerscalar.com
9. Tzi-Cker Chiueh, Prashant Pradhan: Cache Memory Design for Network Processors. In

Proceeding of the 6th International Symposium. on High Performance Computer
Architecture, Tolouse, France (January 2000)

10. Timothy Sherwood, George Varghese, Brad Calder: A Pipelined Memory Architecture for
High Throughput Network Processors, In Proceedings of the 30th Annual, ISCA’03
(2003)

11. Jahangir Hasan, Satish Chandra1, T. N. Vijaykumar: Efficient Use of Memory Bandwidth
to Improve Network Processor Throughput. In Proceedings of the 30th Annual, ISCA’03
(2003)

12. Joan-Manuel Parcerisa and Antonio Gonzalez: Improving Latency Tolerance of
Multithreading through Decoupling, IEEE Transactions on Computers, Vol. 50, No. 10
(October 2001)

13. S. Hily and A. Seznec: Branch Prediction and Simultaneous Multithreading. In proceeding
of International Conference on Parallel Architecture and Compilation Techniques (1996)

14. Matt Ramsay, Chris Feucht, and Mikko H.Lipasti: Exploring Efficient SMT Branch
Predictor Design. Workshop on Complexity-Effective Design, in conjunction with ISCA
(June 2003)

J. Cao, W. Nejdl, and M. Xu (Eds.): APPT 2005, LNCS 3756, pp. 71 – 80, 2005.
© Springer-Verlag Berlin Heidelberg 2005

RIMP: Runtime Implicit Predication

YuXing Tang, Kun Deng, XiaoDong Wang, Yong Dou, and XingMing Zhou

National Lab for Parallel and distributed Processing, China
{tyx, kundeng, xdwang, xmzhou}@nudt.edu.cn, yongdou@163.com

Abstract. If-conversion and predicated execution are widely adopted to
eliminate branch misprediction penalty. Previous predication execution depends
on compiler to generate explicit predicated instructions. In this paper, a trace-
based predicate mechanism named RIMP (Runtime IMplicit Predication) is
discussed. The candidates of if-conversion will be identified during dynamic
execution. Conventional trace cache has been modified to store RIMP traces,
which include instructions both from fall-through and target block following the
conditional branch. Hardware extension will add predication to RIMP trace
automatically. With the help of RIMP, legacy applications can benefit from
predication mechanism without recompiling source code. Simulation of RIMP
implementation under diverse microarchitecture configurations is presented in
the paper. Results have shown promising performance improvement. In general,
RIMP with 64kB trace storage delivers an average 10.3% IPC improvement
while actually speeding up the execution time by over 7%.

Keywords: predication, trace cache, runtime execution, RIMP.

1 Introduction

In popular deep pipeline and wide issue architecture, the misprediction penalty of
branch is a significant bottleneck [1][10]. The small basic block and frequent branch
prevent the sophisticated pipeline from achieving its performance potential.

Predicated execution is a good way to deal with those conditional branches.
Modern processor, such as Itanium [1], MAJC [11], ARM and TI DSP [7], provides
the support of predication in various degrees.

Fig. 1. Overview of if-conversion and predi-
cation

As shown in fig.1, predication
eliminates If-branch. Control dependent
operations in either Then or Else path will
be inverted into data dependent counterpart
with proper predication (P1 or P2).

Without if-branch (see right side of
fig.1), the straight-line code will improve
the instruction fetching performance and
remove the penalty of possible misprediction.

Generally predication needs the predicated ISA [1][3] or special information from
compiler [2] to direct whether the instructions from both paths of conditional
branches should commit their result.

72 Y. Tang et al.

More ISA support will make the compiler easier to generate code, but will
introduce more serious compatibility problem. Previous dynamic mechanisms also
need compiler or binary instrumentation tool to identify predicable branch [16]. Those
codes, built without the knowledge of predicated hardware, can’t benefit from
predication execution.

This paper presents a new hardware mechanism for predication, called RIMP
(Runtime IMplicit Predication), where a suitable set of instructions will be identified,
transferred into predicated form and stored in simplified trace cache. We call it as
implicit predication because neither compiler nor ISA will be assumed to know the
existence of predication. By eliminating the misprediction penalty, RIMP increases
the exploited ILP and performance, and releases the urgency for precise and complex
branch predictor. Although RIMP uses on-line hardware to realize the whole
procedure of predication, all extension are out of the critical datapath of processor and
will not increase implement complexity tremendously. Actually besides light-
weighted trace cache [4][5] support, just a few of modifications are needed in
microarchitecture.

The rest of the paper is organized as follows. Section 2 gives a brief overview
of related work. Section 3 describes the RIMP microarchitecture, including
RIIMP trace generation, optimization and management in detail. Section 4
presents the simulation and finally, Section 5 concludes with a summary and ideas
for future studies.

2 Related Work

Cydra 5 [16] may be the first commercial implementation of predication for high ILP.
Mahlke et al. [8] used the hyerblock to support predicated architecures. The guarded
execution proposed by Pnevmatikatos and Sohi [13], specifies the predication
information in instruction with bit-mask. Previous researches assume the full
predicated ISA or predicated-extended ISA.

Tyson [15] and Mahlke [14] studied the potential benefits of predication. They
found that almost 30% of the dynamic branch could be removed by full predication.
They also pointed out the 5% performance potential of partial predication [17]. RIMP
does not need full predication supported ISA, but achieves over 7% raw improvement
with tiny partial predicated extension.

Little work can be found by the term of “runtime predication” or “dynamic
predication”. J.E.Smith and Aramon et al. [19] use dual path hardware to
execution both the then-path and else-path at the same time. Chang et al. [18]
apply predication in the speculative architecture. Additional source input is
redirect false-predication dependence. Klauser [17] proposes dynamic hammock
to inject Cmov instruction. A compiler or binary instrumentation tool is used to
indicate proper hammock. The predication in RIMP is transparent to all software
(application, compiler and OS) and users. No further recompiling or binary
instrumentation is needed.

 RIMP: Runtime Implicit Predication 73

3 RIMP

As illustrated in fig.2, RIMP is out of the microprocessor’s critical datapath. RIMP
monitors all instructions retired from commit stags. After a corresponding branch has

Fig. 2. Overview of RIMP architecture

been found, RIMP trace will be
compacted, tested, optimized and then
stored without stalling regular
execution of pipeline.

A special trace cache [5] is used to
store and reuse the predicated code.
Because RIMP remove all the inside
branches, the traditional tag structure
and control mechanism will be
simplified. We call it as RIMP lite
trace cache.

RIMP use a rotated 1-bit register file
to support dynamic assignment of
predication. If-branch filter and branch
predictability are important for RIMP
usability. Further information will be
found in following section and
simulation discussion.

3.1 RIMP Trace Generation

The left side of fig.3 is the normal instruction stream fetched from L1 instruction
cache. The right side presents the result after predication. Note the four parts of trace
candidate: if-branch, then-path, else-path and merge-point. This example comes from
the 164.gzip.

N O a d d r in s t N O in s t

Ia 0 x 4 0 0 2 6 8 lw $ 2 , 2 0 ($ 3 0) P a lw $ 2 , 2 0 ($ 3 0)

Ib 0 x 4 0 0 2 7 0 a d d iu $ 3 , $ 2 , 1 P b a d d iu $ 3 , $ 2 , 1

Ic 0 x 4 0 0 2 7 8 s w $ 3 , 2 0 ($ 3 0) P c s w $ 3 , 2 0 ($ 3 0)

Id 0 x 4 0 0 2 8 0 lw $ 2 , 1 5 ($ 3 0) P d lw $ 2 , 1 5 ($ 3 0)

Ie 0 x 4 0 0 2 8 8 a d d i $ 3 , $ 2 , 1 P e a d d i $ 3 , $ 2 , 1

I f 0 x 4 0 0 2 9 0 b e q $ 3 , $ 0 , 4 0 0 2 d 0 P f S e tE q P 1 ,P 2 , $ 3 , $ 0
Ig 0 x 4 0 0 2 9 8 lw $ 2 , 1 6 ($ 3 0) P g P 1 lw $ 2 , 1 6 ($ 3 0)

Ih 0 x 4 0 0 2 a 0 a d d u $ 3 , $ 0 , $ 2 P h P 1 a d d u $ 3 , $ 0 , $ 2

I i 0 x 4 0 0 2 b 0 s ll $ 2 , $ 3 , 0 x 1 P i P 1 s l l $ 2 , $ 3 , 0 x 1

Ij 0 x 4 0 0 2 b 8 a d d u $ 2 , $ 3 , $ 2 P j P 1 a d d u $ 2 , $ 3 , $ 2

Ik 0 x 4 0 0 2 c 0 s w $ 2 , 2 0 ($ 3 0) P k P 1 s w $ 2 , 2 0 ($ 3 0)

I l 0 x 4 0 0 2 c 8 j 4 0 0 3 0 8
Im 0 x 4 0 0 2 d 0 lw $ 2 , 1 6 ($ 3 0) P l P 2 lw $ 2 , 1 6 ($ 3 0)

In 0 x 4 0 0 2 d 8 a d d u $ 4 , $ 0 , $ 2 P m P 2 a d d u $ 4 , $ 0 , $ 2

Io 0 x 4 0 0 2 e 0 s l l $ 3 , $ 4 , 0 x 1 P n P 2 s l l $ 3 , $ 4 , 0 x 1

Ip 0 x 4 0 0 2 e 8 a d d u $ 3 , $ 3 , $ 2 P o P 2 a d d u $ 3 , $ 3 , $ 2

Iq 0 x 4 0 0 2 f0 lw $ 2 , 2 0 ($ 3 0) P p P 2 lw $ 2 , 2 0 ($ 3 0)

Ir 0 x 4 0 0 2 f8 a d d u $ 3 , $ 2 , $ 3 P q P 2 a d d u $ 3 , $ 2 , $ 3

Is 0 x 4 0 0 3 0 0 s w $ 3 , 2 0 ($ 3 0) P r P 2 s w $ 3 , 2 0 ($ 3 0)

I t 0 x 4 0 0 3 0 8 lw $ 2 , 2 0 ($ 3 0) P s lw $ 2 , 2 0 ($ 3 0)

Iu 0 x 4 0 0 3 1 0 a d d iu $ 3 , $ 2 , 2 a d d iu $ 3 , $ 2 , 2

I f b r a n c h

E lse p a th

T h e n p a th

M e r g e p o in t

I f b r a n c h

T h e n

p a th

E ls e

p a th

M e r g e p o in t

Fig. 3. RIMP trace generation by dynamic if-conversion

74 Y. Tang et al.

In fig.3 the No.If (Beq) instruction is the if-branch. At the same time, it indicates
that those physical sequential instructions are valid in its Else-path. Absolute branch
target address is to ensure the exclusive Then-path. The distance from if-branch to its
target is significant to calculate whether the predicated trace could be saved in a trace
cache line.

Comparing these two instruction streams, it is easy to see that RIMP substitutes the
if-branch instruction into an internal instruction SetEq. SetEq will set 1-bit predication
registers, P1 and P2 (predicates), according to the same if-condition. All instructions
in then-path will be under the predicate of P1, and else-path under P2. The
unconditional jump at the end of else-path (No.Il) has been removed. Finally, there
will be no control instruction in RIMP trace.

New PC address will send to both I caches and trace cache. If the RIMP trace
cache hits, predicated trace will be fetched into pipeline. Otherwise, processor gets
instruction from I cache.

3.2 Eliminate Unnecessary Data Dependences

After beginning to fetch a RIMP trace, the instructions from both else-path and then-
path will be mixed up in out-of-order pipeline. The mixed two paths will bring
additional data dependences, which will influence the dispatch or issue stage in
processor’s pipeline.

P d l w $ 2 , 1 5 ($ 3 0)

P e a d d i $ 3 , $ 2 , 1

P f S e t E q P 1 , P 2 , $ 3 , $ 0

P g P 1 lw $ 2 , 1 6 ($ 3 0)

P h P 1 a d d u $ 2 1 , $ 0 , $ 2

P i P 1 s l l $ 2 , $ 3 , 0 x 1

P j P 1 a d d u $ 2 , $ 3 , $ 2

P k P 1 s w $ 2 , 2 0 ($ 3 0)

P l P 2 lw $ 2 1 , 1 6 ($ 2)

P m P 2 a d d u $ 4 , $ 2 1 , $ 2

R e g i s t e r

P r e d i c a t e d t a g S e q .

R e g i s t e r D e p e n d e n c e T a b l e E n t r y
E l s e P a t h

T h e n P a t h

P r e d i c a t e d t a g S e q .

N o p r e d ic a t i o n S e q .

Fig. 4. The dependence in RIMP trace

As shown in fig.4, RAW hazards (Pg->Pl, Pi->Pl, Pj->Pl) over register $2 will
prevent instruction No.Pl to be issued before No.Pk has been committed. But the
instructions with opposite predication will never be committed at the same time.
These data dependences are unnecessary.

RIMP extend the register dependence table (RDT) to prevent illusive hazards. For
every architecture register, the field of predicated tag is to record corresponding
predication variants, such as P1 or P2; the field of Seq. is to record which instruction
will write result to this register. By removing illusive dependences (hazards), RIMP
may utilize issuing bandwidth better than traditional predication.

 RIMP: Runtime Implicit Predication 75

3.3 Trace Manage

Lite trace cache is the kernel component of RIMP. Detail experiments have been done
to inspect the effect different trace cache configuration in following section.
Conventional trace scheduling and optimizing also can be applied in RIMP.

The basic block is the construct unit for traditional trace cache. But as shown in
Fig.3, those instructions, which in front of if-branch or behind the merge point,
actually will not do any help for predication. These impredicative instructions will
occupy precious trace line space. Selective trace-start and end point can be more
efficient than just the boundary of basic block, but precise heuristic of trace
generation and fetch control are needed.

Predication is a real double-blade sward. Removed branches eliminate
misprediction penalty, but almost half of the predicated instructions in RIMP trace are
useless. The instruction with false predicates will occupy the execution resources and
have their own cost. Only when the execution time for wrong path is less than
misprediction penalty, the predication can be valuable. Thanks for today’s super-
pipeline in microprocessor, it always the case. Experiments have been done to discover
RIMP’s performance when the number of pipeline stage and penalty is increased.

4 Simulation

RIMP has been simulated in a highly revised simplescalar v3.0d simulator [20]. The
baseline architecture parameters are in Table 1.

Table 1. RIMP baseline architecture overview

Instruction 64bits Alpha style instruction, quad word memory access
L1 Icache 32kB, 32 byte lines, 2-way set associative, 1 cycles for hit
L1 Dcache 32kB, 32 byte lines, 4-way set associative, 1 cycles for hit
L2 Cache 256kB, 64 byte lines, 4-way set associative, 6 cycles for hit
RIMP Trace cache 1024 internal operation storage
Predictor Default bimod in SS with 2048 entries, 90% hit rate in SPEC2k
Fetch width 4 instruction per cycle
Issue width 4 instruction per cycle
Mis-prediction 3 cycle for pipeline flush
Reorder buffer 16 entry and other 8 entry for load/store
Function Units and
latency (total/issue)

4 Int ALU (1/1), 1 Int Mult (2/1) / Div (20/19), 4 memory (1/1),
4 FP Add (2/1), 1 FP Mult (4/1) / Div (12/12) / Sqrt (24/24)

The precision of branch predicator is an important factor for RIMP. Default bimod
predictor in SS3.0d is used because the compromise of hit rate and implement
complexity. Two consecutive fail in predictor will make the branch hard-to-predict.
Because the predictability of a branch may change, a timer for periodical flush is used.

The whole SPECint2000 benchmark suit is used, which compiled and linked with
peak configuration in alpha-EV6 platform, using SimPoint as input. Three metrics are
applied to evaluate and compare different aspects of RIMP.

76 Y. Tang et al.

• Committed rate of RIMP instruction. The usability of dynamic predication after
static optimization

• IPC improvement. Eliminating branch and unnecessary dependence will improve
the parallelism.

• Speedup of execution time. Because RIMP executes the instructions in false
predication, but not commit them, IPC improvement cannot present real
performance. Execution time (cycle) can illustrate the raw improvement.

4.1 RIMP Trace Performance

I n fig.5, fig.6 and fig.7, for the same 1024 internal instructions, the RIMP trace cache
configuration of 8 sets of 8-way associative, 16 sets of 4-way associative, 32 sets of 2-
way associative, and 64 sets of direct mapped are evaluated. All trace lines contain 16
internal predicated instructions. Considering the tradeoff between performance and
complexity, 16 sets with 4-way associative trace cache is selected to be default
configuration presented at the top of histograms.

1%

16%

9.6%

4.9% 5.9%

18.5%

4.1%

13.5%

24.8%

14.5%

11%

17.6%

0

0.05

0.1

0.15

0.2

0.25

Predicated Inst. rate

gzip
vpr

gcc
mcf

crafty
parser

eon
perlbmk

gap
vortex

bzip2
twolf

s8a8 RIMP s16a4 RIMP s32a2 RIMP s64a1 RIMP

Fig. 5. Committed rate of runtime predicated instruction

0.7%

19.3%

6.5%
3% 5.5%

25.1%

3.7%
8.1%

17.4%
14.5%

7.7%
12.2%

0.8

0.9

1

1.1

1.2

1.3IPC
 im

provem
ent

gzip
vpr

gcc
mcf

crafty
parser

eon
perlbmk

gap
vortex

bzip2
twolf

no RIMP
s8a8 RIMP
s16a4 RIMP
s32a2 RIMP
s64a1 RIMP

Fig. 6. IPC improvement from RIMP architecture

As shown in fig.5, every benchmark has the opportunity to use runtime
predication. Because 163.gzip contains too many indirect branches, and the default

 RIMP: Runtime Implicit Predication 77

predictor achieves 98% precision in it, only %1 instructions are from RIMP. On
average, 11.6% of all committed instructions are fetched from RIMP trace cache.

Fig.6 presents the ILP improvement (IPC) by RIMP, compared with the processor
without dynamic predication. The average IPC improvement achieves more than
10.3%. These results come from the elimination of misprediction penalty of difficult
branch. Because predication introduces useless instructions in wrong path, speedup of
execution time in fig.7 will be the ultimate judge. The average speedup in execution
time is above 7.59%.

0.76%

9.7% 6.1%

2.9%
5.2%

20.1%

3.6%
2.3%

14.8%
12.6%7.1% 10.9%

0.8

0.9

1

1.1

1.2

1.3

execution tim
e

speedup

gzip
vpr

gcc
mcf

crafty
parser

eon
perlbmk

gap
vortex

bzip2
twolf

no RIMP s8a8 RIMP s16a4 RIMP s32a2 RIMP s64a1 RIMP

Fig. 7. Speedup of overall execution time

4.2 Enlarge Storage Space of RIMP

Because the replace rate of RIMP trace is much higher than traditional instruction
cache, a normal way for improving is to enlarge predicated storage space. There are
two ways for larger space, longer RIMP trace line or more trace cache line.

1.3%

24.6%

7.6%
5.9%

7.8%

31.6%

7.5% 9.5%

30.5%

15.2%

12%

16.3%

0.9

1.1

1.3

1.5

IPC
 im

provem
ent

gzip
vpr

gcc
mcf

crafty
parser

eon
perlbmk

gap
vortex

bzip2
twolf

no RIMP t8 t16 t24 t32

1.5%

14.2%

7.8%

5.6%

10%

24.1%

7.3%

4%

24.3%

14.2%
11%

15.2%

0.9

1

1.1

1.2

1.3

execution tim
e speedup

gzip
vpr

gcc
mcf

crafty
parser

eon
perlbmk

gap
vortex

bzip2
twolf

no RIMP t8 t16 t24 t32

Fig. 8. IPC for different RIMP trace length
limits

Fig. 9. Speedup for different trace length
limits

We use tx to denote that the predicated trace may contain x instructions in single line
maximally. In fig.8 and fig.9, tx will be increases from t8 to t32. Then the final trace
cache space will be increased from 4KB to 16KB (for 512 to 2K internal 64-bit operation
in 16 sets and 4-way association). In fig.10and fig.11, all RIMP traces are in 4-way
association and maximum 16 instructions per line, but may have various trace sets, from
16 to 128. It means the whole RIMP trace cache size increases from 8KB to 64KB.

78 Y. Tang et al.

0.8%

19.6%

7.9%

3%

5.8%

25.1%

3.9%

10.9%

19.9%

15.8%

7.7%
13.6%

0.9

1

1.1

1.2

1.3

IPC
 im

provem
ent

gzip
vpr

gcc
mcf

crafty
parser

eon
perlbmk

gap
vortex

bzip2
twolf

no RIMP 16 sets 32 sets 64 sets 128 sets

0.76%

9.8%
7.3%

2.9%

5.5%

20%

3.7% 4.9%

16.6%

13.8%

7.1%

12%

0.9

1

1.1

1.2

1.3

execution tim
e speedup

gzip
vpr

gcc
mcf

crafty
parser

eon
perlbmk

gap
vortex

bzip2
twolf

no RIMP 16 sets 32 sets 64 sets 128 sets

Fig. 10. IPC for increasing RIMP sets Fig. 11. Time speedup for increasing RIMP
sets

Table 2. Two configurations for enlarging RIMP Lite Trace Cache

Name Assoc RIMP sets Line size (insn.) Insn length RIMP size
LongLine 4 16 32 64b(8B) 16KB
MoreSets 4 32 16 64b(8B) 16KB

0.9
1

1.1
1.2
1.3
1.4

gzip
vpr
gcc
m

cf
crafty
parser
eon
perlbm

k
gap
vortex
bzip2
twolfIP

C
 im

pr
ov

em
en

t

-0.1
0.1
0.3
0.5

sp
ee

du
p

&

co
m

m
it

ra
teLL IPC improvement MS IPC improvement

LL speedup MS speedup
LL Commit Rate MS Commit Rate

Fig. 12. Compare longer RIMP trace line with more trace sets

The whole performance will be improved when large predicated trace can be
generated, stored and reused (fig.9). The simulation results show sustaining increase
from t8 to t16, and this increase will be weaken from t24 (see fig.8 and fig.9). More
sets will improve the performance, but these IPC improvements are weak. Fig.12
presents the different result for these two enlarging configurations in same RIMP
trace cache space (16KB).

As shown in fig.12, in same RIMP trace storage space, enlarging every trace line
size should be better than increasing the number of predicated traces. Due to the limit
of fetch bandwidth, long trace cache line can be fetched in several sequential cycles.
And long RIMP trace line will not increase tag costs or control complexity. More sets
means more trace cache line, thus asks for more hardware tag space. When hardware
has the ability for more predicated instruction, longer predicated trace will be
preferred to more traces.

 RIMP: Runtime Implicit Predication 79

1.22%

32%

10.02%

5.49%

8.41%

27.64%

4.75%

13.6%

26.13%
27.75%

13.25%

23.15%

0

10

20

30

40

IPC
 im

provem
ent

gzip
vpr

gcc
mcf

crafty
parser

eon
perlbmk

gap
vortex

bzip2
twolf

p3 p8 p16 p24 p32

1.2%

24%

9.1%
5.2% 7.7%

21.2%

4.5%

11%

20.7% 21.7%

11.7%

20.1%

0.9

1

1.1

1.2

1.3

execution tim
 speedup

gzip
vpr

gcc
mcf

crafty
parser

eon
perlbmk

gap
vortex

bzip2
twolf

p3 p8 p16 p24 p32

Fig. 13. RIMP’s IPC under different mis-
prediction penalty

Fig. 14. RIMP’s speedup under different mis-
prediction penalty

4.3 RIMP in Deep Pipeline

Modern processor may use deep pipeline (superpipelining) to increase frequency.
More pipelining stage may have more instructions on-the-fly, thus increase the
misprediction penalty to flush those instructions when predictor is fail.

Fig.13 and fig.14 present the improvement of RIMP while the processor
architecture has different misprediction penalty. In general, when penalty is increased
by deep pipeline, RIMP will be pivotal to eliminate misprediction.

5 Conclusion

RIMP can identify predicable if-branch, generate and store the predicated instructions
into a reversed trace cache, without the need of re-compiling or binary instrument. By
reusing the RIMP trace in following execution, the whole performance will be
improved. As modern processor use deeper pipeline and has higher frequency, RIMP
will have more attraction. The impaction of various RIMP configurations has been
exposed in this paper. Future work will concentrate on combining RIMP trace cache
with traditional trace cache, detecting the influence of interlaced different traces.

References

1. H. Sharangpani and K. Aurora. Itanium processor microarchitecture. IEEE Micro,
20(5):24-43, Sept-Oct 2000.

2. W. Chuang, B. Calder, J. Ferrante. Phi-Predication for Light-Weight If-Conversion.
Proceedings of the Intl. Symposium on code generation and optimization, pages 179-190,
Mar. 2003

3. J. Sias, H. Hunter, and W. Hwu. Enhancing loop buffering of media and
telecommunication applications using low-overhead predication. In Proceedings of the 34th
MICRO, Dec. 2001.

4. Quinn Jacobson, James E Smith. Trace preconstruction]. Proceedings of the 27th Annual
International Symposium on Computer Architecture (ISCA-00). Vancouver: IEEE
Computer Society Press, 2000. 37-46.

80 Y. Tang et al.

5. Eric Rotenberg, Steve Bennett, James E Smith. Trace cache: a low latency approach to
high bandwidth instruction fetching [A]. Proceedings of the 29th MICRO: IEEE Computer
Society Press, 1996. 24-35.

6. R. L. Sites and R. T. Witek. Alpha AXP Architecture Reference Manual: 2nd Ed. Digital
Press, Boston MA, 1995.

7. Oliver Sohm. Variable-Length Decding on the TMS320C6000 DSP platform. Application
Report. June 2002. http://www-s.ti.com/sc/psheets/spra805/spra805.pdf

8. S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and R. A. Bringmann, Effective
Compiler Support for Predicated Execution Using the Hyperblock. In 25th Intl. Conf. On
Microarchitecture, pages 45-54, Dec. 1992.

9. Linlen Gwennap. Intel’s P6 uses ducoupled superscalar Design. Microprocessor Report,
Vol.9, No.2, Feb. 1995.

10. Hyper-pipelined technology: Intel Pentium 4 Processor – Product Overview. 2004
http://www.intel.com/designPentium4/prodbref/

11. M Tremblay, J Chan, S Chaudhry, A W Conigliaro, S S Tse. The MAJC Architecture: A
Synthesis of Parallelism and Scalability. IEEE Micro vol.20 Issue 6, pages 12-25, Nov.
2000.

12. Kevin Krewell. Alhpa ev7 processor: a high-performance tradition continues.
Microprocessor Report. In-Stat/MDR, April. 2002.

13. D. N. Pnevmatikatos and G. S. Sohi. Guarded Execution and Branch Prediction in
Dynamic ILP processors. In 21st Intl. Symp. on computer architecture, pages 120-129,
June 1994.

14. S. A. Mahlke, R. E. Hank, R. A. Bringmann, J. C. Gyllenhaal, D. M. Gallagher, and W.
Hwu. Characterizing the Impact of Predicated Execution on Branch Prediction. In 27th
Annual Intl. Symp. On Microarchitecture, San Jose, CA, Dec. 1994.

15. G. S. Tyson. The Effects of Predicated Execution on Branch Prediction. In 27th Annual
Intl. Symp. On Microarchitecture, pages 196-206, San Jose, CA, Dec. 1994.

16. R. Rau, D. Yen, W. Yen, and R. Towle. The Cydra 5 Departmental Supercomputer. IEEE
Computer, 22(1):12-35, Jan. 1989.

17. A. Klauser, T. Austin, D. Grunwald, B. Calder. Dynamic Hammock Predication for Non-
predicated Instruction Set Architectures. Proceedings of ICPACT. 1998.

18. P. Y. Chang, E. Hao, Y. Patt, and P. Chang. Using Predicated Execution to Improve the
Performance of a Dynamically Scheduled Machine with Speculative Execution. In Intl.
Conf. On Parallel Arch. And Compilation Techniques, Limassol, Cyprus, June 1995.

19. J. L. Aramon, J. Gonzalez, A. Gonzalez, J. E. Smith. Dual path instruction processing.
Proceeding of the 16th Intl. Conf. On Supercomputing. New York 2002

20. T. Austin, E. Larson, D. Ernst. SimpleScalar: an infrastructure for computer system
modeling. IEEE computer. Vol.35, No.2, Pages 59-67 Feb. 2002.

Static Partitioning vs Dynamic Sharing of
Resources in Simultaneous MultiThreading

Microarchitectures

Chen Liu and Jean-Luc Gaudiot

Department of Electrical Engineering and Computer Science,
University of California, Irvine, CA 92697, USA

{cliu3, gaudiot}@uci.edu
http://pascal.eng.uci.edu

Abstract. Simultaneous MultiThreading (SMT) achieves better system
resource utilization and higher performance because it exploits Thread-
Level Parallelism (TLP) in addition to “conventional” Instruction-Level
Parallelism (ILP). Theoretically, system resources in every pipeline stage
of an SMT microarchitecture can be dynamically shared. However, in
commercial applications, all the major queues are statically partitioned.
From an implementation point of view, static partitioning of resources is
easier to implement and has a lower hardware overhead and power con-
sumption. In this paper, we strive to quantitatively determine the trade-
off between static partitioning and dynamic sharing. We find that static
partitioning of either the instruction fetch queue (IFQ) or the reorder
buffer (ROB) is not sufficient if implemented alone (3% and 9% perfor-
mance decrease respectively in the worst case comparing with dynamic
sharing), while statically partitioning both the IFQ and the ROB could
achieve an average performance gain of 9% at least, and even reach 148%
when running with floating-point benchmarks, when compared with dy-
namic sharing. We varied the number of functional units in our efforts
to isolate the reason for this performance improvement. We found that
static partitioning both queues outperformed all the other partitioning
mechanisms under the same system configuration. This demonstrates
that the performance gain has been achieved by moving from dynamic
sharing to static partitioning of the system resources.

1 Introduction

Simultaneous MultiThreading (SMT) has been a hot research area for more
than one decade [14,15,16,17,18,19,20,21]. From the embryonic implementation
in the CDC 6600 [22], the HEP [9], the TERA [8], the HORIZON [12], and
the APRIL [13] architectures, in which there exists some concept of multi-
threading or Simultaneous MultiThreading, to the actual commercial imple-
mentation of SMT in the latest Pentium 4 [10] and XEON [5] processor fami-
lies with HyperThreading (HT) technology, all demonstrates the power of SMT
(another commercial design of SMT, the COMPAQ EV8 [11], was abandoned

J. Cao, W. Nejdl, and M. Xu (Eds.): APPT 2005, LNCS 3756, pp. 81–90, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

82 C. Liu and J.-L. Gaudiot

even before reaching the manufacturing stage). Because of the limitations of
Instruction-Level Parallelism (ILP), the performance gain that traditional su-
perscalar processors could achieve is diminishing even with an increase in the
number of execution units. On the other hand, through issuing and executing
instructions from multiple threads at every clock cycle, SMT can achieve maxi-
mum system resource utilization and higher performance.

However, when it comes to the problem of how to allocate the system re-
sources to the multiple threads, there are different opinions. Sometimes the dy-
namic sharing method is applied on system resources at every pipeline stage in
the SMT microarchitectures [16,17,18] (which means threads can compete for
the resources and there is no quota on the resources that one single thread could
utilize), could be as low as 0%, or could be 100%. In other cases, all the major
queues are statically partitioned [4,5], so that each thread has its own portion
of the resources and there is no overlap.

From the implementation point view, static partitioning of resources is easier
to implement with lower hardware overhead and less power consumption, which
matches exactly with INTEL’s implementation goal of hyperthreading – smallest
hardware overhead and high enough performance gain [5]. On the other hand,
dynamic sharing is normally assumed to be able to maximize the utilization of
the system resources and corresponding performance, even though it would come
at a higher hardware cost and more power consumption.

The goal of this paper is thus to quantify the impact of static partitioning vs.
dynamic sharing on the overall performance of the system. We study the effect
of different partitioning mechanisms (static partitioning vs dynamic sharing) on
the different system resources (instruction fetch queue and reorder buffer, for
example), and their impact on overall system performance.

Prior to our proposed work, we review related work of different partitioning
methods on the system resources in Section 2. Section 3 describes our exper-
iment approach. Our simulated work is discussed in more detail in Section 4.
Conclusions are presented in Section 5.

2 Related Work

Marr et al. [5] presented a commercial implementation of a 2-thread SMT ar-
chitecture in INTEL’s XEON processor family. In their implementation, almost
all the queues are statically divided into two, one for each thread. However, the
scheduler queues are shared by both threads so that the schedulers can dispatch
instructions to the execution engine regardless of which thread they come from,
so as to insure timely execution and maintain a high throughput. However, there
is still a cap on the number of instructions one thread could have in scheduler
queues.

An investigation of the impact of different system resource partitioning mech-
anisms on SMT processors was performed by Raasch et al. in [1]. In this paper,
various system resources, like instruction queue, reorder buffer, issue bandwidth,
and commit bandwidth are studied under different partitioning mechanisms. The

Static Partitioning vs Dynamic Sharing of Resources 83

authors conclude that the true power of SMT lies in its ability to issue instruc-
tions from different threads in one clock cycle. Hence, the issue bandwidth has
to be shared all the time. While different partitioning mechanisms on other sys-
tem resources like storage queues will result in very little impact on the system
performances. However, their work is mainly focused on the back-end of the
pipeline, e.g., execution and retirement part, did not affect any of the front-end
of the pipeline, e.g., the fetch part. We extended their work by studying the
different partitioning techniques on the front-end instruction fetch queue and
the back-end reorder buffer, as well as the impact on the overall performance
caused by the interaction between them.

3 Our Approach

There are many system resources in a pipeline which could be under different par-
titioning mechanisms, for example, the instruction fetch queue, the instruction
decode queue, the instruction issue queue (sometimes called instruction queue),
the reorder buffer, the load/store queue, etc. In our proposed work, we selected
two resources from above, the front-end instruction fetch queue (IFQ) and the
back-end reorder buffer (ROB), and applied different partitioning mechanisms
on them separately. Then, we compared the performance of each configuration
to find out the impact of different partitioning mechanisms on the overall system
performance, which is measured in terms of Instruction per Cycle (IPC). This
comparison would lead us to get the optimum configuration. Here we listed all
four combinations of architectures to simulate a 2-thread Simultaneous Multi-
Threading architecture:

– SMT: Both the front-end instruction fetch queue and the back-end reorder
buffer are in the dynamic sharing mode, just like other system resources.

– SIFQ: Only the front-end instruction fetch queue is divided into two, one for
each thread, and other system resources are in the dynamic sharing mode.

– SROB: Only the back-end reorder buffer is divided into two, one for each
thread, while other system resources are in the dynamic sharing mode.

– STOUS: Both the front-end instruction fetch queue and the back-end reorder
buffer are divided into two, one for each thread, and other system resources
are in the dynamic sharing mode.

In each configuration, we perform extensive simulations to obtain the average
system performance.

4 Simulation

To properly evaluate the effects of the proposed partitioning mechanism, we de-
signed an execution-driven simulator, based on an SMT simulator developed by
Kang et al. [7], which is itself derived from SimpleScalar [3], through modifying
the sim-outorder simulator to implement an SMT processor model. Following

84 C. Liu and J.-L. Gaudiot

the structure of sim-outorder, the architectural model contains seven pipeline
stages: fetch, decode, dispatch, issue, execute, complete, and commit. Several
resources, such as program counter (PC), integer and floating-point register files,
and branch predictor, are replicated to allow multiple thread contexts. The sim-
ulator uses the 64-bit PISA instruction set.

4.1 Experiment Setup

The major simulator parameters are listed in Table 1. The fetch policy employed
is Instruction Count (I-Count). The simulator is configured to issue as many
instructions as the total number of functional units at each clock cycle according
to the priority set by the I-Count policy.

The simulator has been modified to accommodate the changes of the corre-
sponding sharing policy for IFQ and ROB. In Table 2, we listed the correspond-
ing instruction fetch queue size and the reorder buffer size for each configuration.

The benchmarks used are all from SPEC CPU2000 benchmark suite [6]. The
ten benchmarks used (7 integer and 3 floating-point benchmarks) are listed in
Table 3.

Since there are 10 sets of benchmark, 4 sets of simulator configuration for
the 2-thread input, we run each benchmark with all the benchmarks (including

Table 1. Simulation parameters

Parameter Value
Instruction Fetch Rate 8
Instruction Decode Rate 8
Instruction Retire Rate 8
L1 Instruction Cache 64Kbytes (256:64:4:LRU)
L1 Data Cache 64Kbytes (512:32:4:LRU)
L2 Cache 1Mbytes (2048:128:4:LRU)
Memory Access Bus Width 32 bytes
Instruction TLB 512Kbytes (32:4096:4:LRU)
Data TLB 1Mbytes (64:4096:4:LRU)
Instruction Issue Queue Size 64
LQ/SQ Size 64/64
INT Units 8
FP Units 4

Table 2. Simulation setup

Configuration Name Instruction Fetch Queue Size Reorder Buffer Size
SMT one 256 one 256
SIFQ two 128 one 256
SROB one 256 two 128
STOUS two 128 two 128

Static Partitioning vs Dynamic Sharing of Resources 85

Table 3. SPEC2000 CPU Benchmark used in the simulation

Benchmark Type Language Category
164.gzip INT C Compression
175.vpr INT C FPGA Circuit Placement and Routing
176.gcc INT C C Programming Language Compiler
179.art FP C Image Recognition / Neural Networks
181.mcf INT C Combinatorial Optimization
183.equake FP C Seismic Wave Propagation Simulation
188.ammp FP C Computational Chemistry
197.parser INT C Word Processing
256.bzip2 INT C Compression
300.twolf INT C Place and Route Simulator

itself). Hence altogether we run 4×10×10 iterations of simulation to get all the
results. Each iteration of simulation is composed of 1 billion instructions, after
fast forwarding through the first 300 million instructions from each thread to skip
the initialization part of the benchmark. Then the results (IPC) are averaged
to get the average performance for each benchmark under each partitioning
configuration.

4.2 Simulation Results

In Fig. 1, we present the average performance in term of IPC for each benchmark
under different partitioning architectures. Obviously, the STOUS architecture
outperforms other partitioning approaches. We derived the following formulas
to compute the performance gain:

Gain1 =
IPCSIFQ − IPCSMT

IPCSMT
(1)

Gain2 =
IPCSROB − IPCSMT

IPCSMT
(2)

Average Performance

0

0.5

1

1.5

2

2.5

3

3.5

4

164 175 176 179 181 183 188 197 256 300

Benchmark

IP
C

SMT
SIFQ
SROB
STOUS

Fig. 1. Average performance gain for different partitioning architectures

86 C. Liu and J.-L. Gaudiot

Table 4. Performance Gain Comparison

Gain1(%) Gain2(%) Gain3(%)
Overall average performance gain: 19.69 -6.94 148.25
Average performance gain (excluding
benchmark 188)

-0.10 -7.66 23.67

Average performance gain (excluding
benchmark 179 and 188)

-3.35 -8.66 8.99

Gain3 =
IPCSTOUS − IPCSMT

IPCSMT
(3)

When we examine the results more carefully under the light of the above
formulas, we observe that when Benchmark 179 and 188 run together with other
benchmarks, they could achieve such a huge performance gain (up to 7 or 8 fold),
that they may exaggerate the performance gain achieved from other benchmarks.
Therefore, in Table 4, we list the average performance gain in three different
situations:

– Overall average performance gain, which is computed using the results of
running all 10 benchmarks.

– Average performance gain excluding Benchmark 188, which is computing
using only the results from running the remaining nine benchmarks.

– Average performance gain excluding Benchmark 179 and 188, which is com-
puted using only the results from running the remaining eight benchmarks.

The reason why we want to compare the performance under these three dif-
ferent situations is because we want to examine the performance gain excluding
the interference from those two benchmarks (179 and 188), to see how other
benchmarks react to the different system partitioning architectures. From the
table, we can see that the STOUS architecture keeps yielding positive perfor-
mance gain, while other architectures could result in a loss of performance.

4.3 Impact of Functional Units

In order to isolate the reason why Benchmark 188 and 179 could achieve such
huge performance gain, we redo the simulation by varying the number of INT and
FP functional units as listed in Table 5. We also increased the size of instruction
issue queue, load queue/store queue from 64 entries to 128 entries.

Table 5. Functional units configuration

Configuration I II III
INT units 4 8 8
FP units 4 4 8

Static Partitioning vs Dynamic Sharing of Resources 87

4 INT/4 FP

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

164 175 176 179 181 183 188 197 256 300

Benchmark

IP
C

smt44
sifq44
srob44
stous44

Fig. 2. Average IPC for 4 INT / 4 FP functional units configuration

8 INT/4 FP

0

0.5

1

1.5

2

2.5

3

3.5

4

164 175 176 179 181 183 188 197 256 300

Benchmark

IP
C

smt84
sifq84
srob84
stous84

Fig. 3. Average IPC for 8 INT / 4 FP functional units configuration

8 INT/8 FP

0

0.5

1

1.5

2

2.5

3

3.5

4

164 175 176 179 181 183 188 197 256 300

Benchmark

IP
C

smt88
sifq88
srob88
stous88

Fig. 4. Average IPC for 8 INT / 8 FP functional units configuration

88 C. Liu and J.-L. Gaudiot

In Fig. 2, 3, 4, we can see the average IPC for each partitioning mechanism
with different functional unit configuration.

From the graph, we can see that with different variations in the number of
functional units, the STOUS architecture keeps outperforming the SMT, SIFQ
and SROB architectures in term of IPC. This demonstrates that the performance
gain is achieved from the difference between static partitioning and dynamic
sharing of the system resources, not because of the number of functional units
in favor of any of the architectures.

5 Conclusions

From the above tables and graphs, several conclusions can be drawn:

1. Statically partitioning either the IFQ or the ROB solely can only lead to a
negative performance gain.

2. Statically partitioning both the IFQ and ROB together could achieve
marginal performance gain (even in the worst scenario when running integer
benchmarks solely, the STOUS architecture could still achieve 9% perfor-
mance gain over the SMT architecture).

We feel the reason for this is that static partitioning both the IFQ and ROB
is like forcing the input and output of the pipeline to evenly execute the two
input threads. Hence we can avoid the situation where one of the threads grabs
more resources it could use and clogs the pipeline, while the other thread could
not get enough resources and under-executed. Statically partitioning either one
of them could not achieve such results because it only controls one end of the
pipeline while there is no control over the other end.

The huge performance gain from running Benchmark 188 and 179 results
from better system resource utilization with one integer and one floating-point
input. Because now in stead of competing with each other for the same type of
functional units, the instructions from different threads are running on different
types of functional units. Hence the competition for those resources is minimized,
the throughput is maximized, which shows the original power of SMT.

Through the static partitioning of the instruction fetch queue and the reorder
buffer, we are able to achieve better performance (in terms of IPC) than dynamic
sharing. Also, at the same time, static partitioning would require less hardware
overhead, and also achieve less power consumption.

Since static partitioning of both IFQ and ROB could bring us this opportu-
nity to achieve better performance with a less complicated mechanism, then the
next step is to try different partitioning mechanisms on other system resources,
to study the inter-relationship among them, and in the end to find an optimum
way to sharing system resources to achieve the best performance with the least
hardware overhead and power consumption for the SMT microarchitecture.

Acknowledgment. We would like to thank Dongsoo Kang for his support in
our use of his SMT simulator.

Static Partitioning vs Dynamic Sharing of Resources 89

References

1. Raasch, Steven E., Reinhardt, Steven K.: The Impact of Resource Partitioning
on SMT Processors. Proceedings of the 12th Intenrational Conference on Parallel
Architectures and Compilation Techniques (PACT 2003). New Orleans, Louisiana,
USA. Sep. 27 - Oct. 01. (2003) 15–26

2. Sazeides, Y., Juan, T.: How to Compare the Performace of Two SMT Microar-
chitectures. Proceedings of 2001 IEEE International Symposium on Performance
Analysis of System and Software (ISPASS-2001). Tucson, Arizona, USA, November
4-6. (2001)

3. Burger, D., Austin, T.: The SimpleScalar Tool Set, Version 2.0. University of
Wisconsin-Madison Computer Science Department Technical Report No.1342.
June (1997)

4. Koufaty, D., Marr, Deborah T.: Hyperthreading Technology in the Netburst Mi-
croarchitecture. IEEE Micro, March-April. (2003)

5. Marr, Deborah T., Binns, F., Hill, David L., Hinton, G., Koufaty, David A., Miller,
J.Alan, Upton, M.: Hyper-Threading Technology Architecture and Microarchitec-
ture. Intel Technology Journal Q1. (2002)

6. SPEC CPU 2000 Benchmark Suite: http://www.specbench.org/osg/cpu2000/
(2000)

7. Kang, D., Gaudiot, J-L.: Speculation control for simultaneous Multithreading. Pro-
ceedings of the 18th International Parallel and Distributed Processing Symposium
(IPDPS 2004). Santa Fe, New Mexico, April 26-30.(2004)

8. Alverson, R., Callahan, D., Cummings, D., Koblenz, B., Porterfield, A., Smith,
B.: The TERA Computer System. ACM SIGARCH Computer Architecture News,
Vol. 18, No. 3.(1990) 1–6

9. Smith, B.J.: Architecture and Applications of the HEP Multiprocessor Computer
System. SPIE Real Time Signal Processing IV. (1981) 241-248

10. Hinton, G., Sager, D., Upton, M., Boggs, D., Carmean, D, Kyker, A., Roussel, P.:
The Microarchitecture of the Pentium 4 Processor. Intel Technology Journal Q1.
(2001)

11. Preston, Ronald P., Badeau, Roy W., Bailey, Daniel W., Bell, Shane L., et al.:
Design of an 8-wide Superscalar RISC Microprocessor with Simultaneous Multi-
threading. Proceedings of 2002 IEEE International Solid-State Circuits Conference
(ISSCC 2002). Vol. 1. (2002)

12. Thistle, Mark R., Smith, Burton J.: A Processor Architecture for HORIZON. Pro-
ceedings of the 1988 ACM/IEEE Conference on Supercomputing. Orlando, Florida,
USA, Nov. 12-17. (1988) 35–41

13. Agarwal, A., Lim, B-H., Kranz, D., Kubiatowicz, J.:APRIL: A Processor Architec-
ture for Multiprocessing. Proceedings of the 17th Annual International Symposium
on Computer Architecture (ISCA 1990). (1990) 104–114

14. Nemirovsky, Mario D., Brewer, F., Wood, Roger C.: DISC: Dynamic Instruction
Stream Computer. Proceedings of the 24th annual international symposium on
Microarchitecture (Micro-24). Albuquerque, New Mexico, Puerto Rico. (1991) 163–
171

15. Yamamoto, W., Nemirovsky, Mario D.: Increasing superscalar performance
through multistreaming. Proceedings of the IFIP WG10.3 working conference on
Parallel architectures and compilation techniques. Limassol, Cyprus. (1995) 49–58

16. Tullsen, Dean M., Eggers, Susan J., Levy, Henry M.: Simultaneous Multithreading:
Maximizing On-chip Parallelism. Procedding of the 22nd Annual International
Symposium on Computer Architecture (ISCA 1995). (1995) 392–403

90 C. Liu and J.-L. Gaudiot

17. Tullsen, Dean M., Eggers, Susan J., Emer, Joel S., Levy, Henry M., Lo, Jack L.,
Stamm, Rebecca L.: Exploiting choice: Instruction fetch and issue on an imple-
mentable simultaneous multithreading processor. Proceedings of the 23rd Annual
International Symposium on Computer Architecture (ISCA 1996). (1996) 191–202

18. Eggers, Susan J., Emer, Joel S., Levy, Henry M., Lo, Jack L., Stamm, Rebecca L.,
Tullsen, Dean M.: Simultaneous Multithreading: A Platform for Next-Generation
Processors. IEEE Micro, Vol. 17. No. 5. (1997) 12–19

19. Shin, C-H., Lee, S-W., Gaudiot, J-L.: Dynamic Scheduling Issues in SMT Archi-
tectures. Proceedings of the 17th International Parallel and Distributed Processing
Symposium (IPDPS’03). Nice, France, April 22-26. (2003) 77-84

20. Burns, J., Gaudiot, J-L.: SMT Layout Overhead and Scalability. IEEE Transac-
tions on Parallel and Distributed Systems, Vol. 13, No. 2. (2002) 142–155

21. Lee, S-W., Gaudiot, J-L.: Clustered Microarchitecture Simultaneous Multithread-
ing. Proceedings of the Euro-Par 2003 International Conference on Parallel and
Distributed Computing, Klagenfurt, Austria, August 26-29. (2003)

22. Thornton, J. E.: Design of a computer: the CDC 6600. Scott, Foresman Co., Glen-
view, Ill. (1970)

J. Cao, W. Nejdl, and M. Xu (Eds.): APPT 2005, LNCS 3756, pp. 91 – 100, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Autonomous-Centered Problem
Allocation Oriented to Cooperation

Xiping Liu1,2, Wanchun Dou1,2, Guihai Chen1,2, Shijie Cai1,2, and Jiashan Tang3

1 State Key Laboratory for Novel Software Technology, Nanjing University
2 Dept. of Computer Science and Technology, Nanjing University, Nanjing, China, 210093

xixi_liu@graphics.nju.edu.cn
3 Dept. of Applied Mathematics and Physics,

Nanjing University of Posts and Telecommunications, Nanjing, China, 210003

Abstract. By reasonably allocating a cooperative problem which need multiple
solvers cope with together, the problem could be performed more effectively
and efficiently. A problem could be divided into multiple sub-problems; each
has certain ability requirement which is the hinge to relate problem and solver.
According to ability requirement, the solver candidate set for each sub-problem
could be established. To select suitable solver from candidate set so as to solve
a cooperative problem in more autonomous and consistent way, a mathematical
allocation model taking the minimization of interaction number as objective
function is established. The model solving process is deployed by decreasing
two kinds of interactions, i.e. intra-interaction and extra-interaction. Experiment
shows this method obtains better performance than general allocation.

1 Introduction

To a complex cooperative problem which need multiple solvers cope with together, it
could be divided into multiple sub-problems with more specific and accurate task
description, and each solver could handle one or more sub-problems. The solver could
be any autonomous entity, such as an intelligent agent or a person. Before the prob-
lem solving process, it is necessary to build a reasonable model between problem and
problem solver, which provide that what part of cooperative problem should be han-
dled by whom. Nevertheless, such an allocation process is underestimated as most
study on cooperation has concentrated on the issue of problem solving process.

In most cases, the cooperation problem could not be split into such a sub-problem set,
in which each sub-problem is isolated from others. There exist interactions between sub-
problems more or less; accordingly the solvers of those sub-problems need communicate
with others for necessary information. To solve a cooperative problem more unified and
efficient, the fewer interactions between solvers is high appreciated. The minimization of
interaction between solvers of a cooperative problem embodies autonomous-centered idea.
With fewer interactions between solvers, each solver could pay less attention to external
action and care more about the internal process; consequently, sub-problems assigned to
each solver could be solved in more self-governing way and the whole cooperative prob-
lem solving system could be more autonomous.

92 X. Liu et al.

There are many scenarios which have autonomous requirement, such as coopera-
tive cognition, cooperative design, and etc. To these cooperative problems, interac-
tions among cooperators are very complex in general and need be put much effort to
assure problem could be solved more autonomously and consistently. However, most
current researches focus only on issues of how to realize and optimize interaction
after interaction between solvers is already determinate [1, 2, 3], while put little effort
on how to determine the interaction model for a cooperative system in advance so as
to achieve the autonomous.

With these considerations, relative researches about autonomous-centered problem
allocation oriented to cooperation are discussed in this paper. The problem handled by
multiple solvers usually could be subdivided into multiple sub-problems. Each sub-
problem could find many solver candidates by checking if their capability satisfies
certain requirement, where a candidate maybe consists of multiple participants. The
most suitable candidate should be selected as formal solver for each sub-problem so
that the whole cooperative system has fewer interactions and act more autonomously.
A mathematical allocation model is established to provide explicit and specific de-
scription. To step toward optimal solution of that model, five selection principles are
put forward and relevant algorithm is proposed.

This paper is organized as follows: Section 2 presents problem model and ability
specification of participant, which underlies the candidate set determining process; the
allocation result model is also explored in this section. Section 3 describes the mecha-
nism to determine candidate set according to ability requirement. Section 4 analyzes
the criteria of allocation and builds a corresponding mathematical model. An autono-
mous-centered allocation method to solve the mathematical model is put forward in
section5. Section 6 provides the experiment result and relevant analysis. The conclu-
sion and future work is discussed in section 7.

2 Problem Model, Participant Specification and Allocation Result
Model

2.1 Problem Model and Ability Specification

Definite 1: CP denotes universe of cooperative problem, which is divided into m sub-
problems, denoted as CP= {SPi, i=1, 2,..., m}, note any SPi could not be sub-divided.
A complete problem model, could be described as (CP, IntSP-SP), where IntSP-SP
represent interaction between SPs, which is a relation set [4], the element of set is SPi
pair. For example, a relation set like {(SP1, SP2), (SP1, SP3)}, represents there is inter-
action between SP1 and SP2, also between SP1and SP3.

Each sub-problem would have special requirements to solver, which include infra-
structure, such as all kinds of devices, machines, etc., and also formless resource, such
as professional field knowledge, knowledge background, skill or experience, available
work time, and etc. The term ability is abstracted to represent such requirements,
which is not so easy to represent, partly because knowledge representation is another
developing research problem with many open issues [5]. As the effort of this paper is
not focus on things like knowledge representation, we just use symbol A to denote
certain kind of ability i.e. professional knowledge, skills, devices and etc.

 Autonomous-Centered Problem Allocation Oriented to Cooperation 93

Definition 2: A is ability set of the cooperative problem, representing all the require-
ments for solving cooperative problem, denoted as A= {Ak, k=1, 2,…, l}, where Ak has
pervasive meaning of requirement to participant.

Definition 3: To SPi, the ability requirements could be represented as an equivalence

class
iSPA][= {Ak A: to handle SPi, the solver must own Ak, k [1,l]}.

2.2 Participant Specification Based on Ability

The solver to certain sub-problems is chosen from all the participants of cooperative
problem. Being a participant does not mean that there does be certain sub-problem
that could be assigned to this participant, but only represent it is involved in the coop-
erative problem, as it has the probability to become the formal solver of certain sub-
problem.

Definition 4: There are n participants involved in a cooperative problem, denoted as

P= {Pj, j=1, 2,…, n}, the ability that Pj owns is represented as
jPA][= {Ak A: Pj

holds Ak, k [1, l]}.

To a sub-problem, if certain participant satisfies the condition
jPA][⊇

iSPA][, it

implies Pj have the ability to handle SPi. Sometimes, the ability set of one single par-
ticipant does not hold all the ability elements required by SPi but only a subset

of
iSPA][, at this time, the participant need cooperate to handle SPi with others whose

ability sets satisfy the requirement that not satisfied by itself.

2.3 Allocation Result Model

To allocate a cooperative problem, besides determining solver with enough capability
for sub-problem, how to deal with the interaction among sub-problems is another
issue. As SPs are assigned to certain solvers to handle, the interaction among SPs is
transformed to be the interaction among solvers. If some SPs interacting with each
other are handled by same solver, as the solver has no need to interact with self, so the
interaction among those SPs could vanish. Moreover, the interaction among those SPs
handled by different solvers could be up-transferred to the corresponding solver. In
other words, in allocation result, the interaction among sub-problems of problem
model would be replaced by interaction among solvers. Besides, If one sub-problem
is handled by multiple solvers, all those solvers must interact with each other to nego-
tiate how to solve it.

Definition 5: There are two kinds of interactions between solvers of a cooperative
problem. Intra-interaction: the interaction among multiple solvers of a sub-problem,
which is generated during allocation and used to solve internal process of a sub-
problem. Extra-interaction: the interaction among solvers of multiple SPs, which is
transformed from SPs interaction existed in problem model and used to solve external
process of certain sub-problem that has interactions with other SPs.

94 X. Liu et al.

For example, to IntSP-SP= {(SP1, SP2)}, solver of SP1 is P1 and P2, solver of SP2 is
P2, P3; so there is extra-interaction between P1 and P2, P1 and P3, also between P2 and
P3 corresponding to interaction between SP1 and SP2, moreover, there is intra-
interaction between P1 and P2 to SP1, also between P2 and P3 to SP2. There might be
multiple interactions between two solvers. Due to autonomous and intelligent of
solver, process to one or more interactions is similar, so the interaction number be-
tween two solvers could be supposed as 1 no matter how many interactions exist.

Definition 6: To a cooperative problem, the final result model is (SP-Solver, IntP-P),
where SP-Solver consists of SPi-Pj pair which represents Pj participate in solving SPi

and IntP-P consists of
1j

P -
2j

P pair which represents there is interaction between
1j

P

and
2j

P (could be intra-interaction or extra-interaction or both).

3 Candidate Set Determining

Allocation has two phases, the first is to determine candidate set for each sub-problem
based on ability requirement; and the second is to choose one candidate to solve each
sub-problem by certain strategy.

To be a candidate of sub-problem SPi, Pj should satisfy certain condition. If
jPA][

⊇
iSPA][, Pj could be a candidate by single; otherwise, if

jPA][∩
iSPA][≠ Φ

Fig. 1. Determine candidate sets for each sub-problem

For i=1 to m { //Find all possible candidates for SPi
For j=1 to n //Compute max number of cooperators for Pj

 Compute cnj=min{|
iSPA][|-|

jPA][∩
iSPA][|, n-1}

For j=1 to n //Find candidate encompass Pj
If cnj=0 //Pj can handle SPi by single

{Add {Pj} into candidate set 1,iCAND }

Else

If cnj<|
iSPA][| //Pj composes candidate with others

For k=1 to cnj { //find other k participants
Find all composition satisfying

ikjjjj SPPPPP AAAAA][][...][][][
132

⊇∪∪∪∪
+

 j<js n

Add { jP ,
2j

P ,…,
1+kj

P } to candidate set 1, +kiCAND

}

CANDi= ti
t

CAND ,U

}

 Autonomous-Centered Problem Allocation Oriented to Cooperation 95

(means Pj has certain ability to participate in solving SPi), Pj can not be a candidate by
single but could composes a candidate with other participants. To find all possible can-

didate combinations related with Pj for SPi, the cardinality of
iSPA][and

jPA][is

provided. The maximum number of cooperators for Pj is computed as cn=|
iSPA][|-

|
jPA][∩

iSPA][| (if cn>n-1 then it should be replaced by n-1).

Definition 7: To SPi, the candidate set is represented as CANDi = ti
t

CAND ,U

(t ∈ [1,|
iSPA][|]), where tiCAND , = {{

1j
P ..

tj
P } P⊆ :

sji P
s

SP AA][][U⊆ , s=1,

2,..,t; to any s1, s2∈[1, t],
21

][][
sjsj

PP AA ≠ and
sji P

ss
SP AA][][

1\
U⊄ }. Here t means

the number of participants in a candidate, especially, when t=1, the sub-problem could
be handled by single participant.

When determine candidate set for certain sub-problem SPi, all possible tiCAND ,

should be obtained in advance so as to provide more freedom to select one most suit-
able candidate for SPi. The algorithm is described in figure 1.

4 Selection Criteria and Mathematic Modeling

To find suitable solvers for sub-problems, a precondition is assumed, that is: to ∀ SPi

(i=1, 2,…, m), ∃ iCAND Φ≠ . Otherwise, SPi is unsolvable.

3

2

4

5

6

1

1 2 3 4

1 2 3 4 5 6

1 1� 2�

3� 4�

2 4

5 6

1� 1 2 2� 3 4

3� 54� 6

2. b. Interaction model of six SPs 2. a. Relationship between SPs and participants

2. d. Allocation result with most interaction

Fig. 2. An example of Allocation

i SPi j Pj

3

2. c. Allocation result with least interaction

4 4

96 X. Liu et al.

4.1 The Criteria of Selection

The criteria of selection mainly refer to the performance requirement, here means
number of the interactions between solvers should be minimized as much as possible.
Different selection would result in different interaction number. Figure 2 provides an
example of different allocation result based on same condition. As figure 2.a showing,
there are four participants and six SPs in a cooperative system. The line represents
who has the ability to handle which sub-problem; the doted line represents SP4 need
P2 and P4 to handle together. The figure 2.b shows the interaction relationship among
those SPs. With these precondition, multiple allocation results satisfying function
requirement could be obtained, figure 2.c and 2.d denotes two of them. As the figure
showing, the interaction number of figure 2.c is four less than 2.d.

4.2 Mathematical Modeling

To a system with not very many participants and SPs, the allocation could be carried
out and evaluated at one sight like figure 2; however, to a large scale system with
great deal of participants and SPs, it would become very hard to allocate by hand and
obtain a reasonable result. So it is quite necessary to construct a method aiming at
allocating automatically and decreasing interaction number of cooperative system as
much as possible. To make the problem more explicit, a mathematical model to de-
scribe the allocation is presented:

1. T(i1, i2) (i1=1,…,m, i2=1,…,m) represents the relativity between two sub-

problems, if
1i

SP has interaction with
2i

SP , T(i1, i2)=1; otherwise T(i1, i2)=0. The

data derive from problem model (CP, IntSP-SP).
2. R(i, j) (i=1,…,m; j=1,…,n) is the allocation result matrix, R(i, j)=1 represents Pj

participate in solving SPi; otherwise R(i, j)=0. R(i, j) reflect the SP-Solver relation in
allocation result model.

3. Int(j1, j2) (j1=1,…,n; j2=1,…,n) is the interaction relation of allocation result

model, Int(j1, j2)=1 represents
1j

P need interact with
2j

P , otherwise Int(j1, j2)=0.

Int(j1, j2) reflect the IntP-P relation in allocation result model.
4. The allocation could be described as such an optimization problem: select suit-

able solver for each sub-problem, makes

The model solving is a very complex and hard process, especially for large scale
situation. Such a model solving similar to combinatorial optimization is a NP problem
in all probability [6]. To try all possible allocation scheme, compute the interaction

Where 1),(21 =jjInt if and only if

)1),(1),(()1),(1),(1),((2111212211 =∧=∨=∧=∧= jiRjiRiiTjiRjiR

s. t. ij
jiR

CANDPi ∈∀
=

}{,
1),(

U

−

= +=

1

1 1
21

1 12

),(min
n

j

n

jj

jjInt

 Autonomous-Centered Problem Allocation Oriented to Cooperation 97

number and choose one scheme with the fewest as optimal solution is low effective
and unrealistic. The best way to solve such a model is to provide a universal algo-
rithm adapt to variable model scale. In next section, an autonomous-centered alloca-
tion method is put forward, which is an effective attempt to reach optimal solution;
And experiment prove that this strategy bring great performance improvement.

5 Autonomous-Centered Allocation

Before the allocation mechanism is provided, it is necessary to learn the holistic struc-
ture of allocation process. The allocation process is performed through m steps, each
step take charge of the allocation of one sub-problem based on last step result model.
In this way, no sub-problem could know exactly the allocation result of SPs assigned
after it, but it could make use of the existed allocation result and anticipate possible
allocation result of future to prevent more increase of interactions.

As the allocation is performed step by step, to minimize increased interaction
number of each step is a straightforward and effective strategy, which could be real-
ized through reasonable selection principles proposed in following sections.

5.1 Decreasing Intra-interaction

To decrease the intra-interaction, it is necessary to choose as few solvers as possible
for each sub-problem. In general, single solver is better than multiple solvers as no
unnecessary intra-interaction exists and autonomous process could solve problem
more completely and consistently. Therefore, to candidates of SPi, the fewer members
certain candidate has, the higher priority it has. As a result, the candidate with least t
is named as top-candidate and t’ is used to represent the least t.

Selection Principle 1: Solver should belong to certain top-candidate. If SPi need more
than one solver to handle together, the interaction among those solvers should be
appended to the result model. It seems that all top-candidates would generate same

number of intra-interaction, i.e. 2
'tC ; nevertheless, increased intra-interaction number

of different candidate is variable. In last step result model, if there already exist some
interactions among t’ participants from certain candidate, then only the left interac-
tions not still existed need be appended. Accordingly, selection principle 2 is pro-
posed to decrease as many as interactions.

Selection Principle 2: Candidate with more existed interactions among its members is
preferable.

5.2 Decreasing Extra-interaction

If SPi has interaction with certain allocated SPs, the interaction between the solvers of
those SPs and the solvers of SPi should be appended based on the last step result
model. Here, the participant that need build interaction with solvers of SPi is called as
pToInt of SPi. The candidate encompassing certain pToInt is called as semi-selected
candidate, as by allocating SPi to this candidate, the solver could melt interaction

98 X. Liu et al.

between SPi and sub-problem handled by that pToInt, so that problem could be solved
in more autonomous way.

Selection Principle 3: Solver should belong to certain semi-selected candidate if it
exists.

Similar with the principle of decreasing intra-interaction, the extra-interaction
could be decreased by making full use of existed interactions. Note the extra-
interaction is determined after intra-interaction, so it could reuse not only interactions
from last step result model but also the new generated intra-interactions to SPi.

Selection Principle 4: Candidate who has more existed interactions with pToInt is
preferable.

Supposing certain un-allocated SPj interacting with SPi would be assigned to same
solver of SPi in certain later step, there would be no need to append extra-interaction
corresponding to SPi and SPj because the two sub-problems are handled by same
solvers. Consequently, the more un-allocated SPs interacting with SPi the candidate
has capability to handle, the fewer interactions the latter allocation would possibly
append. Based on this, selection principle 5 from perspective of expectation to future
allocation is proposed as following.

Selection Principle 5: Candidate that has capability to handle more SPs is preferable,
here SPs means those have interaction with SPi and still not be allocated.

5.3 Allocation Order Determining and Specific Algorithm

As allocation is performed in m steps, the allocation order of m SPs is very important
to good result. If SPi with more candidates is allocated at first, then only a few inter-
actions of result model could be reused, so some selection principle could not work
well; On the other hand, if SPi with fewer candidates is allocated at last, then lots of

Decide allocation order //fewer candidates first
For i=1 to m{

//i denotes the ith sub-problem to be allocated
Find all top-candidates //selection principle 1
Find all semi-selected candidates among top-candidates
 //selection principle 3
For each semi-selected candidate if they exist, other-
wise for each top-candidate {
Compute increasedInt //selection principle 2 and 4
Find candidates with minimum increasedInt
If there is more than one

Selected one candidate //selection principle 5
Else

Take corresponding candidate as solver
}
Modify allocation result model

}

Fig. 3. Determine solvers for each sub-problem

 Autonomous-Centered Problem Allocation Oriented to Cooperation 99

interactions could be reused, however SPi could not make good use of selection prin-
ciple too, because it has little selection space with fewer candidates. Accordingly, the
allocation order is achieved by sorting through top-candidate number of each sub-
problem with less first strategy, so as to make selection principles work more effec-
tively.

The allocation process consists of m steps in predefined order, each step is to allo-
cate for certain sub-problem, which brings change of interaction number denoted as
increasedInt, the specific algorithm is provided in figure 3.

6 Experiment Result and Discussion

General allocation method is usually to directly choose one candidate as solver with-
out special consideration; the experiment simulates the general allocation method to
provide a specific comparison. To check performance of varied possible cooperative
system, the candidate set and interaction among sub-problems is determined at ran-
dom. As the figure 4 showing, to same cooperative problem, the interaction number
with autonomous-centered method are much less than that of with general allocation.

7 Conclusion and Future Work

Cooperative problem has been developed greatly along with the requirement of cross-
area application. It brings many research issues on allocation to cooperative problem.
This paper is a new try to ensure cooperative problem could be solved in more
autonomous way so as to improve the consistent and integrity of cooperative system.
The problem allocation mechanism presented in this paper could be applied to all
kinds of cooperative scenarios with requirement of fewer interactions, such as soft-
ware development, cooperative cognition, cooperative design, and etc. This mecha-
nism especially facilitates the allocation of large-scale cooperative problem with great

Sub-problem number

Interaction num
ber

Interaction num
ber

General+
* Our method
300 SPs

Participant number

4. a. Variable participant quantity and
fixed sub-problem number

4. b. Variable sub-problem quantity
and fixed participant number

Fig. 4. Comparison of different allocation method

*
+

30 participants
Our method
General

100 X. Liu et al.

deal of participants and sub-problems. With autonomous-centered allocation method,
the cooperative problem could be solved by multiple solvers more harmoniously and
effectively in much fewer interactions. In future work, more constraint could be taken
into account to provide more pervasive allocation modeling, such as precedence
among SPs, requirement for ability degree, and so on.

Acknowledgement. This paper is based on NSFC (No. 60303025), Jiangsu Provincial
NSF research fund (No. BK2004411 and BK2005208).

References

1. Rogers, Erika: Cognitive cooperation through visual interaction. Int. J. Knowledge-Based
Systems (1995) 117-125

2. Jos Antonio P rez, Rafael Corchuelo, David Ruiz, and Miguel Toro: An Order-Based,
Distributed Algorithm for Implementing Multiparty Interactions. In: Farhad Arbab, Carolyn
Talcott (eds.): Coordination models and languages. Lecture Notes in Computer Science,
Vol. 2315. Berlin, Springer (2002) 250-257

3. David Ruiz, Rafael Corchuelo, José A. Pérez, and Miguel Toro: An Algorithm for Ensuring
Fairness and Liveness in Non-deterministic Systems Based on Multiparty Interactions. In:
B. Monien and R. Feldmann (Eds.): Euro-Par 2002. Lecture Notes in Computer Science,
Vol. 2315. Berlin, Springer (2002) 563-572

4. Luis E. Sanchis: Set theory, an operational approach. Amsterdam, the Netherlands: Gordon
and Breach (1996)

5. John F. Sova: Knowledge Representation: Logical, Philosophical, and Computational
Foundations. Brooks/Cole (2000)

6. Yue Minyi: Introduction to Combinatorial Optimization. Zhejiang Science & Technology
Publishing House (2001)

J. Cao, W. Nejdl, and M. Xu (Eds.): APPT 2005, LNCS 3756, pp. 101 – 110, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Contention-Free Communication Scheduling
for Irregular Data Redistribution

in Parallelizing Compilers∗

Kun-Ming Yu, Chi-Hsiu Chen, Ching-Hsien Hsu, Chang Wu Yu,
and Chiu Kuo Liang

Department of Computer Science and Information Engineering,
Chung Hua University, Hsinchu, Taiwan 300, ROC

Tel: 886-3-5186412, Fax: 886-3-5329701
yu@chu.edu.tw

Abstract. The data redistribution problems on multi-computers had been exten-
sively studied. Irregular data redistribution has been paid attention recently
since it can distribute different size of data segment of each processor to proces-
sors according to their own computation capability. High Performance Fortran
Version 2 (HPF-2) provides GEN_BLOCK data distribution method for generat-
ing irregular data distribution. In this paper, we develop an efficient scheduling
algorithm, Smallest Conflict Points Algorithm (SCPA), to schedule HPF2 ir-
regular array redistribution. SCPA is a near optimal scheduling algorithm,
which satisfies the minimal number of steps and minimal total messages size of
steps for irregular data redistribution.

Keywords: Irregular data redistribution, communication scheduling,
GEN_BLOCK, conflict points.

1 Introduction

More and more works had large data or complex computation on run-time in most
scientific and engineering application. Those kinds of tasks require parallel program-
ming on distributed system. Appropriate data distribution is critical for efficient exe-
cution of a data parallel program on a distributed computing environment. Therefore,
an efficient data redistribution communication algorithm is needed to relocate the data
among different processors. Data redistribution can be classified into two categories:
the regular data redistribution [2, 3, 6] and the irregular data redistribution [1, 4, 10,
11, 12]. The irregular distribution uses user-defined functions to specify unevenly
data distribution. High Performance Fortran version 2 (HPF2) provides
GEN_BLOCK data distribution instruction which facilitates generalized unequal-size
consecutive segments of array mapping onto consecutive processors. This makes it

∗ The work is partially supported by National Science Council of Taiwan, under grant number

NSC-93-2213-E-216-029.

102 K.-M. Yu et al.

possible to let different processors dealing with appropriate data quantity according to
their computation capability. In this scenario, all processors must send and receive
message, even if send and receive on the same processor.

In the irregular array redistribution, Guo et al. [11] proposed a Divide-and-
Conquer algorithm, they utilize Divide and Conquer technique to obtain near optimal
scheduling while satisfied minimize the total communication messages size and
minimize the number of steps.

In this paper, we present a smallest-conflict-points algorithm (SCPA) to efficiently
perform GEN_BLOCK array redistribution. The main idea of the SCPA is to schedule
the conflict messages with maximum degree in the first step of data redistribution
process. SCPA can effectively reduce communication time in the process of data
redistribution. SCPA is not only an optimal algorithm in the term of minimal number
of steps, but also a near optimal algorithm satisfied the condition of minimal message
size of total steps.

The rest of this paper is organized as follows. In Section 2, a brief survey of related
work will be presented. In section 3, we will introduce communication model of ir-
regular data redistribution and give an example of GEN_BLOCK array redistribution
as preliminary. Section 4 presents smallest-conflict-points algorithm for irregular
redistribution problem. The performance analysis and simulation results will be pre-
sented in section 5. Finally, the conclusions will be given in section 6.

2 Related Work

Many data redistribution results have been proposed in the literature. These re-
searches are usually developed for regular or irregular problems [1] in multi-computer
compiler techniques or runtime support techniques.

Techniques for communication optimizations category provide different ap-
proaches to reduce the communication overheads [5, 7] in a redistribution operation.
The communication scheduling approaches [3, 12] avoid node contention and the
strip mining approach [9] overlaps communication and computational overheads.

In irregular array redistribution problem, some works have concentrated on the in-
dexing and message generation while some has addressed on the communication
efficiency. Guo et al. [10, 11] proposed a divide-and-conquer algorithm for perform-
ing irregular array redistribution. In this method, communication messages are first
divided into groups using Neighbor Message Set (NMS), messages have the same
sender or receiver; the communication steps will be scheduled after those NMSs are
merged according to the relationship of contention. Yook and Park [12] presented a
relocation algorithm, while their algorithm may lead to high scheduling overheads
and degrade the performance of a redistribution algorithm.

3 Preliminaries and Redistribution Communication Models

Data redistribution is a set of routines that transfer all the elements in a set of source
processor S to a set of destination processor T. The sizes of the messages are specified

 Contention-Free Communication Scheduling for Irregular Data Redistribution 103

by values of user-defined random integer for array mapping from source processor to
destination processor. Since node contention considerably influences, a processor can
only send messages to other one processor in each communication step. Use the same
rule, a processor can only receive messages from other one processor.

To simplify the presentation, notations and terminologies used in this paper are
prior defined as follows.

Definition 1 GEN_BLOCK redistribution on one dimension array A[1:N] over P
processors. The source processor is denoted as SPi, the destination processor is de-

noted as DPj, where i, j P .

Definition 2 The time of redistribution separator the time of startup is denoted as ts,
and the time of communication is denoted as tcomm.

Definition 3 To satisfy the condition of the minimum steps and the processor
sends/receives one message at each steps, some messages can not be scheduled in the
same communication step are called conflict tuple [11].

Data redistribution implements have two methods: non-blocking scheduling algo-
rithm and blocking scheduling algorithm. The non-blocking scheduling algorithm is
faster than the blocking scheduling algorithm. But need more buffer and be better
control synchronization. In this paper, we discuss on blocking scheduling algorithm.

Irregular data redistribution is unlike regular has a cyclic message passing pattern.
Every message transmission link is not overlapping. Hence, the total number of mes-
sage links N is 2 1numprocs N numprocs≤ ≤ × − , where numprocs is the num-

ber of processors. Figure 1 shows an example of redistributing two GEN_BLOCK
distributions on an array A[1:101]. The communications between source and destina-
tion processor sets are depicted in Figure 2. There are totally fifteen communication
messages, m1, m2, m3…, m15 among processors involved in the redistribution. In this
example, {m2, m3, m4} is a conflict tuple since they have common source processor
SP1; {m7, m8, m9} is also a conflict point because of the common destination proces-
sor DP4. The maximum degree in the example is equal to 3. Figure 3 shows a simple
schedule for this example

Source distribution

Source Processor
SP SP0 SP1 SP2 SP3 SP4 SP5 SP6 SP7

Size 12 20 15 14 11 9 9 11

Destination distribution

Destination Processor
DP DP0 DP1 DP2 DP3 DP4 DP5 DP6 DP7
Size 17 10 13 6 17 12 11 15

Fig. 1. An example of distributions

104 K.-M. Yu et al.

Fig. 2. The communications between source and destination processor sets

Schedule Table
Step 1 m2 m5 m9 m12 m14
Step 2 m1 m3 m6 m8 m11 m15
Step 3 m4 m7 m10 m13

Fig. 3. A simple schedule

3.1 Explicit Conflict Point and Implicit Conflict Point

The total communication time of a message passing operation using two parameters:
the startup time ts and the unit data transmission time tm. The startup time is once
for each communication event and is independent of the message size to be communi-
cated. The data transmission time is relationship of a message size, size(m). The
communication time of one communication step is the maximum of the message in
this step. The total communication time of all steps is summary of each the communi-
cation time of step. The length of these steps determines the data transmission over-
heads. The minimum step is equal to maximum degree k, when message can not put
into any step of minimum step it must relate to the processor has maximum degree
transmission links. Figure 4 shows the maximum degree of figure 1. SP1, SP2 and DP4
had maximum degree (K = 3) from messages m2~m9. Because of each one processor
can only send/receive at most one message to/from other processor in each communi-
cation step. First, we concentrate all processors which have maximum degree trans-
mission links messages. For the sake of simplicity, such messages are referred to as
“Maximum Degree Message Set” (MDMS) in the paper, as shown in figure 4. If the
messages in MDMSs can put into k steps with no conflict occur, other messages of
the processors’ degree less than maximum degree will be easier to put into the rest of
step without increasing the number of steps.

We say a message to be an explicit conflict point if it belongs to two MDMSs.
There exists at most one explicit conflict point between two MDMSs. In figure 4, m7
is a explicit conflict point since it belongs to two MDMSs {m5, m6, m7} and {m7, m8,
m9}. On the other hand, if two MDMSs do not contain the same message, but the

SP0 SP1 SP2 SP3 SP4 SP5 SP6 SP7

DP0 DP1 DP2 DP3 DP4 DP5 DP6 DP7

 m1 m3 m5 m7 m9 m11 m13 m15

 m2 m4 m6 m8 m10 m12 m14

12 5 10 5 8 6 1 14 2 9 3 6 5 4 11

 Contention-Free Communication Scheduling for Irregular Data Redistribution 105

neighbor MDMSs each has a message been sent by the same processor, or been re-
ceived by the same processor. We call this kind of message as an implicit conflict
point. As shown by figure 5, m4 and m5 are contained by the different MDMSs. DP2
only receives m4 and m5 two messages, so it can not form an MDMS. But m4 and m5
are also owned by different MDMSs. Therefore, m4 is an implicit conflict point. Al-
though, m5 is also covered by two MDMSs, but it is restricted by m4. Hence m5 will
not cause conflict. Figure 7 depicts all MDMSs for the example shown in Figure 1.

Fig. 4. Maximum Degree Messages Set

Fig. 5. Example of explicit conflict point

4 Scheduling Algorithm

The main goal of irregular array distribution is to minimize communication step as
well as the total message size of steps. We select the smallest conflict points which
will really cause conflict to loose the schedule constraint and to minimize the total
message size of schedule.

Smallest conflict points algorithm consists of four parts:

(1) Pick out MDMSs from given data redistributed problem.
(2) Find out explicit conflict point and implicit conflict point. And schedule all the

conflict point into the same schedule step.
(3) Select messages on MDMSs in non-increasing order of message size. Schedule

message into similar message size of that step and keep the relation of each processor
send/receive at most one message to/from the processor. Repeat above process until
no MDMSs’ messages left.

(4) Schedule messages do not belong to MDMSs by non-increasing order of mes-
sage size. Repeat above process until no messages left.

From Figure 1, we can pick out four MDMSs, MDMS1 = {m2, m3, m4}, MDMS2 =
{m4, m5}, MDMS3 = {m5, m6, m7} and MDMS4 = {m7, m8, m9}, shown in Figure 8.
We schedule m4 and m7 into the same step. Then schedule those messages on

m5 m6 m7 m8 m9

1 2 4 3 1

m2 m3 m4 m5 m6 m7 m8 m9

106 K.-M. Yu et al.

Fig. 6. Example of implicit conflict point

Fig. 7. All MDMSs for the example in Figure 1

Fig. 8. Results of MDMSs for Figure 1

Fig. 9. The schedule obtained form SCPA

MDMSs by non-increasing order of message size as follows: m8, m3, m5, m6, m2, m9.
After that, we can schedule the rest messages that are not belong to any MDMSs by
non-increasing order of message size as follows: m1, m15, m10, m12, m13, m14, m11.
Figure 9 shows the final schedule obtained form smallest conflict points algorithm.

5 Performance Evaluation and Analysis

To evaluate the performance of the proposed methods, we have implemented the
SCPA along with the divide-and-conquer algorithm [11]. The performance simula

S1: m8 m3 m5

S2: m6 m2 m9

S3: m4 m7

m2 m3 m4 m5 m6 m7 m8 m9

m2 m3 m4 m5 m6 m7

1 2 4 3 1 2

m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 m12 m13 m14

S1: m8 m3 m5 m1 m15 m10 m12

S2: m6 m2 m9 m13 m11

S3: m4 m7 m14

 Contention-Free Communication Scheduling for Irregular Data Redistribution 107

tion is discussed in two classes, even GEN_BLOCK and uneven GEN_BLOCK dis-
tributions. In even GEN_BLOCK distribution, each processor owns similar size of
data. Contrast to even distribution, few processors might be allocated grand volume of
data in uneven distribution. Since array elements could be centralized to some specific
processors, it is also possible for those processors to have the maximum degree of
communications.

The simulation program generates a set of random integer number as the size of
message. To correctly evaluate the performance of these two algorithms, both pro-
grams were written in the single program multiple data (SPMD) programming para-
digm with MPI code and executed on an SMP/Linux cluster consisted of 24 SMP
nodes. In the figures, “SCPA Better” represents the percentage of the number of

(a)

(b)

Fig. 10. The events percentage of computing time is plotted (a) with different number of proc-
essors and (b) with different of total messages size in 8 processors, on uneven data set

108 K.-M. Yu et al.

events that the SCPA has lower total steps of messages size than the divide-and-
conquer algorithm (DCA), while “DCA Better” gives the reverse situation. In the
uneven distribution, the size of message’s up-bound is set to (totalsize/numprocs)*1.5
and low-bound is set to (totalsize/numprocs)*0.3, where totalsize is total size of mes-
sages and numprocs is the size of processor. In the even distribution, the size of mes-
sage’s up-bound is set to (totalsize/numprocs)*1.3 and low-bound is set to low-bound
is (totalsize/numprocs)*0.7. The total messages size is 1M.

Figure 10 shows the simulation results of both the SCPA and the DCA with differ-
ent number of processors and total message size. We can observe that SCPA has bet-
ter performance on uneven data redistribution compared with DCA.

Since the data is concentrated in the even case, from figure 11, we can observe that
SCPA have the better performance compared with uneven case. Figure 11 also

(a)

(b)

Fig. 11. The events percentage of computing time is plotted (a) with different number of proc-
essors and (b) with different of total messages size in 8 processors, on even data set

 Contention-Free Communication Scheduling for Irregular Data Redistribution 109

illustrates that SCPA has at least 85% supreme than DCA in any size of total mes-
sages and any number of processors In both even and uneven case, SCPA performs
slightly better than DCA.

6 Conclusion

In this paper, we have presented an efficient scheduling algorithm, smallest conflict
points algorithm (SCPA), for irregular data distribution. The algorithm can effectively
reduce communication time in the process of data redistribution. Smallest-conflict-
points algorithm is not only an optimal algorithm in the term of minimal number of
steps, but also a near optimal algorithm satisfied the condition of minimal message
size of total steps. Effectiveness of the proposed methods not only avoids node con-
tention but also shortens the overall communication length.

For verifying the performance of our proposed algorithm, we have implemented
SCPA as well as the divide-and-conquer redistribution algorithm. The experimental
results show improvement of communication costs and high practicability on different
processor hierarchy. Also, the experimental results indicate that both of them have
good performance on GEN_BLOCK redistribution. But also both have advantages
and disadvantages. In many situations, SCPA has better than the divide-and-conquer
redistribution algorithm.

References

1. Minyi Guo, “Communication Generation for Irregular Codes,” The Journal of
Supercomputing, vol. 25, no. 3, pp. 199-214, 2003.

2. Minyi Guo, I. Nakata and Y. Yamashita, “Contention-Free Communication Scheduling for
Array Redistribution,” Parallel Computing, vol. 26, no.8, pp. 1325-1343, 2000.

3. Minyi Guo, I. Nakata and Y. Yamashita, “An Efficient Data Distribution Technique for
Distributed Memory Parallel Computers,” JSPP'97, pp.189-196, 1997.

4. Minyi Guo, Yi Pan and Zhen Liu, “Symbolic Communication Set Generation for Irregular
Parallel Applications,” The Journal of Supercomputing, vol. 25, pp. 199-214, 2003.

5. S. Lee, H. Yook, M. Koo and M. Park, “Processor reordering algorithms toward efficient
GEN_BLOCK redistribution,” Proceedings of the ACM symposium on Applied comput-
ing, pp. 539-543, 2001.

6. Ching-Hsien Hsu, Kun-Ming Yu, Chi-Hsiu Chen, Chang Wu Yu, and Chiu Kuo Liang,
"Optimal Processor Replacement for Efficient Communication of Runtime Data Redistri-
bution," Lecture Notes in Computer Science (ISPA’04), Vol. 3358, pp. 268-273, Dec.
2004.

7. C.-H Hsu, Dong-Lin Yang, Yeh-Ching Chung and Chyi-Ren Dow, “A Generalized Proc-
essor Mapping Technique for Array Redistribution,” IEEE Transactions on Parallel and
Distributed Systems, vol. 12, vol. 7, pp. 743-757, July 2001.

8. S. Ramaswamy, B. Simons, and P. Banerjee, “Optimization for Efficient Data redistribu-
tion on Distributed Memory Multicomputers,” Journal of Parallel and Distributed Comput-
ing, vol. 38, pp. 217-228, 1996.

110 K.-M. Yu et al.

9. Akiyoshi Wakatani and Michael Wolfe, “Optimization of Data redistribution for Distrib-
uted Memory Multicomputers,” short communication, Parallel Computing, vol. 21, no. 9,
pp. 1485-1490, September 1995.

10. Hui Wang, Minyi Guo and Wenxi Chen, “An Efficient Algorithm for Irregular Redistribu-
tion in Parallelizing Compilers,” Proceedings of 2003 International Symposium on Parallel
and Distributed Processing with Applications, LNCS 2745, 2003.

11. Hui Wang, Minyi Guo and Daming Wei, "Divide-and-conquer Algorithm for Irregular
Redistributions in Parallelizing Compilers”, The Journal of Supercomputing, vol. 29, no.
2, pp. 157-170, 2004.

12. H.-G. Yook and Myung-Soon Park, “Scheduling GEN_BLOCK Array Redistribution,”
Proceedings of the IASTED International Conference Parallel and Distributed Computing
and Systems, November, 1999.

J. Cao, W. Nejdl, and M. Xu (Eds.): APPT 2005, LNCS 3756, pp. 111 – 120, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Experiments on Asynchronous Partial
Gauss-Seidel Method

Hiroshi Nishida and Hairong Kuang

Computer Science Department, California State Polytechnic University,
Pomona, 3801 West Temple Avenue, CA 91768, USA

{hnishida,hkuang}@csupomona.edu

Abstract. This paper presents design and experimental results of a parallel linear
equation solver by asynchronous partial Gauss-Seidel method. The basic idea of
this method is derived from the asynchronous iterative method; newly computed
values of unknowns are broadcast to all other processors and are incorporated into
computing the next value immediately after they are received. However, since the
asynchronous iterative method requires frequent data passing, it is difficult to
achieve high performance on practical cluster computing systems due to its
enormous communication overhead. To avoid it, the asynchronous partial Gauss-
Seidel method reduces frequency of broadcasting new values of unknowns by
passing multiple values in a chunk. The experimental results show the advantage
of the asynchronous partial Gauss-Seidel method.

1 Introduction

The most representative sequential algorithms for solving systems of linear equations are
the Jacobi method and the Gauss-Seidel method, while the parallel Jacobi method and the
asynchronous iterative method are the parallel algorithms cited most frequently [1, 2, 3].

The sequential Gauss-Seidel method generally converges in less number of
iterations than the sequential Jacobi method by incorporating newly computed values
of unknowns into the computation of the next value of the unknown. However, the
Gauss-Seidel method cannot be parallelized because of its nature of dependency. On
the other hand, the Jacobi method is easily parallelizable; partitioning the input matrix
into blocks so that one processor is responsible for computing one of the blocks, and
exchanging the values of unknowns at the end of each iteration. Although the design
of the parallel Jacobi method is simple, it requires barrier synchronization at the end
of each iteration, which causes a significant degradation of performance. The
asynchronous iterative method, which is based on chaotic relaxation introduced by
Chazan and Miranker in 1969, was proposed by Baudet in 1978 [1, 2]. It performs
fast parallel computation by using older data received earlier in time and by removing
the barrier of synchronization inherent in the parallel Jacobi method. One of sub-
methods of the asynchronous iterative method which passes newly computed values
of unknowns one by one is called the purely asynchronous method [2]. Baudet's
experimental results show that the purely asynchronous iterative method converges in
fewer iterations than the parallel Jacobi method [2]. However, as far as the elapsed

112 H. Nishida and H. Kuang

time is concerned, it could be disadvantageous on practical cluster computing systems
due to its huge communication overhead.

In this paper, we introduce the asynchronous partial Gauss-Seidel method which
passes multiple values of unknowns in a chunk and reduces communication overhead.
The most important parameters which decide its performance are frequency of data
sending and frequency of data receiving. Reduction of the frequency of data sending
and the frequency of data receiving decreases communication overhead. However it
may increase the number of iterations to converge solving systems of linear equations,
since the algorithm becomes closer to that of asynchronous Gauss-Seidel's method [2].

In section 2, we explain the detail of the asynchronous partial Gauss-Seidel
method. Section 3 presents and analyzes experimental results. A summary and a
discussion of future work are described in section 4.

2 Asynchronous Partial Gauss-Seidel Method

2.1 Basic Concept

A system of linear equations with vector of unknown x whose size is n can be
represented in a matrix form as follows:

Ax = b
where A is an n by n matrix, and x and b are vectors with n elements.

The asynchronous iterative method is a parallel method for solving sparse systems
of linear equations. The simplest way of allocating tasks to processors is partitioning
A and b equally by rows, as well as the parallel Jacobi method. Each processor is
responsible for solving a portion of unknown x. When p processors exist, the matrix A
and the vector b are divided into p tasks, each of which consists of n/p rows of A and
b. Each processor is allocated one of the tasks and is in charge of computing x within
the range of the given task. For example, processor k computes xnk/p, …, xn(k+1)/p-1, by
using the partition k of matrix A consisting of rows nk/p, …, n(k+1)/p and the
partition k of b consisting of elements bnk/p, …, bn(k+1)/p-1.

Baudet classifies the asynchronous iterative method into three different sub-
methods - asynchronous Jacobi's method, asynchronous Gauss-Seidel's method and
purely asynchronous method - according to timing of exchanging new values of
unknowns, or choice of the values [2]. The purely asynchronous method releases
each new value immediately after its computation, while the asynchronous Jacobi's
method and the asynchronous Gauss-Seidel's method exchange new values only at the
end of each iteration. The only difference between the asynchronous Jacobi's method
and the asynchronous Gauss-Seidel's method is the choice of the values of unknowns
within each iteration. The asynchronous Gauss-Seidel's method uses new values of
unknowns in its subset as soon as they are computed for further computation in the
same iteration, while the asynchronous Jacobi's method uses only values of unknowns
known at the beginning of an iteration.

Baudet's experimental results show that the purely asynchronous method converges
in less iterations than the asynchronous Jacobi's method and the asynchronous Gauss-
Seidel's method [2]. The results also show that the asynchronous Gauss-Seidel's
method increases the number of iterations with the increase of processors.

 Experiments on Asynchronous Partial Gauss-Seidel Method 113

A drawback of the purely asynchronous method is that the communication
overhead by exchanging new values one by one is huge on practical cluster
computing systems. As shown by experimental results in section 3, it is obviously
difficult to achieve desirable performance on modern cluster computing systems.

The asynchronous partial Gauss-Seidel method, introduced in this paper, lessens
the frequency of data passing and improves the drawback of the purely asynchronous
method. It sends multiple new values of unknowns in a chunk and reduces the
communication overhead. The choice of the values of unknowns used in the
computation is the same as that of the purely asynchronous method; the most recent
and available values are used. However, the asynchronous partial Gauss-Seidel
method differs in the timing of releasing new values. It releases the new values right
after the number of unsent values reaches a certain fixed number. For instance,
suppose we define the number of values of unknowns passed in a chunk as 50. Each
processor computes 50 new values of unknowns using available values including the
most recent values computed on the processor. After the computation of the 50 new
values, the processor broadcasts them simultaneously to all other processors. Chunks
of new values from other processors are received asynchronously. As soon as the
values are received, each processor incorporates them into its buffered x and makes
them available to the next computation.

The most important parameter in the asynchronous partial Gauss-Seidel method is
the frequency of sending new values of unknowns. A decrease in the frequency of
data sending reduces communication overhead. However, at the same time, it may
cause an increase in the number of iterations to converge. In Baudet's experiments, the
asynchronous Gauss-Seidel's method increases the number of iterations to converge
with the increase of processors [2]. The asynchronous partial Gauss-Seidel method
becomes closer to the asynchronous Gauss-Seidel's method with decrease in
frequency of data passing; the same phenomenon may occur in the case of
asynchronous partial Gauss-Seidel method. Hence the tradeoff between the reduction
of communication and the increase of iterations becomes a significant issue of this
method. In section 3, we discuss it with the practical experimental results.

Another important parameter is the frequency of receiving new values from other
processors. In order to avoid blocking at receiving new values, our programs
periodically check whether new packets from other processors arrive and are stored in
the operating system's buffer. A processor calls select() system call on UNIX or
equivalent system calls on other operating systems at each time it checks network data
buffered in the operating system. Calling a system call and waiting for its return requires
a certain period of time. Therefore, frequent receiving, or checking new values from
other processors causes the increase of runtime overhead. However, by the immediate
incorporation of new values into the processors' buffered x, the asynchronous partial
Gauss-Seidel method may finish its computation faster because the new values can be
used to evaluate the next value in earlier time. It is not easy to guess the relationship
between the frequency of data receiving and the practical speedup. In section 3, we
show the experimental results with different frequencies of data receiving.

2.2 Design and Implementation

The basic algorithm to compute new values of unknowns is the same as those of the
other asynchronous sub-methods and is expressed as follows:

114 H. Nishida and H. Kuang

The three asynchronous sub-methods - the asynchronous Jacobi's method, the
asynchronous Gauss-Seidel's method and the purely asynchronous method - only differ by
the choices of the values used in computation. The asynchronous partial Gauss-Seidel
method always uses available x to compute a new value, as well as the purely asynchronous
method. The difference between the purely asynchronous method and the asynchronous
Gauss-Seidel method is the frequency of exchanging new values of unknowns.

Suppose we have 24 unknowns: x0, x1, x2, ..., x23. And suppose 2 processors P0, P1
are used for solving the system of linear equations, each of which is in charge of
computing 12 unknowns; P0 computes {x0, ..., x11}, P1 computes {x12, ..., x23}
respectively. In the purely asynchronous method, each new value of x is broadcast
immediately after its computation. In the asynchronous practical Gauss-Seidel
method, multiple values of x are broadcast in a chunk. For example, suppose 4 values
of unknowns xk, xk+1, xk+2, xk+3 are broadcast together, they are bundled into a chunk
and are broadcast after the computation of these 4 values. Another parameter we must
define is the frequency of data receiving. Here we assume that the new values are
received after every computation of 4 values. The execution and data exchange of this
model is expressed in Figure 1 and 2.

Figure 1 shows a sequence of computation and data exchanges. On processor 0, after
computing x0 through x3, the new values are broadcast to other processors – in this case
they are sent only to processor 1. Afterwards processor 0 checks the values of unknowns

Fig. 1. Execution of the asynchronous partial Gauss-Seidel method 1

Fig. 2. Execution of the asynchronous partial Gauss-Seidel method 2. Shaded areas represent
time spent for communication consisting of broadcasting and receiving x.

Processor 0
Computing

x0

Computing
x1

Computing
x2

Computing
x3

Broadcast-
ing

x0 - x3

Receiv-
ing
x

Computing
x4

Computing
x5

Processor 1
Computing

x12

Computing
x13

Computing
x14

Computing
x15

Broadcast-
ing

x12 - x15

Receiv-
ing
x

Computing
x16

Computing
x17

1st iteration 2nd iteration

Processor 0 Computing
x0 - x3

Computing
x4 - x7

Computing
x8 - x11

Computing
x0 - x3

Computing
x4 - x7

Computing
x8 - x11

Processor 1 Computing
x12 - x15

Computing
x16 - x19

Computing
x20 - x23

Computing
x12 - x15

Computing
x16 - x19

Computing
x20 - x23

 Experiments on Asynchronous Partial Gauss-Seidel Method 115

sent from other processors. If any values are stored in the operating system's buffer,
processor 0 incorporates them into its x buffer. Figure 2 illustrates a phase of iterations.

As described in 2.1, there are two important parameters in the asynchronous partial
Gauss-Seidel method: the frequency of data sending and the frequency of data
receiving. In the example described above, we define that after every computation of
4 values, the new values are broadcast and, at the same time, values from other
processors are checked. Figure 3 shows another model in which values from other
processors are checked after every computation of 2 values.

Fig. 3. Execution of the asynchronous partial Gauss-Seidel method with a different data
receiving frequency

If new values are broadcast and checked at the same time one by one, this performs
the same algorithm as the purely asynchronous method. And if new values are
broadcast at the end of each iteration and values from other processors are checked
after every computation of each value, then it becomes the asynchronous Gauss-
Seidel's method. If only one processor is used, the algorithms of the purely
asynchronous method and the asynchronous partial Gauss-Seidel method equal that of
the sequential Gauss-Seidel method.

2.3 Convergence Detection

One of the biggest issues in the asynchronous iterative method is a methodology of con-
vergence detection. Chaotic relaxation [1] states the convergence conditions as follows;

there must be a fixed positive integer s such that, in carrying out the
evaluation of the ith iterate, a process cannot make use of any value of
the components of the jth iterate if j – s [2, 3].

Though we feel the necessity of further research on the convergence detection
methodology, we use a simple detection technique in our experiments. First, while
computing new values of unknowns, processors compute a difference between a new
value and an old value of each unknown. If the difference is within a given error
tolerance, the processors set their convergence flags true, otherwise they are set false.
These flags are cleared at the beginning of each iteration. Processor 0 collects the
values of these flags from all processors, and it terminates the computation if all flags
are true. Theoretically, it is ideal to detect convergence using time stamps or
periodical synchronization. However, we focus only on practical usage of the
asynchronous iterative method, and we assume the conditions in which the
asynchronous iterative method is used as follows;

Numbers of unknowns in systems of linear equations are large enough,
and time spent for data transmission among processors is much shorter
than time spent for an iteration of computation. In other words, no values
older than the previous iteration are used for evaluation on any processor.

Processor 0
Computing

x01

Computing
x1

Receiv-
ing
x

Computing
x2

Computing
x3

Broadcast-
ing

x0 - x3

Receiv-
ing
x

Computing
x4

116 H. Nishida and H. Kuang

Our experiments show that in our system, delivering a new value of an unknown
takes approximately the same time spent for computing 30 values of unknowns. This
can be considered small enough compared to the time taken for an iteration of
computation in big systems of linear equations.

3 Experimental Results

3.1 Experiments

The experiments have been carried out on 8 machines with 34 different systems of
linear equations. Each measurement is repeated 10 times. The following 11
algorithms have been used in the experiments: the asynchronous partial Gauss-Seidel
method with 9 different combinations of data sending-receiving frequencies, the
purely asynchronous method and the parallel Jacobi method.

The specification of a machine is as follows:

Model: Sun Blade 2500, CPU: Ultra SPARC IIIi 1.6GHz,
LAN: 100Mbps, Memory: 2GB, OS: Solaris 9

Input matrices A and vectors b are generated by a random generator with different
random seeds [8]. The approximate density of a matrix A is 38%. The generated matrices
are compressed into a zeros skipped format. The compression rate is approximately 40%.
This compression technique helps reduce not only initial task assignment time but also
computation time. The input matrices A and vectors b are equally partitioned and are
statically assigned to all machines. The size of unknowns is 3360.

The 9 combinations of data sending-receiving frequencies in the asynchronous
Gauss-Seidel method are as follows:

Table 1. Frequencies of data sending and receiving

Frequency of
sending

Frequency of
receiving

10 1

10 5

10 10

50 10

50 25

50 50

100 10

 100 50

100 100

 Experiments on Asynchronous Partial Gauss-Seidel Method 117

A combination of the frequency of sending '50' and the frequency of receiving '25'
means that after every computation of 50 values, the new 50 values are broadcast and
values from other machines are checked after every computation of 25 values. This is
expressed as “APGS 50-25” in 3.2.

Table 2 (a). Elapsed time compared to the parallel Jacobi method (%)

of
proc.

PA APGS
10-1

APGS
10-5

APGS
10-10

APGS
50-10

APGS
50-25

APGS
50-50

APGS
100-10

APGS
100-50

APGS
100-
100

1 60.1 60.3 60.1 60.3 60.4 60.3 60.4 60.2 60.1 60.2

2 63.4 55.1 51.1 53.2 49.5 49.1 54.1 52.4 53.4 54.3

3 65.1 64.4 54.2 58.4 52.2 52.5 52.2 60.6 64.1 59.4

4 79.2 55.1 52.5 54.3 61.9 57.9 61.1 56.7 57.8 67.0

5 83.1 62.4 58.4 57.6 62.2 61.4 59.4 64.2 61.0 63.3

6 97.2 59.1 58.3 58.1 56.6 59.9 59.2 63.0 63.8 66.3

7 100.9 65.7 60.3 61.9 58.7 59.3 63.1 62.0 65.8 69.7

8 111.2 62.3 58.6 62.5 61.2 61.9 64.0 62.9 65.4 73.0

Table 2 (b). Number of iterations compared to the parallel Jacobi method (%)

of
proc.

PA APGS
10-1

APGS
10-5

APGS
10-10

APGS
50-10

APGS
50-25

APGS
50-50

APGS
100-10

APGS
100-50

APGS
100-
100

1 59.5 59.5 59.5 59.5 59.5 59.5 59.5 59.5 59.5 59.5

2 52.2 52.5 49.0 51.0 48.0 47.7 52.9 51.5 52.5 53.5

3 45.9 59.6 50.4 54.5 49.4 49.9 49.7 59.3 63.0 58.0

4 50.0 48.3 46.9 48.6 58.9 55.0 58.4 54.3 55.4 65.4

5 46.7 54.0 51.3 50.2 58.5 58.0 56.0 61.9 58.5 61.2

6 48.5 49.1 50.0 49.9 51.6 55.4 55.0 60.0 61.1 64.3

7 46.2 53.9 50.6 52.1 53.4 54.3 57.6 58.6 63.1 68.0

8 46.7 48.9 47.4 51.5 55.5 56.8 58.9 59.1 62.2 71.7

118 H. Nishida and H. Kuang

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 1 2 3 4 5 6 7 8

El
ap

se
d

tim
e

(m
s)

of processors

[Elapsed time] (N = 3360)

Jacobi
PA

APGS 10-1
APGS 10-5

APGS 10-10
APGS 50-10
APGS 50-25
APGS 50-50

APGS 100-10
APGS 100-50

APGS 100-100

(a)

 0

 50

 100

 150

 200

 250

 300

 1 2 3 4 5 6 7 8

of

 it
er

at
io

ns
of processors

[# of iteraions] (N = 3360)

Jacobi
PA

APGS 10-1
APGS 10-5

APGS 10-10
APGS 50-10
APGS 50-25
APGS 50-50

APGS 100-10
APGS 100-50

APGS 100-100

(b)

Fig. 4. A sample experimental result 1

(a) (b)

Fig. 5. A sample experimental result 2

3.2 Results

The parallel Jacobi method converges with 26 systems of linear equations out of 34
systems. On the other hand, the purely asynchronous method and all the asynchronous
partial Gauss-Seidel methods converge with 32 systems. The sequential Gauss-Seidel
method converges with all the systems.

The comparisons on the elapsed time and the number of iterations between the
parallel Jacobi method and other methods are shown in Table 2. The results are
calculated using 26 systems with which the parallel Jacobi method converges. PA
stands for the purely asynchronous method. APGS represents the asynchronous partial

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 1 2 3 4 5 6 7 8

El
ap

se
d

tim
e

(m
s)

of processors

[Elapsed time] (N = 3360)

Jacobi
PA

APGS 10-1
APGS 10-5

APGS 10-10
APGS 50-10
APGS 50-25
APGS 50-50

APGS 100-10
APGS 100-50

APGS 100-100

 0

 20

 40

 60

 80

 100

 120

 1 2 3 4 5 6 7 8

of

 it
er

at
io

ns

of processors

[# of iteraions] (N = 3360)

Jacobi
PA

APGS 10-1
APGS 10-5

APGS 10-10
APGS 50-10
APGS 50-25
APGS 50-50

APGS 100-10
APGS 100-50

APGS 100-100

 Experiments on Asynchronous Partial Gauss-Seidel Method 119

Gauss-Seidel method and the following numbers mean the combinations of data
sending-receiving frequencies (see 3.1).

Table 2 (a) shows the average ratios of the elapsed time taken by the PA method or
the APGS methods to the elapsed time taken by the parallel Jacobi method with the
same number of processors. The measured elapsed time includes the time spent for
network communication: the initial task assignment and exchanges of values of
unknowns. In all algorithms, the APGS 10-5 method constantly records short elapsed
time. On the whole, the elapsed time taken by the APGS 10-5 method is 40-50%
shorter than the elapsed time taken by the parallel Jacobi method. The other APGS
methods also show fairly good results. The APGS 100-100 method, whose results are
probably the worst in the APGS methods', still result in being 28-46% faster than the
parallel Jacobi method. On the other hand, the purely asynchronous method performs
slow computation in this experiment. It becomes less efficient with the increase of
processors. With more than 6 processors, the purely asynchronous method becomes
slower than the parallel Jacobi method. As a while, the APGS methods tend to
become slower with the decrease of the data sending-receiving frequencies. Table 2
(b) shows the average ratios of the number of iterations. Obviously, both the decrease
of the frequency of data sending and the decrease of the frequency of data receiving
cause the increase of the number of iterations. The exception is the APGS 10-1
method. In most cases, the APGS 10-1 method takes more iterations than the APGS
10-5 method. Further investigation on this phenomenon is needed.

Sample experimental results are shown in Figure 4 and Figure 5. The horizontal
axes in the figures represent the number of processors (machines). The vertical axes
in Figure 4 (a) and Figure 5 (a) represent the elapsed time. The vertical axes in Figure
4 (b) and Figure 5 (b) represent the number of iterations.

4 Conclusions and Future Work

In the practical usage of parallel iterative algorithms for solving systems of linear
equations, the reduction of the communication overhead and the reduction of the
number of iterations are the most important factors which decide the computation
speed. In this paper, we describe the design and experimental results of the
asynchronous partial Gauss-Seidel method, which requires less communication
overhead than the purely asynchronous method and, at the same time, requires less
iterations than the parallel Jacobi method. The experimental results show the
advantage of the asynchronous partial Gauss-Seidel method. However, the
asynchronous partial Gauss-Seidel method has a disadvantage that finding the best
combination of the data sending-receiving frequencies is difficult. Further research is
needed on this issue.

In our experiments, we use the broadcast to send values of unknowns. It will be
interesting to try other message passing methods in order to reduce more
communication overhead. Also, our experiments are limited to the computation on
small cluster computing systems. Examination on bigger cluster computing systems is
needed.

120 H. Nishida and H. Kuang

References

1. D. Chazan and W. Miranker, Chaotic Relaxation. Linear Algebra and its Applications, Vol
2, pp. 199-222, 1969.

2. G. M. Baudet, Asynchronous Iterative Methods for Multiprocessors, Journal of the
Association for Computing Machinery, Vol 25, No 2, pp 226-244, 1978

3. B. Wilkinson and M. Allen, PARALLEL PROGRAMMING, Techniques and Applications
Using Networked Workstations and Parallel Computers, Second Edition, Ch. 6 and Ch.11,
2004

4. K. Blathras, D. B. Szyld and Y. Shi, Timing Models and Local Stopping Criteria for
Asynchronous Iterative Algorithms, Journal of Parallel and Distributed Computing, vol. 58,
pages 446-465, 1999.

5. E. J. Lu, M. G. Hilgers and B. McMillin, Asynchronous Parallel Schemes: A Survey,
Technical Report, Computer Science Department, University of Missouri - Rolla, 1993

6. J. C. Strikwerda, A Convergence Theorem for Chaotic Asynchronous Relaxation, Linear
Algorithms and Applications, 253 (1997) pp.15-24.

7. P. Christen, A parallel iterative linear system solver with dynamic load balancing,
Proceedings of the 12th international conference on Supercomputing, Melbourne, Australia,
pages: 7 – 12, 1998

8. M. Matsumoto and T. Nishimura, Mersenne Twister: A 623-dimensionally equidistributed
uniform pseudorandom number generator, in ACM Transactions on Modeling and
Computer Simulation (TOMACS), Special issue on uniform random number generation,
Volume 8 , Issue 1 pages 3-30, January 1998

J. Cao, W. Nejdl, and M. Xu (Eds.): APPT 2005, LNCS 3756, pp. 121 – 130, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Improved Program Dependence Graph and Algorithm
for Static Slicing Concurrent Programs

Jianyu Xiao1,2, Deyun Zhang1, Haiquan Chen1, and Hao Dong1

1 School of Electronics and Information Engineering, Xi’an Jiaotong University,
Xi’an 710049, China

{Xjy, dzhang, chq, dongh}@xanet.edu.cn
2 Department of Computer Science, Shaoyang University, Shaoyang 422000, China

Abstract. Based on the comparison among existing slicing algorithms and
analysis of the fact that Krinke’s algorithm [9] produces imprecise program
slice for the program structure which has loops nested with one or more
threads, a conclusion is drawn that the reason for the impreciseness is that
Krinke’s data structure—threaded program dependence graph—had over
coarse definitions of data dependence relations between threads, and the con-
straint put on the execution path in concurrent program is unduly loose. An
improved threaded program dependence graph is proposed which adds a new
dependence relation of loop-carried data dependence crossing thread bounda-
ries. An improved slicing algorithm is also proposed which introduces a new
concept of regioned execution witness to further constrain the execution path.
The pseudo code of the algorithm adding loop-carried data dependence rela-
tions crossing thread boundaries is given. The pseudo code of the new slicing
algorithm is also given whose complexity has been analyzed. Examples show
that the improved slicing algorithm designed on the improved data structure
can restrain the impreciseness of Krinke’s.

1 Introduction

Program slicing is based on the deletion of statements that preserve the original be-
havior of the program with respect to a slicing criterion which is a pair ,p x< > , where
p is a program point and x is a program variable. Program slicing is the important

basis of static analysis of programs and is extensively used in program understanding
and software maintenance [1]. Program slicing includes static slicing and dynamic
slicing [1]. Static slicing technique for sequential program has been mature with over
20 years’ development and the mainstream method is based on graphic reachability
algorithm with program dependence graph (PDG) as program’s internal representa-
tion data structure. PDG is constructed based on Control Flow Graph (CFG) with
control flow edges deleted and data dependence and control dependence edges added.
Data dependence includes flow dependence and def-order dependence, and flow de-
pendence includes loop independent dependence and loop-carried dependence. Ac-
cording to [4], these dependence relations are adequate to express relations between
statements of sequential program.

122 J. Xiao et al.

Concurrent program slicing now attracts more and more attention as concurrent
systems were increasingly adopted. The execution order of statements in concurrent
program is undetermined and dependence relations between statements include choice
dependence, synchronization dependence, communication dependence and interfer-
ence dependence etc. besides the conventional control and data dependence. So, static
slicing concurrent program is very complex, and the conventional slicing algorithm of
sequential program cannot be adopted which is based on the assumption that the exe-
cution order of statements is determined. The first method for static slicing concurrent
program was proposed by Cheng [6], which was followed by Zhao [7] and Chen [8].
The principle of their method was to construct an extended PDG data structure as
concurrent program’s internal representation (such as Cheng’s Process Dependence
Net [6], Zhao’s Multi-threaded Dependence Graph [7] and Chen’s Concurrent Pro-
gram Dependence Graph [8]) and use the graphic reachability algorithm. The problem
of this method is that many dependence relations of concurrent program have no na-
ture of transitivity that is the precondition of graphic reachability algorithm. The af-
tereffect of the problem is impreciseness of program slice. Krinke [9][10] pointed out
Cheng’s problem and proposed a new static slicing algorithm to solve it which was
based on a new data structure –threaded program dependence graph (tPDG) and a
new concept –threaded execution witness to constrain the execution path of program.
However, we find that Krinke’s algorithm cannot properly handle the data depend-
ence in program structure with one or more threads nested in a loop and will produce
imprecise program slice also. We conclude that the reason for the impreciseness is
that tPDG has over coarse definitions of data dependence between statements and the
slicing algorithm puts unduly loose constraint on the execution path in concurrent
program.

This article is an extension of Krinke’s work which proposes a new strategy of
static slicing concurrent program with improvement of program’s internal representa-
tion data structure and slicing algorithm. The improvement of data structure is to add
a new dependence of loop-carried data dependence crossing thread’s boundary. The
improvement of slicing algorithm is to introduce a new concept of regioned execution
witness to further constrain the execution path in concurrent program. Examples
shows that the improved slicing algorithm designed on the improved program de-
pendence graph can restrain the impreciseness of Krinke’s. Definitions of terms re-
lated to program slicing are given in section 2. Impreciseness of Krinke’s algorithm is
analyzed in section 3. In section 4, the strategy of improvement of data structure and
slicing algorithm are described with examples being analyzed to show its effective-
ness; the construction algorithm of the improved data structure is given with emphasis
on the addition of loop-carried data dependence crossing thread’s boundary; the
pseudo code of the improved slicing algorithm is given and its complexity is ana-
lyzed. In section 5, we give an ending remark and a direction of further study.

2 Terms Related to Static Slicing Concurrent Programs

In this section, terms related to static slicing concurrent program will be formally
defined for easy description of the proposed data structure and slicing algorithm.

{ , ,..., }0 1 nΘ= θ θ θ is assumed to be a set of threads in program with 0θ being the main

 Improved PDG and Algorithm for Static Slicing Concurrent Programs 123

thread. Function ()pθ is assumed to return identity of the innermost thread including
statement p . Function)para i j(θ ,θ is defined as {true, if iθ and jθ may execute

concurrently | false, else}.

Def.1. Execution witness: A node sequence ,...,1n nk< > is said to be an execution

witness on CFG G iff 1ni+ is reachable from ni (written * (1)1n n i ki i→ ≤ <+).

Def.2. Threaded Control Flow Graph (tCFG): tCFG , , , , ,N E s e cobegin coend< > is an
extension of CFG, where ,cobegin coend N∈ represent cobegin and coend statements
separately.

Def.3. Threaded execution witness: A sequence of nodes ,...,1l n nk=< > is a threaded

execution witness on tCFG iff
*,1

1: | ,..., :1 1
cf pfj

t il m m m mt j i i
− ⎯⎯⎯⎯→=∀ =< > ∀∈Θ + , where |l t

is a sub-sequence satisfying ()m tiθ = (1 i j≤ ≤);
*cf⎯⎯⎯→ says reachable through sequen-

tial control flow edges and
*pf⎯⎯→ says reachable through concurrent control flow

edges.

Def.4. Program Dependence Graph (PDG): PDG is a variant of CFG with two kinds
of edges—control dependence and data dependence added.

Def.5. Loop-carried dependence: In PDG G, node j is said to be loop-carried de-

pendent on node i (written ()lc Li j⎯⎯⎯→) if: i is data dependent on j , (i.e.
ddi j⎯⎯→); i , j are nested in loop L ; in the corresponding CFG, there

exists a execution path P from i to j which includes a back edge pointing to L ’s

condition predicate.

Def.6. Interference Dependence (id): In PDG G, node j is said to be interference

dependent on node i (written idi j⎯⎯→) if: () ()i jθ ≠ θ and ()iθ may exe-

cute concurrently with ()jθ ; there exists a variable v satisfying

() ()v def i v ref j∈ ∧ ∈ .

Def.7. Threaded Program Dependence Graph (tPDG)[9] is an extension of tCFG with
control dependence, data dependence and interference dependence edges added.

3 Analysis of Krinke’s Slicing Algorithm

3.1 Principle of Krinke’s Algorithm

Krinke’s method is based on the data structure tPDG. Its principle is: In tPDG G,
node p is assumed to be the slicing criterion, ()S pθ is assumed to be the program

slice with respect to p ,

124 J. Xiao et al.

1 1() { | ,..., , ... , { , , }1 1 1
d dkS p q P n n q n n p d cd dd idk k i k

−= =< > = ⎯⎯→ ⎯⎯⎯⎯→ = ∈θ ≤ < (1)

where P is a threaded execution witness.}

3.2 The Fact of Krinke’s Impreciseness

We found that Krinke’s algorithm produced imprecise program slice for the program
structure which has loops nested with one or more threads. The tCFG showed in fig.1
(a) has a loop nested with two threads. 2S is assumed to be slicing criterion. Accord-

ing to Krinke’s algorithm, , ,4 6 2S S S< > is a valid threaded execution witness on tCFG

as 4S can reach 2S through loop predicate 0S . As shown in the figure, there exists

4 6
id

S S⎯⎯⎯→ and 6 2
id

S S⎯⎯⎯→ , so 4S should be included in the program slice ()2S Sθ

according to Krinke’s algorithm. But in fact, in program’s behavior, if 4S reaches 2S

through 0S , then the definition to e by 4S should have been redefined by 5S and

the definition to d by 6S is redefined by 1S . This means that 4S ’s definition to e

would not affect c or d in 2S and 4S should not be in ()2S Sθ . 8S is just the same

as 4S . That is to say, the program slice computed by Krinke’s algorithm includes

unrelated statements.

Fig. 1. The concurrent program structure which has loops nested with threads

Control flow

Interference dependence

START 0θ

S0: repeat

cobegin

START 1θ START 2θ

S1: d=x+1

S2: c=d+1

S3: f=x+1

S4: e=f+1

S5: e=x+1

S6: d=e+1

S7: g=x+1

S8: f=g+1

coend

S9: until()

(a)

START 0θ

S0: repeat

cobegin

START 1θ START 2θ

S1: c=d+1

S2: e=f+1

S3: d=e+1

S4: f=g+1

coend

S5: until()

(b)

 Improved PDG and Algorithm for Static Slicing Concurrent Programs 125

3.3 The Reason for Krinke’s Impreciseness

We conclude that Krinke’s impreciseness stems from the fact that its algorithm im-
properly handles the loop-carried data dependence relation crossing thread’s bound-
ary. Krinke didn’t realize that during the execution path constructed the loop-carried
dependence, the included loop back edge’s execution meant the old s-instance of the
thread has finished and the new created instance’s execution has overlaid some state-
ments’ behavior of the old instance. So, the data dependence relation in the old in-
stance of thread should be re-computed. But Krinke still used the invalid data depend-
ence which produced impreciseness.

4 The Strategy of Improved Data Structure and Slicing Algorithm

4.1 The Improvement of Data Structure

Based on Krinke’s tPDG, we further refine the data dependence relation between
threads. We introduce a new kind of relation of loop-carried data dependence crossing
thread’s boundary. The improved concurrent program’s internal representation is
named tPGD’.

Def.8. Loop-carried (data) dependence between threads: In tPDG G, a node Si in

thread iθ is said to be loop-carried (data) dependent between threads on a node S j in

jθ if the corresponding tCFG satisfies: iθ and jθ were nested in the same loop;

Si interference dependent on S j ; the execution path constructing the interfer-

ence dependence includes a loop back edge.

Def.9. Loop-carried (data) dependence between instances of the same thread: In tPDG
G, a node Si in thread θ is said to be loop-carried (data) dependent on a node S j in

θ between instances of the same thread if the corresponding tCFG satisfies: θ is
nested in a loop; Si data dependent on S j ; the path from S j to Si includes a

loop back edge.

Def.10. Loop-carried (data) dependence crossing thread’s boundary (ddl): Loop-
carried (data) dependence between threads and Loop-carried (data) dependence be-
tween instances of the same thread are called by a joint name -- loop-carried (data)

dependence crossing thread’s boundary (written ddl⎯⎯⎯→).

Def.11. Improved threaded program dependence graph tPDG’: tPDG’ is based on
tPDG with loop-carried data dependence edges being changed to be ordinary data
dependence edges and loop-carried (data) dependence crossing thread’s boundary
being added.

The pseudo code of the algorithm for adding loop-carried data dependence edges
on tPDG cannot be given here due to the limit of space. The principle of this algo-
rithm is: given tPDG of a concurrent program structure with loops nested with
threads, for each loop body from the outermost one to the innermost one, all variable-

126 J. Xiao et al.

defining nodes which can reach loop head node are first computed and recorded; then
all variable-referencing nodes in the current loop which can be reached from loop-
head node are computed; lastly, the corresponding loop-carried data dependence
edges crossing thread’s boundary can be found. The complexity of the algorithm is

()O n , where n is the number of program’s statements.

4.2 The Improvement of Slicing Algorithm

The root cause of the impreciseness of Cheng’s algorithm [6] is that some sequences
of nodes in paths which reach slicing criterion through all kinds of dependence edges
do not obey the constraint upon concurrent program’s execution behavior. Krinke [9]
improved Cheng’s algorithm by introducing a concept of threaded execution witness
to constrain the qualification of execution paths. We considered Krinke’s algorithm
still put unduly loose constraint on execution paths. Our improved slicing algorithm
built on the new data structure tPDG’ introduced another new concept of regioned
execution witness to further constrain the valid execution paths in TCFG.

Def.12. Region: Region R is a sub-graph of tCFG G. A node m in R is said to be
In node if there exists an edge (,)v m in G where v is not in R ; A node n in R is
said to be out node if there exists as edge (,)n v in G where v is not in R . R is said
to be a Single-In-Single-Out (SISO) region if there is only a pair of In and out nodes
in R .

Def.13. Regioned execution path: Regioned execution path in tCFG G is a sequence
of nodes ,...,1n nk< > satisfying one of the following: In G, R is assumed to be a

SISO region representing a basic thread which has no nodes of /cobegin coend . ns is

assumed the In node of R , and ne is assumed the out node of R . A regioned exe-

cution path in R is a path from ns to ne ; In G, R is assumed to be nested with one

or more SISO regions. 'Ri is assumed to be a SISO region between cobegin and the

corresponding coend . A regioned execution path in R is constructed as a regioned
execution path according to with 'Ri being looked as a single node 'Ni , and then

'Ni is replaced by a regioned execution path in 'Ri ; In G, R is assumed to be an

SISO region and is nested with a set of SISO regions, each of whose element Ri

represents a basic thread. A regioned execution path in R is an arbitrary interleaving
of regioned execution paths in Ri .

Def.14. Regioned execution witness: In tCFG G, a regioned execution witness is a
sub-sequence of a regioned execution path in G.

The principle of our new slicing algorithm designed on tPDG’ is: In tPDG’ G, node
p is assumed the slicing criterion, ' ()S pθ is the program slice with respect to p ,

1 1' () { | ,..., , ... , { , , , }1 1 1
d dkS p q P n n q n n p d cd dd id ddlk k i kθ −= =< > = ⎯⎯→ ⎯⎯⎯⎯→ = ∈≤ < (2)

where P is a regioned execution witness in the corresponding tCFG. }

 Improved PDG and Algorithm for Static Slicing Concurrent Programs 127

Theorem 1: A sequence of nodes , ,...,1 2n n nk< > in region R is a regioned execution

witness iff the sequence’s two arbitrary nodes ni and n j (i j<) satisfy that

((), ())para n ni jθ θ returns true or (, ,)path n n Ri j returns true, where Function

(, ,)path n m R is defined as { true , if there exists a regioned execution path in R from
node n to node m | false , else}.

Proof: It can be directly drawn from Def.14 and Def.13.

4.3 Description and Analysis of the New Slicing Algorithm

The improved slicing algorithm is an iterative one based on a work-list, which starts
from the sling criterion and adds slice nodes successively. The algorithm takes an
existed slice node as work node and traverses backwards along the data, loop-carried
data, and control and interference dependence edges. All nodes reached via only data
or control dependence edges can be directly added to the slice nodes set as regioned
execution witnesses exist for these nodes according to definitions of data and control
dependence and their transitivity. Our algorithm is different from Krinke’s in han-
dling interference dependence edges and loop-carried data dependence edges crossing
thread’s boundary.

When a node is reached via an interference edge, it is possible that a valid path on
tPDG’ could have no valid regioned execution witness on the corresponding tCFG.
The strategy to handle interference edge is:

[()]t T yθ= ∧ (,)R Region x y=
IF t ==⊥ || (, ,)path y t R true== THEN

FORALL (0.. 1) (, ())i N para y falseiθ θ∈ − ∧ == DO []T i y= OD ' (,)c y T=

IF 'c has not been handled

THEN mark 'c as already handled and set w and S as { '}; { }w w c S S y= =U U

Where x is the work node, y is the currently evaluated node. []T N is the array for
recording trace of nodes of threads which the algorithm accesses. In [, ,...,]0 1T t t tn= ,

0t i n≤ ≤ corresponds to the thread ()iθ , which records the algorithm’s last reached

node in ()iθ or in threads executing non-concurrently with ()iθ . ⊥ means the posi-
tion has not been defined. This information is used to decide if there exists regioned
execution witness. S is the set of slice nodes, 'c is the node triple (, [])x T N , and w is
the set of node triples. (,)coregion i j returns the smallest SISO region which includes
i and j . (, ,)path i j R decides whether there exists a regioned execution path in R
from i to j . x is assumed to be the current work node which is already a slice node.

As for a node q where exists idq x⎯⎯⎯→ , there is a valid path in tPDG’ from q to
slicing criterion through x . But there may be no corresponding regioned execution
witness in the TCFG and we may draw different conclusions for different scenes. x
being a slice node and according to Theorem 1, there is a regioned execution witness
from x to slicing criterion which is a sequence nodes named s whose direction is
assumed to be from left to right. If there is no nodes in s which executes sequen-

128 J. Xiao et al.

tially with q , that is, the position of ()qθ in the trace record array associated with x
is ⊥ . Then in the new sequence 's which is formed by adding q to the tail of s , q
and any other node v satisfy that ((), ())para q vθ θ returns true. According to Theorem
1, 's is still a valid regioned execution witness and q should be considered as a slice

node. If there are nodes in s which execute sequentially with q , the tail node of
the sub-sequence ''s formed by the nodes which execute sequentially with q is re-

corded on the position (assumed to be t) of ()qθ in the trace record array associated

with x . If there is a path from q to t , (i.e. (, , (,))path q t coregion x q returns true), then
in the new sequence '''s formed by adding q to the tail of s , q and any other node
v in ''s satisfy (, , (,))path q v coregion q v being true, and q and any node w not in ''s
satisfy ((), ())para q wθ θ being true. According to Theorem 1, '''s is still a valid re-

gioned execution witness and q should be considered as a slice node; Under any
other conditions, q is not a slice node.

For the nodes which reach through the loop-carried data dependence edge
crossing thread’s boundary, they can be added as slice nodes, but the reverse edge
which involves in the construction of the dependence should be handled specially
as follows.

 FORALL (0.. 1)i N i L∈ − ∧ ∈ DO []T i = the source node of the back-edge of L OD

FORALL (0.. 1) (, ())i N para y falseiθ θ∈ − ∧ == DO []T i y= OD

 ' (,)c y T=

 IF 'c has not been handled

THEN mark 'c as already handled and set w and S as { '}; { }w w c S S y= =U U

OD

x is assumed to be the current work node. As for a node q where exists ddlq x⎯⎯⎯→ ,
there is a valid regioned execution witness from q to x in the region of (,)coregion q x
according to Def.8, 9, 10. According to Theorem 1, q is a slice node. The execution
path s from q to x which builds the loop-carried data dependence edge crossing
thread’s boundary includes a loop back edge, meaning that s first traverses the source
of the loop back edge and then successively reaches the loop head and the thread-
creating statement nodes. As the source of the loop back edge executes sequentially
with threads in the loop body, the position of the loop’s nested thread in the trace record
array associated with x should be set as the source of the loop back edge.

The main complexity of the slicing algorithm comes from interference dependence.
A program is assumed to have totally N statements nodes and t threads. In the worst
condition, these threads execute concurrently and every node in a thread is interfer-
ence dependent on a node in another thread. The number of nodes directly adjoining
slicing criterion through interference dependence edge is approximately ()N

t
, that is,

in the first iteration of the algorithm there are nearly ()N
t

 nodes to be evaluated; In the

second iteration, there are nearly ()
N N
t t× nodes to be evaluated; … ; In the t -th

 Improved PDG and Algorithm for Static Slicing Concurrent Programs 129

iteration, there are nearly ()tN
t

 nodes to be evaluated. The algorithm complexity is

approximately ()
t

NO , which is exponential to the number of threads.

4.4 Examples

Example 1. In fig.1 (a), 2S is assumed to be the slicing criterion and there exist

2 6
idS S⎯⎯⎯→ and 6 4

idS S⎯⎯⎯→ . But there does not exist regioned execution witness from

4S to 2S because the loop back is not included in the co-region of 4S and 2S . Ac-

cording to our algorithm, 4S cannot be added to program slice, which conforms to the

analysis in 2.2 and has conquered the impreciseness of Krinke’s.

Example 2. In fig.1 (b), 1S is assumed to be the slicing criterion and there exist

1 3
idS S⎯⎯⎯→ and 3 2

idS S⎯⎯⎯→ . But there doesn’t exist regioned execution witness from

2S to 1S in the co-region of 3S and 2S . According to our slicing algorithm, 2S

cannot be added to program slice. But there exists 2 3
ddlS S⎯⎯⎯→ in the figure, and 2S

will be included in program slice, which conforms to intuitive analysis. This means
that the improved algorithm would not lose any related statements in program slice.

Examples analysis shows that the improved slicing algorithm can restrain the im-
preciseness of Krinke’s for the program structure with loops nested with threads.

5 Conclusion

According to [11], slicing algorithm of program written in a concurrent language
which has procedure and synchronization primitives is always un-optimal, because
the reachability of statements in this kind of concurrent program is undecidable. So,
there is always room for optimization for the existing slicing algorithm of concurrent
program. In this article, based on the analysis of the impreciseness of Krinke’s slicing
algorithm, an improved threaded program dependence graph is proposed and the
algorithm constructing the new data structure is given in pseudo code. Upon the new
data structure, the improved slicing algorithm is also given. Examples show that the
improved slicing algorithm designed on the improved data structure can restrain the
impreciseness of Krinke’s. Due to the fact that the worst complexity of the slicing
algorithm is exponential to the number of program, which is the same for Krinke’s,
the future work is to optimize the slicing algorithm.

References

1. D. W. Binkley, M. Harman, A survey of empirical results on program slicing [J], Ad-
vances in Computers 2004. 62:105-178.

2. E. M. Clarke, M. Fujita, S. P. Rajan, T. Reps, S. Shankar, and T. Teitelbaum. Program
slicing for VHDL [A]. In Charme'99, Bad Herrenalb, Germany, September 1999.

3. L. Millett and T. Teitelbaum. Issues in slicing PROMELA and its applications to model
checking, protocol understanding, and simulation [J]. STTT, 2000. 2(4): 343~349.

130 J. Xiao et al.

4. S. Horwitz, J. Prins, and T. Reps. On the adequacy of program dependence graphs for rep-
resenting programs [A]. Proceedings of Conference Record of the Fifteenth Annual ACM
Symposium on Principles of Programming Languages, 1988. p.146–157.

5. Zhenqiang Chen, Baowen Xu, Jianjun Zhao. An overview of methods for dependence
analysis of concurrent programs [J]. SIGPLAN Notices, 2002. 37(8): 45-52.

6. J. Cheng. Slicing Concurrent Programs - A Graph-Theoretical Approach [A]. 1st Interna-
tional Workshop on Automated and Algorithmic Debugging, 1993.

7. Jianjun Zhao. Slicing concurrent Java programs [A]. Proceedings of the 7th IEEE Interna-
tional Workshop on Program Comprehension, 1999. p.126-133.

8. Zhenqiang Chen, Baowen Xu, Hongji Yang etc. An Approach to Analyzing Dependency
of Concurrent Programs [A]. Proceedings of the The First Asia-Pacific Conference on
Quality Software, 2000. p.39-43.

9. J. Krinke. Context-sensitive slicing of concurrent programs [A]. Proceedings ESEC/FSE,
2003. p. 178–187.

10. J. Krinke. Static slicing of threaded programs [A]. Proc. ACM SIGPLAN/SIGFSOFT
Workshop on Program Analysis for Software Tools and Engineering (PASTE'98), 1998.
p.35--42.

11. M. Muller-Olm and H. Seidl. On optimal slicing of parallel programs [A]. 33th ACM
Symposium on Theory of Computing, 2001. p.647–656.

Parallelisation of Sequential Programs
by Invasive Composition and Aspect Weaving

Mikhail Chalabine and Christoph Kessler

Programming Environments Laboratory,
Dept. of Computer and Information Science,

Linköping University, Linköping, Sweden

Abstract. We propose a new method of interactively parallelising pro-
grams that is based on aspect weaving and invasive software composi-
tion. This can be seen as an alternative to skeleton programming. We
give motivating examples for how our method could be applied.

1 Introduction

The compositional approach to parallel programming is thoroughly elaborated
in the research community [5,17]. It postulates compositionality of algorithmic
skeletons focusing on their homomorphic transformations. In general, neverthe-
less, the design of efficient parallel code is still a black art as it is not possible
to derive it universally from given sequential fragments. Likewise, a system-
atic reuse of efficient hand-crafted parallel parts (not expressible as skeletons)
remains onerous. Parallel library routines are only a first advancing step and
further research is needed to enable true composition of parallel programs.

In this position paper we consider interactive parallelisation of given sequen-
tial code written in a high-performance computing language such as Fortran, C,
C++ or (with restrictions) Java. Currently, automatic parallelisation by com-
pilers works only for very few special cases such as regular loop nests scanning
arrays with statically analysable data dependencies, but fails in more general
situations. To overcome this, the programmer (or the parallelisation expert as
an advisor) should give hints to the compiler to guide the load-balancing, data
layout, and the parallelisation process in general. This can either be done in the
form of directives, as in HPF and OpenMP, or in the form of explicitly parallel
language extensions such as skeletons. In both cases, the sequential source pro-
gram must be modified. In the former directives must be added, and in the latter,
larger parts must be reorganised or rewritten. All this may require reengineering
at the conceptual level with the following disadvantages:

– reengineering is a complex, resource-critical operation;
– with contemporary techniques the original application program is obscured

by the extra directives, code, or reorganisations that handle parallelism. This
makes maintenance and future extensions of the application more difficult;

– simultaneous editing by the program author (minor modifications in the
application code) and the parallelisation expert is generally not possible;

J. Cao, W. Nejdl, and M. Xu (Eds.): APPT 2005, LNCS 3756, pp. 131–140, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

132 M. Chalabine and C. Kessler

– the use of a modern high-level approach (see Section 2.3) requires a shift in
the programming paradigm where the programmer operates on a limited set
of expressible patterns.

We see a key problem in the fact that different aspects, such as parallelisation,
data layout, synchronisation, and other platform-specific refinements, are hard-
coded into the application core. Instead we advocate a compositional approach
where such aspects are separated. To do this we apply concepts from aspect-
oriented programming (AOP) [11] and invasive software composition (ISC) [1].

Parallelising program modifications, let us call them recipes, are formulated
as rewrite rules. A rewrite rule consists of a pattern (also called a joinpoint)
and a modification (also called an advice). Patterns are specified in terms of a
high-level intermediate representation (IR) of the (application) program, where
special program constructs, such as loop headers, variable definitions or function
calls, are identified by symbolic references to the IR, so-called hooks. Recipes that
concern different aspects are defined in separate recipe files. The recipe files are
woven together with the application program by a weaver tool to produce a
parallelised program. The weaver matches recipe patterns to the given program
and executes rewrite rules where applicable. We see the following advantages:

– the parallelisation process is simplified to specifying rewrite rules;
– the level of abstraction leaves the original application intact, which simplifies

reasoning about large programs;
– the programming paradigm is not changed while the expressiveness of struc-

tural programming is addressed in a new systematic way using rewrite rules
instead of highorder functions (see Section 2.3);

– programmability is improved by allowing for interactive parallelisation and
stepwise refinement [16] where the woven program is displayed in real-time;

– reusability is also improved as advices can be reused;
– further aspects, beyond parallelism, can be woven into the code;
– contemporary approaches (including high-order functions) can be imitated

by generic advices;
– porting applications to an alternative parallel environment becomes easier,

as it only requires (ex)changing one or a few advice files;
– testing is also simplified as it is possible to step back and forth in the paral-

lelisation process by replaying desired transformations.

Note that the suggested method is more powerful than AOP, allowing arbitrary
patterns and declared hooks that are not limited to object-oriented (OO) con-
structs such as class definitions, method calls or field access. In particular, the
application needs not be given in an OO language at all.

In the following we elaborate on these points with a number of motivating
examples. In Section 2 we give a short overview of contemporary approaches to
parallelisation and metaprogramming - the technique we use in our approach.
In Section 3 we present our ideas supported by intuitive examples. In Section 4
we further consider a simple parallelisation case and in Section 5 we conclude.

Parallelisation of Sequential Programs by IC and Aspect Weaving 133

2 Background

There is a number of methods of assembling parallel programs. These range from
low-level manual coding to elaborate frameworks based on skeletons and complex
loop transformations. In this section we give a short comparative survey.

2.1 Automatic Parallelisation by Dependence Analysis

This class of parallelisers represents the classical approach in parallelising compil-
ers. It mainly focuses on loop nests with statically analysable data dependencies
and suggests application of complex transformations (e.g., skewing, interchange,
etc.) to identify parallelisable loop levels. Despite the moderate progress in the
area and substantial difficulties with static analysis of structures other than
loops, significance of the dependence theory can hardly be overestimated. We
refer to [7,10,20] for more details.

2.2 Domain-Specific Automatic Parallelisation

In this class of automatic parallelisation we make certain assumptions about
the target domain. We then prune the solution space of possible parallelisation
strategies and arrive at heuristics capable of transforming the original sequential
code. The transformation engines are often graph- or logic-based [6]. For exam-
ple, PARAMAT targets two application domains in numerical computations,
namely, linear algebra and partial differential equations. The approach relies
on a hierarchical concept recognition system where complex entities are defined
via their less complex compounds. The pattern matching consists in executing
a matching automaton that represents the concept hierarchy. This is realised
through a bottom-up traversal of the source program’s syntax tree. As for the
logic, the parallelisable algorithmic pattern recogniser (PAP) is based on the de-
ductive inference engine of Prolog. The system does a structural analysis of the
input code, i.e., a hierarchical parsing of the program dependence graph, driven
by concept-recognition rules; the latter are based on attribute grammars. Each
concept is recursively specified by its compositional hierarchy and by control and
data-dependence relationships. See [6] for more details.

2.3 Skeleton Approach

Today’s structural epitome is the skeleton approach, introduced by Cole in 1989
[5] and since then developed in several projects such as P3L [15], SkiL [12], HSM

D&C(isTrivial, Solve, Divide, Conquer, Pr) {
IF (isTrivial(Pr))
THEN Solve(Pr)
ELSE Conquer(Map D&C (Divide (Pr))) }

Fig. 1. Pseudocode for the Divide-and-conquer skeleton

134 M. Chalabine and C. Kessler

[13], HDC [8] and others, see also Rabhi and Gorlatch [17]. These, along with the
general success, discovered substantial engineering difficulties and limitations in
skeletons; would it be a tight connection to the compiler [8] or the reiterated elab-
oration on obstructive confines within the set of expressible patterns. In general,
the technique consists of defining a small number of parallel algorithmic building
blocks such as task-parallel farming, pipelining, parallel divide-and-conquer and
other data-parallel and control-parallel patterns (see Figure 1). These are usually
given in the form of (compiler-known) higher-order functions and a mechanism
for composing and instantiating them for the given problem. The latter is usu-
ally done by parametrisation in the problem-specific user code where the skeleton
is adopted as a generic parallel subroutine, ipso facto, a black-box component.
The user code is plugged into skeleton instances by passing function names.
Special tools can analyse and optimise skeleton programs by applying static
transformations. For pragmatic reasons, however, and to embody a larger set of
coverable patterns, the skeleton literature recommends to admit ad-hoc paral-
lelism provided by the underlying programming environments such as OpenMP
[4], threads or MPI (see, e.g., [14]). Unfortunately, this may cause unexpected
side effects and thus compromise the compositionality of skeletons. Furthermore,
the composition of two optimal parallel algorithms does not necessarily yield an
optimal parallel algorithm. Thus parallelisation of compositions of skeletons is a
significant problem in skeleton-based approaches.

In order to reach parallelism with skeletons the sequential program must be
explicitly refactored into an appropriate form that matches the interfaces of the
skeletons. Such a paradigm shift is costly. We advocate to leave the user code
intact and, instead, inject parallelisation code invasively. We also encourage to
relax the black-box property allowing weaving of other aspects into the existing
skeleton implementations, i.e., make the interfaces adaptable. Another problem
we see is that coordination of multiple processors by a skeleton is limited to a
source code subtree rooted at the skeleton instance. This is an inherent prop-
erty of structured parallel programming, as control and data flow are tied to
the code structure; it is a single-entry-single-exit region in the program. In con-
trast, our approach allows to express coordination that is spread over the entire
program.

2.4 Metaprogramming

Metaprogramming goes beyond the scope of homomorphic transformations and
allows for more flexibility in approaching parallelism. Transformations and adap-
tations in metaprogramming are directed by the procedural specifications at a
higher level of abstraction. The technique is widely used in contemporary se-
quential programming and is an important tool for composition of components
[1]. In our work we use an abstraction to metaarchitecture, where we develop
an intelligent preprocessor capable of advanced code transformations at com-
pile time. It is common to look at metalevel architectures as introducing an
intermediate layer between the application and the system. Such a layer is con-
figurable to a certain degree based on the internal and external requirements.

Parallelisation of Sequential Programs by IC and Aspect Weaving 135

For us metaprogramming is a way of supporting static change in component
interconnection topologies, i.e., adaptations in context and behaviour, necessary
for introduction of parallelism.

2.5 Aspects in Parallel Programming

One of the first attempts to introduce aspects explicitly is to consider distributed
data structures, so-called covers [19]. This work originates from the fact that
optimal data distribution cannot be determined automatically for most non-
trivial algorithms. It is therefore necessary to represent the knowledge about the
problem domain and either perform data distribution appropriately or introduce
a mechanism to make data accesses transparent. The work adopts the second
approach and tackles spatial aspects in functional setting by parameterising
skeletons with covers.

There are further projects that study aspects in concurrent systems [2,9,18].
Our ideas differ from these in the following way. We mainly concentrate on par-
allelisation of existing sequential software. We adapt and extend components
at hooks by destructive weaving. We aim at typed transformations that can
be checked statically and, in contrast to aspect oriented systems that work di-
rectly on the abstract syntax representation, we rely on a component model. We
consider dependencies between the parallelisation concerns and integrate this
knowledge into the concern model. The ultimate goal is to do reasoning on the
concern model instead of primitive code patching found in many aspect-oriented
systems. We mainly operate on the declared hook level where we can rewrite
parts of the code while others (AOP) mainly add code.

3 Suggested Parallelisation Method

In this section we discuss the technique which relies on the recently developed
invasive software composition approach (ISC) [1]. The method evolves from the
field of modular composition systems focusing on component reuse. It allows for
invasive component formations via code transformations, where the programmer
operates on a hierarchical composition system. For integration of parallelism we
suggest a system consisting of a component model, concern model, composition
technique and a composition language. The component model outlines a composi-
tion unit, which is a software item subject to composition. We call it a component
or a fragment box in the context of ISC. The concern model classifies domain-
specific properties crosscutting an application and formalises interdependencies
among them. Concerns are hallmarks that can not be embraced by a single frag-
ment box, such as a procedure, class or a package; concerns appear scattered
over the code. The concern model structures these properties and serves as a
foundation for reasoning on the mutual effects any consequent application of a
number of concerns might have. It also frames the coalescing of concerns with

136 M. Chalabine and C. Kessler

components. The actual technique capable of type-safe fragment-based parame-
terisation of components, subject to concern-model constraints, is an invasive
composition technique. We refer to it as weaving. The principal difference of the
ISC weaving from the AOP weaving is that ISC modifies (renames) code frag-
ments comprising the composition interface through composers. These comprise
an algebra of operators, uniform for all programming languages. It contains, for
example, bind, rename, and extend composers. In AOP, on the other hand, a
separate weaving tool (a compiler) injecting pieces of code at pre-defined join
points must be re-implemented for every given language. ISC results in a two-
stage compilation which unifies a number of software engineering paradigms,
including, generic programming, architecture systems, inheritance, view-based
programming and aspect systems [1]. In our work we aim to apply and extend
the approach for parallel programming, allowing to weave parallelism invasively
into sequential cores. So our approach is dual to that taken by the skeleton
community which plugs sequential user code into well-defined skeletons – par-
allel components. We see parallelism as consisting of a number of dependent
parallelisation concerns crosscutting applications.

As a simple example, consider an MPI-based parallelisation of a large se-
quential core [3]. We require an extra parameter, namely, an MPI communicator
object, to be added to a wide range of functions. A function in an imperative
language has a well-defined parameter declaration section and we use this fact
to automatise the process by targeting these specific positions and binding them
to a new parameter. Thus, for every method M we advice:

findPosition("M.Parameters"). bind("MPI::Intracomm COMM").
In this way we transform void M(type1: parameter1) into void M(type1:

parameter1, MPI::Intracomm COMM). With such flexible parameterisations of
fragment boxes, we can even weave components defined for clashing paradigms.
For instance, we can weave a D&C skeleton-based implementation of the paral-
lel Quicksort (an instance of the divide-and-conquer skeleton shown in Figure 1)
into sequential code; this corresponds to a manual infusion according to the
skeleton-based programming model. But we can also extend it with irregularity
handling or introduce fault tolerance into the existing skeleton either after or
before it is actually woven into a core (see Figure 3 for the result and Figure 2
for a recipe sketch). Thus we allow a transitive composition procedure where
the sequential core is incrementally enhanced with parallelism. We suggest to
write parallelisation recipes for programs; recipes that catch the structure of a
program and specialise components. Such compositions are specified as scripts
in the composition language.

D&C-FaultTolerance-Recipe() {
IF (FindInstance("D&C"))
THEN EXTEND "D&C.Solve()" :: FAULT TOLERANCE BASIC }

Fig. 2. Divide-and-conquer programmable transformation recipe extending all in-
stances of D&C with a basic fault tolerance handling. FAULT TOLERANCE BASIC is a macro.

Parallelisation of Sequential Programs by IC and Aspect Weaving 137

3.1 Parallelisation Concerns

In parallelisation we refer to parallelism-specific concerns. We see them as highly
interdependent and distinguish the following set: Data distribution, Parallelism,
Synchronisation, Communication, Cross-processor Data Flow, Data and Con-
trol Dependencies, Load balancing. Parallelism is a concern that creates the
necessary conditions for running programs in parallel. For example, in Java this
requires inheriting from the Thread superclass. In OpenMP, on the other hand,
this corresponds to application of the OMP PARALLEL pragma that marks a parallel
region. Data distribution maps data sets to processor sets. A natural example
will be the HPF’s distribute and align directives. Synchronisation appears in
many languages and can be further partitioned into synchronisation concerns
for mutual exclusion, preventing race conditions, and conditional blocking [9].
In Java synchronisation also appears in terms of the synchronize, sleep, notify,
and notifyAll methods. Communication can be seen as parameter passing via
shared variables or via communication in a distributed-memory system.

3.2 Parallelisation Process

The integral system view is as follows. The user is given sequential code and a
distribution of the composition system. The job of the user is to write paralleli-
sation recipes for the parallelisation concerns described above. The user enters
recipes into the system and the weaver seeks to coalesce the described concerns
with the sequential core. The join points are defined in terms of explicitly and
implicitly declared hooks. An implicit hook is a point in the abstract syntax
tree constrained by the language structure (recall the parameter declaration ex-
ample). Declared hooks are named and have a type in the component model.
The explicit declaration of hooks, patterns, and parameters can be alleviated by
drag-and-drop operations on a graphical user interface displaying the content
status by the application of the already defined recipes.

Instead of unordered weaving before, after, and around code fragments we
advocate the following procedure. As the first step, a subset of join points is con-
sidered that are triggered by automated reasoning on the control and data flow
information as in (domain-specific) automatic parallelisation. This corresponds
to direct integration of parallelism at the lowest composition level operating di-
rectly on the IR (e.g., loop parallelisation). As the next step concepts are woven
at the default composition interfaces prescribed by the language structure. Rea-
soning on the concept model and the set of available implicit hooks is performed

D&C(isTrivial, Solve, Divide, Conquer, Pr) {
1 IF (isTrivial(Pr))
2 THEN
3 WHILE (Solve(Pr) != TRUE)
4 ELSE Conquer(Map D&C (Divide (Pr) . . .)) }

Fig. 3. Divide-and-conquer skeleton with a primitive completion assurance

138 M. Chalabine and C. Kessler

here. The remaining part of parallelism is then pinpointed explicitly by the par-
allelisation expert via interactive system dialogues and parallelisation recipes.

4 An Example

As an illustration consider parallelisation of a simple Java recursion for comput-
ing Fibonacci numbers. There are two independent recursive calls that can be
executed in parallel (line 5, Listing 1.1) and we weave in four concerns: paral-
lelism, synchronisation, data dependencies and communication. Parallelisation
is started by creating an instance of the composition system:

Now we can create parallel tasks and set up data flows wrapping all read/write
accesses to shared data in a synchronized section. To do that we first augment
our fibGenerator class with parallelism by referring to the Java Thread super
class and adding the run() method in the core; this is done at the default com-
position level and is triggered automatically or by advising:

We now make a copy of the original recursion for further transformations (com-
pare Line 19 in Listing 1.2 with Listing 1.1). We then extend the run method
with the ability to compute a given Fibonacci number by advising:

The last statement introduces temporary storage used by parallel workers. In
general it should allow the system to conclude that addend2 is a global variable.
From this fact the system should trigger the synchronisation concern assuring a
safe write access as shown in line 24, Listing 1.2. The expert can now introduce
parallel workers by referring to a proper constructor and the run method in the
following way:

As the next step we rebind communication hooks, i.e., substitute recursive calls
in line 5 with functionality to retrieve data from parallel workers:

Note that fibRec-1 and fibRec-2 hooks are uniquely identified in the IR. We
introduce synchronisation by executing the following advice:

SIMPLE SYNC is a macro expanded in lines 13 to 15, Listing 1.2.

CompositionSystem cs = new CompositionSystem(outputPath);

ClassBox fibGenClass = cs.createClassBox("fibGenerator.java");

cs.findHook("fibGenClass.SuperClass").bind("Thread");

cs.findHook("fibGenClass.Members").bind("void run() { }");

cs.findMethod("fibGenClass.run").

findHook("MethodEntry").bind("addend2=figRecSeq(THIS.probSize)");

cs.findHook("fibGenClass.ClassEntry").

bind("static addend1; static addend2");

cs.findMethod("fibGenClass.fibRec").findPositionAfter("ELSE").

bind("fibGenerator fib1 = NEW fibGenerator(n − 1)");

cs.findFunctionCallHook("fibGenClass.fibRec-1").bind("addend1");

cs.findFunctionCallHook("fibGenClass.fibRec-2").bind("addend2");

cs.findHook(writeAccess(’addend1’)).insertAfter(SIMPLE SYNC);

Parallelisation of Sequential Programs by IC and Aspect Weaving 139

1 PUBLIC CLASS fibGenerator {

2 INT PROB_SIZE = 10;

3 PUBLIC STATIC INT fibRec (INT n) {

4 IF (n ≤2) RETURN 1;

5 ELSE RETURN fibRec(n - 1) + fibRec(n - 2);

6 }

7 PUBLIC STATIC VOID main(String[] args) {

8 fibonacci(PROB_SIZE);

9 }}

Listing 1.1. Computing the nth Fibonacci number

1 PUBLIC CLASS fibGenerator EXTENDS Thread {

2 ...

3 STATIC INT addend2 = -1; // temporary storage

4 STATIC INT addend1 = 0;

5 fibGenerator(INT n) {THIS.probSize = n; }

6
7 PUBLIC STATIC INT fibRec (INT n) {

8 IF (n ≤2) { RETURN 1;}

9 ELSE {

10 fibGenerator fib1 = NEW fibGenerator(n-1);

11 fib1.start();

12 addend1 = fibRecSeq(n-2);

13 WHILE (addend2 == -1) {

14 TRY { fibGenerator.currentThread().wait();

15 } CATCH (InterruptedException e) { e.printStackTrace(); }}

16 RETURN (addend1 + addend2);

17 } }

18
19 PUBLIC STATIC INT fibRecSeq (INT n) {

20 IF (n ≤2) RETURN 1;

21 ELSE RETURN (fibRecSeq(n - 1) + fibRecSeq(n - 2)); }

22
23 PUBLIC VOID run() {

24 SYNCHRONIZED(THIS) {

25 addend2 = fibRecSeq(THIS.probSize);

26 THIS.notifyAll();

27 }}

Listing 1.2. Transformed Fibonacci

5 Conclusions and Future Work

We have presented a new method of parallelising sequential programs that is
based on invasive software composition. It allows for incremental parallelisation
of sequential cores written in high-level programming languages. The process
is based on a levelled weaving on abstract syntax tree representations, implicit
hooks, and declared hooks. We argued that such a composition hierarchy simpli-
fies and structures parallelisation of programs. The method prescribes to write
parallelisation recipes describing integration of parallelism. Such recipes are in-
terpreted statically by the composition system that weaves parallelism-specific
concerns into sequential cores. The main purpose of this position paper was to
present the technique we are working on. As future work we intend to intro-
duce coherence into concern/recipe structures in terms of a concern model as
to avoid primitive patching of code. We also aim to elaborate on the reasoning
mechanisms as to improve guidance in selecting transformations targeted at par-
allelism. Among other things, this will question the circumstances under which
the parallelisation concerns apply.

140 M. Chalabine and C. Kessler

References

1. Uwe Aßmann. Invasive Software Composition. Springer-Verlag, 2003.
2. Mariano Ceccato and Paolo Tonella. Adding distribution to existing applications

by means of aspect oriented programming. In 4th IEEE International Workshop
on Source Code Analysis and Manipulation, 2004.

3. Mikhail Chalabine, Christoph Kessler, and Staffan Wiklund. Optimising intensive
interprocess communication in a parallelised telecommunication traffic simulator.
In Proc. Int. High-Performance Computing Symposium (part of the Advanced Sim-
ulation Technology Conference), Orlando, Florida, USA, 2003.

4. Rohit Chandra, Leonardo Dagum, Dave Kohr, Dror Maydan, Jeff McDonald, and
Ramesh Menon. Parallel Programming in OpenMP. 2001.

5. Murray Cole. Algorithmic Skeletons: A Structured Approach to the Management
of Parallel Computation. MIT Press, 1989.

6. Beniamino di Martino and Christoph W. Keßler. Two program comprehension
tools for automatic parallelization. IEEE Concurrency, 8(1 (Spring)):37–47, 2000.

7. Martin Griebl. Automatic Parallelization of Loop Programs for Distributed Memory
Architectures. Habilitation thesis, University of Passau, Germany, 2004.

8. Christoph A. Herrmann and Christian Lengauer. HDC: A higher-order language
for divide-and-conquer. Parallel Processing Letters, 10(2/3):239–250, 2000.

9. David Holmes, James Noble, and John Potter. Aspects of Synchronisation. In
Proceedings of TOOLS-25’97. IEEE, 1997.

10. Ken Kennedy and John R. Allen. Optimizing compilers for modern architectures:
a dependence-based approach. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 2002.

11. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Videira Lopes, J.-M. Lo-
ingtier, and J. Irwin. Aspect-oriented programming. In Proc. of ECOOP. Springer-
Verlag, 1997.

12. Herbert Kuchen. A skeleton library. In Euro-Par ’02: Proceedings of the 8th
International Euro-Par Conference on Parallel Processing, pages 620–629, London,
UK, 2002. Springer-Verlag.

13. M. I. Marr and M. Cole. Hierarchical skeletons and ”ad hoc” parallelism. In
Parallel Computing: State-of-the-Art and Perspectives, volume 11. Elsevier.

14. Marcus I Marr. PhD dissertation: Descriptive Simplicity in Parallel Computing.
University of Edinburgh, 1997.

15. S. Pelagatti. Structured development of parallel programs. Taylor & Francis, 1997.
16. Roger Pressman. Software Engineering: A Practitioner’s Approach. McGraw Hill,

1992.
17. F. A. Rabhi and S. Gorlatch. Patterns and Skeletons for Parallel and Distributed

Computing. Springer, 2002.
18. Rafael Ramirez and Andrew E. Santosa. An aspect-oriented framework for con-

current applications. In Proc. of the 3rd German Workshop on Aspect Oriented
Software Development, Essen, Germany, 2003. German Informatics Society.

19. Mario Südholt. The Transformational Derivation of Parallel Programs using Data
Distribution Algebras and Skeletons. PhD thesis.

20. Hans Zima and Barbara Chapman. Supercompilers for parallel and vector comput-
ers. ACM Press, New York, NY, USA, 1991.

J. Cao, W. Nejdl, and M. Xu (Eds.): APPT 2005, LNCS 3756, pp. 141 – 150, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Revisiting the Election Problem
in Asynchronous Distributed Systems

SungUoon Bauk

School of Electrical and Computer Engineering,
Chungbuk National Unvi. Cheongju,

ChungBuk 361-763, Korea
spark@chungbuk.ac.kr

Abstract. This paper is about the relationship between the Election Problem
and Failure Detectors in asynchronous distributed systems. It is stated in [7] that
a Perfect Failure Detector P is needed to solve the Election problem. But in
contrast to the result, there is a failure detector that solves Election weaker than
the Perfect Failure Detector. We introduce the Confirmatory failure detector C.
We show that to solve Election, C is necessary while P is not, whereas C+ S
is sufficient when a majority of the processes are correct.

1 Introduction

Electing a Leader (or Coordinator) in a distributed system is widely recognized as one
of the central paradigms in the theory of distributed computing. The first formations
of the problem appeared in a variety of papers [2,3,4]. Since then the problem has
been studied extensively in various models and network topologies, like rings,
complete network topology, unidirectional networks, and grids. One reason for this
wide interest is that many distributed protocols need an election protocol.

To elect a leader in a distributed system, an agreement problem must be solved
among a set of participating processes. This problem, called the Election problem,
requires the participants to agree on only one leader in the system [1].

Consensus and Election are similar problems in that they are both agreement
problems. The so-called FLP impossibility result, which states that it is impossible to
solve any non-trivial agreement in an asynchronous system even with a single crash
failure, applies to both problems [5]. Many interesting theoretical results have been
stated for Consensus [2,3,4] and it is not clear whether those results apply to Election
because of the differences between Consensus and Election. The motivation of this
work is to explore the applicability of those results to Election.

The rest of the paper is organized as follows. Section 2 describes motivations and
the related works. In Section 3 we describe our system model. In Section 4 we
introduce the Confirmatory Failure Detector C and show that to solve Election, C is
necessary while P is not, whereas C+ S is sufficient when a majority of the
processes are correct. Finally, Section 5 summarizes the main contributions of this
paper and discusses related and future work.

142 S. Bauk

2 Motivations and Related Works

Actually, the main difficulty in solving the election problem in presence of process
crashes lies in the detection of crashes. As a way of getting around the impossibility
of Consensus, Chandra and Toug extended the asynchronous model of computation
with unreliable failure detectors and showed in [8] that the FLP impossibility can be
circumvented using failure detectors.

Can we also circumvent the impossibility of solving Election using some failure
detector? The answer is of course “yes”. The bully algorithm of Garcia-Molina [14]
solves the election problem with the failure detector P (Perfect) in asynchronous
distributed systems. It is stated in [7] that Failure detector S cannot solve Election,
even if only one process may crash. This means that Election is strictly harder than
Consensus, i.e., Election requires more knowledge about failures than Consensus.

An interesting question is then “What is the weakest failure detector for solving the
Election problem in asynchronous systems with unreliable failure detectors?” It is
stated in [7] that a Perfect Failure Detector is needed to solve the Election problem;
hence, a Perfect Failure Detector is the weakest failure detector that is sufficient to
solve the election problem.

But in contrast to the result, we show that there is a failure detector that solves
Election weaker than the Perfect Failure Detector. This means that the weakest failure
detector for election is not a Perfect Failure Detector P.

In this paper, we introduce the Confirmatory Failure Detector C and show that to
solve Election, C is necessary while P is not, whereas C+ S is sufficient when a
majority of the processes are correct.

3 Model and Definitions

Our model of asynchronous computation with failure detection is the one described in
[5]. In the following, we only recall some informal definitions and results that are
needed in this paper.

3.1 Processes

We consider a distributed system composed of a finite set of processes Ω={1,2,..,n}
completely connected through a set of channels. Each process has a unique id and its
priority is decided based on the id, i.e., a process with the lowest id has the highest
priority. Communication is by message passing, asynchronous and reliable. Processes
fail by crashing and the crashed process does not recover. Byzantine failures are not
considered.

To simplify the presentation of the model, it is convenient to assume the existence
of a discrete global clock. A history of a process i∈Ω is a sequence of events hi = ei

0 ·
ei

1 · ei
2 · · · ei

k , where ei
k denotes an event of process i occurred at time k. Histories of

correct processes are infinite. If not infinite, the process history of i terminates with
the event crashi

k (process i crashes at time k). Processes can fail at any time, and we
use f to denote the number of processes that may crash. We consider systems where at
least one process is correct (i.e. |Ω|).

 Revisiting the Election Problem in Asynchronous Distributed Systems 143

A failure detector is a distributed oracle which gives hints on failed processes. We
consider algorithms that use failure detectors. An algorithm defines a set of runs, and
a run of algorithm A using a failure detector D is a tuple R = < F, H, I, S, T>: I is an
initial configuration of A; S is an infinite sequence of events of A (made of process
histories); T is a list of increasing time values indicating when each event in S
occurred; F is a failure pattern that denotes the set F(t) of processes that have crashed
through any time t. A failure pattern is a function F from T to 2 . The set of correct
processes in a failure pattern F is noted correct(F) and the set of incorrect processes
in a failure pattern F is noted crashed(F); H is a failure detector history, which gives
each process p and at any time t, a (possibly false) view H(p,t) of the failure pattern.
H(p,t) denotes a set of processes, and q∈ H(p,t) means that process p suspects process
q at time t.

3.2 Failure Detector Classes

Failure detectors are abstractly characterized by completeness and accuracy properties
[8]. Completeness characterizes the degree to which crashed processes are
permanently suspected by correct processes. Accuracy restricts the false suspicions
that a process can make.

Two completeness properties have been identified. Strong Completeness, i.e. there
is a time after which every process that crashes is permanently suspected by every
correct process, and Weak Completeness, i.e. there is a time after which every process
that crashes is permanently suspected by some correct process. Four accuracy
properties have been identified. Strong Accuracy, i.e. no process is never suspected
before it crashes. Weak Accuracy, i.e. some correct process is never suspected.
Eventual Strong Accuracy (Strong), i.e. there is a time after which correct processes
are not suspected by any correct process; and Eventual Weak Accuracy (Weak), i.e.
there is a time after which some correct process is never suspected by any correct
process. A failure detector class is a set of failure detectors characterized by the same
completeness and the same accuracy properties (Fig. 1). For example, the failure
detector class P, called Perfect Failure Detector, is the set of failure detectors
characterized by Strong Completeness and Strong Accuracy. Failure detectors
characterized by Strong Accuracy are reliable: no false suspicions are made.
Otherwise, they are unreliable.

For example, failure detectors of S, called Strong Failure Detector, are unreliable,
whereas the failure detectors of P are reliable.

Accuracy Completeness
Strong Weak Strong Weak

Strong
Weak

P
Q

S
W

P
Q

S
W

Fig. 1. Failure detector classes

144 S. Bauk

3.3 Reducibility and Transformation

The notation of problem reduction first has been introduced in the problem complexity
theory [10], and in the formal language theory [9]. It has been also used in the
distributed computing [11,12]. We consider the following definition of problem
reduction. An algorithm A solves a problem B if every run of A satisfies the specification
of B. A problem B is said to be solvable with a class C if there is an algorithm which
solves B using any failure detector of C. A problem B1 is said to be reducible to a
problem B2 with class C, if any algorithm that solves B2 with C can be transformed to
solve B1 with C. If B1 is not reducible to B2, we say that B1 is harder than B2.

3.4 Election Problem

The Election problem is described as follows: At any time, at most one process considers
itself the leader, and at any time, if there is no leader, a leader is eventually elected. More
formally, the Election Problem is specified by the following two properties:

− Safety: All processes never disagree on a leader.
− Liveness: At any time, if there is no leader, a leader is eventually elected.

3.5 Consensus Problem

In the Consensus problem (or simply Consensus), every participant proposes an input
value, and correct participant must eventually decide on some common output value
[7,13]. Consensus is specified by the following conditions.

− Agreement: no two correct participant decide different values;
− Uniform-Validity: if a participant decides v, then v must have been proposed by

some participant;
− Termination: every correct participant eventually decides.

Chandra and Toueg have stated the following two fundamental results [6]:

− If f < |Ω|, Consensus is solvable with either S or W.
− If f < |Ω|/2 , Consensus is solvable with either S or W.

4 Failure Detector to Solve Election

 As we pointed out in the motivation and related works, Election can be solved with
the Perfect failure detector P, which can indeed be implemented in a synchronous

A failure detector class C1 is said to be stronger than a class C2, (written C1 C2),
if there is an algorithm which, using any failure detector of C1, can emulate a failure
detector of C2. Hence if C1 is stronger than C2 and a problem B is solvable with C2,
then B is solvable with C1. The following relations are obvious: P Q, P S, P

Q, P S, S W, S W, Q W, and Q W. As it has been shown
that any failure detector with Weak Completeness can be transformed into a failure
detector with Strong Completeness [8], we also have the following relations: Q P,

Q P, W S and W S. Classes S and P are incomparable.

 Revisiting the Election Problem in Asynchronous Distributed Systems 145

system. One might naturally wonder whether P is indeed the weakest failure detector
for Election among failure detectors that are implement-able only in a synchronous
system. We show in the following that the answer is “no” and we derive an interesting
observation on the practical solvability of Election.

We define the Confirmatory failure detector C, which is weaker than P. We show
that, to solve Election, (1) C is necessary (for any environment); (2) C+ S is
sufficient for any environment with a majority of correct processes. We then show
that (3) P is strictly stronger than C+ S for any environment where at least one
processes can crash in a system of at least three processes.

4.1 Confirmatory Failure Detector

Each module of failure detector C outputs a subset of the range 2 . Internally every
failure detector module C uses two lists, i.e. a failure detection list, FL and a confirm
detection list, CL. Initially the FL and the CL are empty; i.e. there is none which the
failure detector C suspected or confirmed in . If any process is once confirmed to be
correct by any correct process, then the confirmed process id is inserted into the
conforming process CL list. But if the confirmed process is suspected to be crash, the
confirmed process id is removed from the CL list and it is inserted into the FL list.
The module of failure detector C in process i has the variables, FLi and CLi
respectively. Let HC be any history of such a C. Then HC(i,t) represents the set of
processes that process i suspects at time t. For each failure pattern F, C(F) is defined
by the set of all failure detector histories HC that satisfy the following properties:

• Confirmatory Completeness: If a process that was confirmed to be correct by any
correct process crashes, then there is a time after which some confirming process
permanently detects the process crash. More precisely:

i,j , i correct(F): j CLi j crashed(F) t T, t′ ≥ t ,
i :j H(i, t’)

• Confirmatory Accuracy: A process that has been confirmed to be correct is not
suspected again before crash by the conforming processes. More precisely:

t T, i,j , i,j correct(F) : j CLi j crashed(F) j H(i, t)

Note that Confirmatory Completeness does not require the every crashed process to
be eventually suspected, but only requires that if a process that was at least once
confirmed to be correct by any process crashes, then eventually, the failure detector
module C of the correct process i who has already confirmed its living keeps
permanently outputting the process id.

If the failure detector module C of a process i outputs some crashed process ids,
then the process i does accurately know that they have crashed since they had already
been confirmed to be correct. But about those processes that had never been
confirmed, the failure detector module C of i does not necessarily know whether they
crash (or which processes crash).

Note also that Confirmatory Accuracy does preclude the possibility for a confirmed
process crash to be detected before a confirmed process has actually crashed; i.e., the
process that is confirmed to be correct by a correct process is never suspected before crash.

146 S. Bauk

4.2 The Necessary Condition for Election

We show here that if a failure detector D solves Election then D can be transformed
into C. We give an algorithm in Fig. 2 that uses Election to emulate, within a
distributed variable output(C), the behavior of failure detector C. We assume the
existence of a function election() which elects a high priority process as a leader.
Different instances of this function are distinguished with an integer k. Each process i
has a local copy of output(C), denoted by output(C)i, which provides the information
that should be given by the local failure detector module of C at process i.

 The basic idea of our algorithm is the following. The value of output(C)i is
initially set to . Every process i performs a sequence of rounds 1,..k,... Within each
round k, process i invokes election() and waits until a result of election is returned. If
the newly elected leader is identical with the current leader, then i directly move to
the next round. Otherwise, i puts the id of current leader into output (C)i since the
current leader has crashed.

Fig. 2. Emulating C using Election

Lemma 4.1. The algorithm of Fig.2 uses Election to implement C.

Proof. We show below that output(C) satisfies Confirmatory Completeness and
Confirmatory Accuracy properties of C.

• Consider Completeness. Let j be the leader that crashes at time t and let i be any
correct process. By Liveness property of Election, the j was confirmed to be correct
by all correct processes. Therefore j had been inserted in CLi of i after t. Assume by
contradiction that i does never put the process j into output(C)i. This means that
process i remains in the while loop of the algorithm. There are two cases of this
scenario; (1) blocked forever waiting for the election() function to return or (2)
keeps infinitely incrementing k, invoking election() and only deciding the process j
as a current leader. But by the liveness property of Election, i does never remain
blocked forever waiting for the election() function to return. Since the leader
process j crashes at time t, there is an integer k such that for every k’≥ k, the
process i does not invoke instance k’ of Election. By the safety and the liveness
properties of Election, the instance k’ of election() returns the new leader
process that is different from the current leader, i.e., not the crashed leader j:

/* Algorithm executed by every process i */

1 k := 1;
2 FLi : = ; CLi := ;
3 current_leaderi := election();
4 CLi := current_leaderi;
5 while (election() = current_leaderi) do
6 k := k + 1;
7 FLi := current_leaderi;
8 output (C)i := FLi ;

 Revisiting the Election Problem in Asynchronous Distributed Systems 147

a contradiction. By the algorithm, once i puts the j into FLi and output(C)i, i does
never change the value of output(C)i. Hence, there is a time after which output(C)i
permanently contains the crashed processes which have already been confirmed to
be correct. So it means that output(C) satisfies Confirmatory Completeness.

• Consider now Accuracy. Let i be a correct process and assume that output(C)i
contains j after a time t. By the algorithm of Fig. 2, this can only be possible if
some instance k of election() returns a newly elected leader that is different from
the current one at process i. Given that all correct processes agree with one leader
by the safety property of Election, the new leader can be returned only if the
current leader crashes. That means that a leader, the conformed process, is not
suspected before crash. Hence output(C) satisfies Confirmatory Accuracy.

The following proposition follows directly from Lemma 4.1.

Proposition 4.2. If any failure detector D solves election, then C D.

4.3 The Sufficient Condition for Election

Figure 3 describes a simple algorithm that transforms Consensus into Election using
the failure detector C. The algorithm uses Consensus as a black-box, represented by a
function consensus(): a process calls the function with new candidate for leader as a
parameter and the function eventually returns a new leader. So the function satisfies
the Safety and Liveness properties of Election.

The basic idea of our Election algorithm of Fig.3 is the following. When the
election() is invoked, the process waits for an output from C to ensure the leader crash.
If the process received from C the information that current leader has crashed, the
process invokes consensus() with a new candidate for leader and decides the new leader
returned by consensus(). Otherwise the process decides the current leader. We assume
that every process i, either crashes, or invokes election() in Fig.3. The new leader
candidate of participant i is denoted new_candidate that is decided by the Next function.
The Function election() terminates by the execution of a “return election_result”
statement, where election_result is a leader that is current one or newly elected one:
when i executes return election_result, we consider that i decides its a leader.

function election()
/* Algorithm executed by every process i */
1 wait until received from output(Ci);
2 if (current_leader Ci) then
3 new_ candidatei := Next (current_leaderi);
4 election_resulti := consensus(new_ candidatei) ;
5 else
6 election_resulti := current_ leaderi ;
7 return election_resulti ;

Fig. 3. Transforming Consensus into Election with C

148 S. Bauk

Lemma 4.3. The algorithm of Fig.3 uses C to transform Consensus into Election.

Proof. We consider the properties of Election separately.

• Safety. By the Confirmatory Accuracy property of C (current_leader Ci), a
leader crash is detected only if the current leader has crashed. Any participant that
decides an election_result must have decided election_result through consensus().
By the Agreement property of Consensus, no two processes can decide differently,
which implies the Safety property of Election.

• Liveness. If a leader process crashes, then by the Confirmatory Completeness
property of C, some process eventually detects a leader crash. By the Validity
property of Consensus, a process decides its leader only if some process i has
invoked consensus() with a prospected leader as a parameter. By the Termination
property of Consensus, every correct process eventually decides a leader which
ensures the Liveness property of Election.

We define here the failure detector C+ S. Each module of C+ S outputs a subset of
. Failure detector C+ S satisfies the Confirmatory Completeness and Confirmatory

Accuracy properties of C, together with the Strong Completeness and Eventual Weak
Accuracy properties of S. Since Consensus is solvable with S for any
environment with a majority of correct processes [8], then the following proposition
follows from Lemma 4.3:

Proposition 4.4. C+ S solves Election for any environment where a majority of
processes are correct.

4.4 Confirmatory Failure Perfection Is Not Perfection

Obviously, failure detector P can be used to emulate C+ S for any environment, i.e.,
C+ S P. We state in the following that the converse is not true for any environment
where at least one processes can crash in a system of at least three processes.

Proposition 4.5. P C+ S for any environment where at least one process can crash
in a system of at least three processes.

Proof. (By contradiction). We assume that there is an algorithm AC+ S P that
transforms C+ S into failure detector P. Then we show the fact that P transformed by
above algorithm satisfies Strong Completeness but it does not satisfy Strong Accuracy:
So it is a contradiction. We denote by output(P) the variable used by AC+ S P to
emulate failure detector P, i.e., output(P)i denotes the value of that variable at a given
process i. Consider three different processes i, j and k in . Let F1 be the failure pattern
where the process i, which is not the conformed process, crashes at time t0 and other
process crashes. Let H be the failure detector history where all processes output {i}at
time t1 where t0 t1. Clearly, H belongs to C+ S(F1). Since variable output(P) satisfies
Strong Completeness, then there is a partial run of A C+ S P, R1 = < F1, H, I, S, T >,
such that, at t2 where t2 T and t1 t2, {i} output(P)k. Now consider F2 the failure
pattern where no process crashes. Clearly, H also belongs to C+ S(F2). Since C+ S

 Revisiting the Election Problem in Asynchronous Distributed Systems 149

outputs exactly the same values in F1 and F2 (History H), then R2 = < F2, H, I, S, T > is
also a partial run of A C+ S P. But in R2, at t2, i output(P)k and i correct(F2), which
means that P violates Strong Accuracy: a contradiction.

5 Concluding Remarks

The importance of this paper is in extending the applicability field of the results,
which Chandra and Toueg have studied on solving problems, into the Election
problem in asynchronous system (with crash failures and reliable channels)
augmented with unreliable failure detectors.

So far the applicability of these results to problems other than Consensus has been
discussed in [6,13,14,15]. In [8], it is shown that Consensus is sometimes solvable
where Election is not. In [7], it was shown that the weakest failure detector for
Election is the Perfect failure detector P, if we consider Election to be defined among
every pair of processes. If we consider however Election to be defined among a set of
at least three processes and at least one can crash, this paper shows that P is not
necessary for Election. An interesting consequence of this result is that there exists a
failure detector that is weaker than Perfect failure detector P.

This paper introduces the Confirmatory failure detector C, and shows that: (1) C is
necessary to solve Election, and (2) C+ S is sufficient to solve Election when a
majority of the processes are correct. A corollary of our result above is that we can
construct a failure detector that is strictly weaker than P, and yet that solves Election.

Is this only theoretically interested? We believe not, as we will discuss below.
Interestingly, failure detector C+ S helps deconstruct Election: intuitively, S conveys
the pure agreement part of Election whereas C conveys the specific nature of detecting a
leader crash. Besides better understanding the problem, this deconstruction provides some
practical insights about how to adjust failure detector values in election protocols.

In terms of the practical distributed applications, we can induce some interesting
results from the very structure of C+ S on the solvability of Election. In real
distributed systems, failure detectors are typically approximated using time-outs. To
implement a failure detector C, one needs to choose a large time-out value in order to
reduce false leader failure suspicions. But to implement S, a time-out value that is
not larger than the one for C is needed. Therefore an election algorithm based on such
a C+ S might reduce a possibility to violate the safety condition but speed up the
consensus of electing new leader in the case of a leader crash.

References

1. G. LeLann: Distributed Systems–towards a Formal Approach. Information Processing 77,
B. Gilchrist, Ed. North–Holland, 1977.

2. H. Garcia-Molina: Elections in a Distributed Computing System. IEEE Transactions on
Computers, C-31 (1982) 49-59

3. H. Abu-Amara and J. Lokre: Election in Asynchronous Complete Networks with
Intermittent Link Failures. IEEE Transactions on Computers, 43 (1994) 778-788

150 S. Bauk

4. G. Singh: Leader Election in the Presence of Link Failures. IEEE Transactions on Parallel
and Distributed Systems, 7 (1996) 231-236

5. M. Fischer, N. Lynch, and M. Paterson: Impossibility of Distributed Consensus with One
Faulty Process. Journal of ACM, (32) 1985 374-382

6. T. Chandra and S.Toueg: Unreliable Failure Detectors for Reliable Distributed Systems.
Journal of ACM, 43 (1996) 225-267

7. L. Sabel and K. Marzullo. Election Vs. Consensus in Asynchronous Distributed Systems.
In Technical Report Cornell Univ., Oct. 1995

8. T. Chandra, V. Hadzilacos and S. Toueg: The Weakest Failure Detector for Solving
Consensus. Journal of ACM, 43 (1996) 685-722

9. J. E. Hopcroft and J. D. Ullman: Introduction to Automata Theory, Languages and
Computation. Addison Wesley, Reading, Mass., 1979

10. Garey M.R. and Johnson D.S: Computers and Intractability: A Guide to the Theory of NP-
Completeness. Freeman W.H & Co, New York, 1979

11. Eddy Fromentin, Michel RAY and Frederic TRONEL: On Classes of Problems in
Asynchronous Distributed Systems. In Proceedings of Distributed Computing Conference.
IEEE, June 1999

12. Hadzilacos V. and Toueg S: Reliable Broadcast and Related Problems. Distributed
Systems (Second Edition), ACM Press, New York, pp.97-145, 1993

13. R. Guerraoui: Indulgent Algorithms. In: Proceedings of the ACM Symposium on
Principles of Distributed Computing, New York: ACM Press 2000

14. Schiper and A. Sandoz: Primary Partition: Virtually-Synchronous Communication harder
than Consensus. In Proceedings of the 8th Workshop on Distributed Algorithms, 1994

15. R. Guerraoui and A. Schiper: Transaction model vs. Virtual Synchrony model: bridging
the gap. In: K. Birman, F. Mattern and A. Schiper (eds.): Distributed Systems: From
Theory to Practice. Lecture Notes in Computer Science, Vol. 938. Springer- Verlag, Berlin
Heidelberg New York (1995) 121-132.

J. Cao, W. Nejdl, and M. Xu (Eds.): APPT 2005, LNCS 3756, pp. 151 – 163, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Scheduling Scheme with Fairness and Adaptation in the
Joint Allocation of Heterogeneous Resources∗

Yu Hua1, Chanle Wu1, and Mengxiao Wu2

1 School of Computer, Wuhan University, Wuhan, China
2 Department of Computer Science, Vrije University, Amsterdam, Netherlands

yhuastarmpls@hotmail.com

Abstract. Generally speaking, packets transmitted from source to destination
need not only bandwidth and buffer but also computing and processing capacity
in each node, available wavelength in optical networks and power in wireless
sensor networks. So, joint and fair allocation of heterogeneous resources (such
as, bandwidth, buffer and processing) is rather pivotal and necessary for
realizing differentiated end-to-end QoS guarantee. In this paper, we proposed
the framework and algorithm, realized fair allocation of heterogeneous re-
sources, and designed the Heterogeneous-Deficit Round Robin (H-DRR) algo-
rithm, which was the improvement to DRR. The comparison of performance
with and without unfriendly packets stated that H-DRR could realize the fair
allocation of heterogeneous resources and provide better QoS guarantee,
especially in the differentiated situation.

1 Introduction

Packets transmitted from source to destination need not only bandwidth and buffer
but also computing and processing capacity in each node, available wavelength in
optical networks and power in wireless sensor networks. In particular, high-speed
optical networks have been employed as major technology in the backbone internet.
In consequence, the rates of transmission become faster and faster and bandwidth may
not be bottleneck in some conditions. On the other hand, various novel techniques and
new service need processor check optional headers of packets and deal with all kinds
of network events according to the control information. The capacity of processing
can be the bottleneck in real network environments [1].

However, traditional best-effort service models can’t provide fair allocation of het-
erogeneous resources. In order to realize QoS provision, the scheduling algorithm can
be considered as a good approach and key component in the QoS-enabled networks.
So, the ideal implementation is the scheduling algorithm supporting the allocation of
heterogeneous resources in the unified and fair manner. This is the motivation of the

∗ Supported by the National High Technology Development 863 Program of China under Grant

No. 2003AA001032; National Key Laboratory in Software Engineering under Grant
No.SKLSE03-14; the Natural Science Foundation of Hubei Province of China under Grant
No. 2001B057.

152 Y. Hua, C. Wu, and M. Wu

paper. As far as scheduling algorithm is concerned, its main function is to select the
next packet to transmit, decide when it can be transmitted and which port it will be
sent, based on pre-defined transmission metrics. Lots of works in this research area
has been done during last decade. In addition, the current scheduling algorithms, can
be classified as sorted-priority and frame-based methods. In the frame-based algo-
rithms, time is divided into several frames and packets can be transmitted on the per-
frame basis. Deficit Round Robin (DRR) [3] is a credit-based extension of classical
Weighted Round Robin (WRR) with lower complexity than WFQ. DRR has O (1)
worst-case per packet complexity if the operation number selecting the next packet is
constant with respect to the number of active flows [4]. Corresponding improvements
include other round-robin algorithms, such as Pre-order Deficit Round-Robin (PDRR)
[5] and Smoothed Round-Robin (SRR) [6]. As stated in [3] and [4], flows in DRR can
share the bandwidth fairly with variable packet lengths.

2 Related Works

To the best of our knowledge, many previous research works are based on fair alloca-
tion of single resource. Recently some researchers begin to pay more attention to the
allocation of multiple resources. Yunkai Zhou and Harish Sethu [1], [7] proposed the
methods of fair allocation among multiple resources. Vijay Ramachandran, Raju
Pandey and S-H. Gary Chan [8] also presented some ideas on fair allocation of CPU
and bandwidth resources. The method utilized feedback mechanism to improve the
performance.

The main disadvantages of current ideas and methods can be summarized as fol-
lows: Firstly, most works focus on the fair allocation of the single resource, such as
bandwidth or buffer. Therefore, the end-to-end QoS guarantee can’t be achieved in
real environments, due to lack of fairness among multiple heterogeneous resources.
Secondly, lots of algorithms may be implemented in the static or partly dynamic envi-
ronments, but once faced with burst traffic, they are hard to work well owing to lack
of the adjustable feedback mechanisms and information exchange. Thus, high com-
plexity is increased naturally. Thirdly, although several papers have presented some
concrete algorithms for fair allocation of heterogeneous resources, their core ideas
were to append other kinds of resources as new parts to existing scheduling algo-
rithms. Characters of resources and relationships among them could seldom be con-
sidered and analyzed comprehensively.

3 Contributions in This Paper

Our contributions can be stated in brief as follows: Firstly, a kind of scheduling archi-
tecture was introduced and explained in detail with guarantee bounds based on fair-
ness measure. In this paper, fair mechanisms for different resources were separate in
data plane and interactive each other in the control plane. Secondly, we look on the
real-time utilization of buffer space as indication of congestions happening. Accord-
ing to the information, proposed methods may be used in the dynamic conditions and
adjustment with feedback could be obtained in simple way. Thirdly, in order to en-

 Scheduling Scheme with Fairness and Adaptation in the Joint Allocation 153

hance the robustness and security, the system also presented techniques to detect and
drop the unfriendly packets and ill-behaved flows. Fourthly, we bring forward im-
proved DRR algorithm (i.e., Heterogeneous-DRR), which was the prototype of fair
allocation of heterogeneous resources and could be implemented in current network
environments.

4 Scheduling Architecture and Analysis

4.1 Fairness Measure

The definition of fairness is rather important for achieving the fair allocation of het-
erogeneous resources. In classical Generalized Processor Sharing (GPS) theory [9],
the fairness of GPS server can be defined as:

()
() Nji

ttW

ttW

j

i

j

i ,,2,1,,
,

,

21

21 L=≥
φ
φ

 (1)

which confines transmitted amounts of flow i , ()21 , ttWi , during the time interval [t1,t2]

(GPS server serving N flows is characterized by N positive real number,

Nφφφ ,,, 21 L). The GPS model is rather idealized and need partition packets into in-

finitesimal parts in order to realize the policy of fair allocation. In fact, a kind of
scheduling algorithm is fair if and only if the fair measure is bounded. In the series of
WRR scheduling algorithms, the basic idea is based on the defined weights, which
may determine the fair bounds. For example, in the classical WRR, the form can be
described as:

() ()
1

,, 2121 ≤−
j

j

i

i
ttSttS

ωω
 (2)

in which, []21 , ttSi is the amount of flow i transmitted during the time interval [t1,t2],

and iω is the integer weight of flow i .Furthermore, in the design of round robin ap-

proach [10], the service of different flows i and j can be presented as:

() ()
ε

ω
ωω

ωω
=

+−
≤−

j

ij

j

j

i

i
ttSttS 1,, 2121 (3)

Through analyzing the definition and methods above, we present a generalized fair-
ness measure. Usually, the fairness measure should manifest different contexts. Thus,
the fairness bound should be made up of two parts, which include the common service
discrepancy [4] and adjustable factor based on the feedback information. In this pa-
per, the representation of fairness measure can be given as:

() ()
Feedback

j

j

i

iN

R

ttS

R

ttS

C

R
σε +≤− 2121

,,
 (4)

154 Y. Hua, C. Wu, and M. Wu

C is the capacity of the system and iR is the number of resources required by flow i .

ε is the same expression as common service discrepancy bound [4]. Feedbackσ is the

adjustable factor based on the feedback information, which may reflect current net-
work state. Without loss of generality, the meaning of ()21, ttSi is extended in order to

support fair allocation of heterogeneous resources and can be defined to represent the
service provided by the corresponding single or compound resources during the time
interval [t1,t2]. Here, the service is the combination of computing and bandwidth abili-
ties with adapted weights, which have the interval between zero and one. Of course,
the allocation of weights between two resources should be according to the actual
environments and current state information of resources available.

4.2 Proposed Architecture

The proposed architecture of fair scheduling for heterogeneous resources is presented
in Fig.1. The architecture is composed of two parts: control plane and data plane.
When the classified packets arrive, they may enter different queues according to their
priorities. The different DC (i.e., Deficit Counter) values represent different amounts

1DC

iDC

NDC

iABuffer _

jBBuffer _

OEnabledFIFFair − jPort

Fig. 1. Architecture of Fair Scheduling for Heterogeneous Resources in Dynamic Environments

of resources, which determine corresponding levels of service. Without loss of gener-
ality, different DC values are sorted in order and each DC value is defined for each
queue before processor scheduler. DC1 is the biggest number and DCN is the smallest
number. In the data plane, two queue sensors are used to collect information of queue
lengths in order to make dynamic adjustment. The sensors check the changes of queue
length, gather state information from different queues and then send them to the
queue controller in the control plane.

 Scheduling Scheme with Fairness and Adaptation in the Joint Allocation 155

After the queue information is received and analyzed in the queue controller, the
corresponding adjustable strategy based on the pre-defined SLA will be transmitted
to the UnifiedManager. Then, it may send out modified DC values to processor
scheduler or revised rates to bandwidth scheduler in coordinated manner. In this
way, two schedulers may adjust their rates for managing arriving packets according
to the dynamic feedback information. This is a simple description of the proposed
architecture.

The strategy in this architecture is differentiated based on the packets’ priorities
and attributes. The main aim of the processor scheduler is to fairly allocate time slices
of processing data to the prioritized queues in the round-robin manner. During this
process, packets in high-prioritized queue have better guarantee in throughout and
delay performance, but corresponding guarantee should be limited and bounded in
order to avoid other packets starving in transmission time. Once the scenario happens,
packets in lower priority queues would be dropped largely and nearly not sent nor-
mally. It is acceptable that packets in higher priority queues may achieve better QoS
guarantee and nevertheless should not be permitted to occupy resources all the time.
At the same time, among different lower priority queues, the system may drop packets
in lower priority queues, but the policy of dropping must be made fairly.

When packets are permitted to enter the fair-enabled FIFO queue (i.e., the queue
before bandwidth scheduler), they should be served and usually can’t be dropped
anyway before they are allocated into corresponding output ports. An example of
analogy is helpful to explain and understand this viewpoint. The process described
here is similar to that of checking tickets in airport waiting room and boarding the
plane. That is to say, when passengers arrive at the airport waiting room, they are
classified and enter different passages (i.e., queues before processor scheduler)
according to their destination and plane ticket grade (i.e., common or VIP). Once
checkers look over tickets and baggage, passengers can be permitted to enter the
boarding queues (i.e., fair-enabled FIFO queue) waiting for boarding the planes and
of course they could not be dropped in the general way. Therefore, fair-enabled
FIFO queue should be considered to need better guarantee than queues before proc-
essor scheduler.

The queue before bandwidth scheduler is called fair-enabled FIFO queue. Because
the scheduling in processor scheduler is in DRR way for time slices of processing, the
allocation has been fair largely among different queues. The packets in queues with
higher priority have already contained longer processing time represented by the
bigger DC values. Basic and essential opportunity of transmission has also been pro-
vided to the packets in queues with lower priority. Thus, differentiated DRR manner
can provide corresponding QoS guarantee to packets in queues with different priori-
ties. In addition, this manner also avoids some packets occupying the resources all the
time and may provide valid transmission time to packets in queues with lower prior-
ity. This is the essence of fairness. This queue is based on the fair allocation and can
be called fair-enabled. We emphasize that packets in higher priority queue should not
occupy the bandwidth at all times. If many resources are occupied all the while, it is
unfair. Therefore, the fair-enabled queue should be FIFO, not parallel classified
queues. Thus, packets of different levels would be connected with each other in one-
by-one way and only difference among them is that they have different sizes, which
can be proportional to allocated time slices in previous processing stage.

156 Y. Hua, C. Wu, and M. Wu

Table 1. H-DRR scheduling algorithm

Initialization:
ActiveList=NULL;

readyBBufferABuffer ji == __ ; /* buffers before processor and bandwidth

schedulers.*/
Put initial values to parameters, P_DC, B_DC, PQ, BQ, respectively.
Enqueue Module; /*Invoked by packet p from flow i arrives*/

p : =ArrivingPacket; i : =Flow (p);
If (iThresholdpLength >)() /* If the length of packet p exceeds the threshold

of flow i */
 Then Drop the packet p ; /* the packet p is considered as the ill behavior ac-

cording to SLA.*/
End If;
If (ExistsInActiveList P (i) = = FALSE)

Then Append flow i to ActiveList P ; /* ActiveList P is the list in processor

scheduler.*/
;0_ =iDCP

End If;
If (ExistsInActiveList B (i) = = FALSE)

Then Append port j to ActiveList B ; /* ActiveList B is the list in bandwidth

scheduler.*/
;0_ =jDCB

End If;
Dequeue Module: /* Always running */
While (TRUE) do

 If (ActiveList P ≠ NULL) then

i : =HeadOf ActiveList P ;

Remove flow i from ActiveList P ;

;__ iii PQDCPDCP +=

End If;
If (ActiveList B ≠ NULL) then

j : =HeadOf ActiveList B ;

Remove port j from ActiveList B ;

 jjj BQDCBDCB += __ ;

End If;
If ExceededBBuffer =_ /* the length of BBuffer _ exceeds pre-defined con-

stant.*/
 Then If there exists the excess bandwidth available
 Then jjj DCBDCB β+= __

 Scheduling Scheme with Fairness and Adaptation in the Joint Allocation 157

 Else iii DCPDCP α−= __ ;

If ExceededABuffer i =_

 Then Carry out dropping strategy according to pre-defined
SLA;

 End If;
 End If;

 Else If ExceededABuffer i =_

 Then If AvaiablegprocesExcess =sin_
 Then iii DCPDCP α+= __ ;

 Else Carry out dropping strategy according to pre-
defined SLA;

 End If;
End If;

End If;
While (QueueIsEmpty(i) = = FALSE) do

p =HeadOfLinePacketInQueue(i);

If (jDCBpPacketSize _)(>) or (iDCPpCostocess _)(_Pr >)

/*)(pPacketSize is the size of current packet p ;)(_ pCostP is processing

cost of packet p */

 Then break;
End if;

)(_Pr__ pCostocessDCPDCP ii −= ;

)(__ pPacketSizeDCBDCB jj −= ;

Execute Scheduling p ; /* this includes the concrete operations on packets.*/

End While;
If)_(iABufferEmpty

 Then ;0_ =iDCP

 Else)_(ip ABufferveListInsertActi ;

End If;
If)_(jBBufferEmpty

 Then ;0_ =jDCB

 Else)_(jB BBufferveListInsertActi ;

End If;
End While

4.3 Practical Scheduling Algorithm: H-DRR

H-DRR inherits the advantages of PPLS [1] and other improvements for DRR to some
extent. The pseudo-code of H-DRR is shown in table 1. We defined two kinds of vari-
ables, Processor Deficit Counter (P_DC) and Bandwidth Deficit Counter (B_DC),

158 Y. Hua, C. Wu, and M. Wu

which represent the deviation of ideally fair share by amounts of respective resource
served actually. At the same time, PQ and BQ are the Processor Quantum and Band-
width Quantum, respectively. Heterogeneous resources can be divided into units of
resources and resource allocation may be realized according to the number of units.
When packets arrive, Enqueue model will be executed at once. If packets are from a
new flow, the flow will be appended to ActiveList. Then, security checking based on
the pre-defined SLA is made in order to avoid the unfriendly packets. The main func-
tion of Dequeue module is to serve the arriving flows in round-robin way. When a
flow is visited, deficit counters, P_DC and B_DC, are added by corresponding quan-
tum. The packets with the same destination arrive at fair-enabled FIFO queue in portj
and the bandwidth may be allocated among different ports with round-robin way. In
this paper, fair-enabled FIFO queue in portj is also called Buffer_Bj for simplicity.
Furthermore, since the packets in Buffer_Bj need better QoS guarantee than packets in
Buffer_Ai queues (The viewpoint has been stated and analyzed in previous sections),
the state of Buffer_Bj is checked firstly. If the state of Buffer_Bj is Exceeded (i.e., the
length of the queue reaches or exceeds pre-defined threshold) and system has excess
resources, more units of bandwidth may be allocated. But if there is no excess re-
source, the processing rate should be reduced in order to decrease the number of
packets arriving at Buffer_Bj. Effective methods are to reduce P_DCi or use dropping
strategy if the state in Buffer_Ai is also Exceeded. In addition, if only Buffer_Ai is
Exceeded, more units of processing capacity should be allocated. At the same time,
packets from flow i can be scheduled if the length of packets is smaller than band-
width deficit counter and processing cost is smaller than processing deficit counter.
After scheduling, both deficit counters are reduced by different costs. At last, if the
current flow is still backlogged, it is inserted into the end of corresponding ActiveList.
Otherwise, deficit counters are set to zero again.

iα and jβ are adjustable factors in processor and bandwidth scheduler, respec-

tively. They can be used to increase or decrease loads in current router in order to
enhance the efficiency of resource utilization and avoid network congestion in
advance. The whole scheduling process is step-by-step. Concretely speaking, if
there are the idle resources in networks, values of iα and jβ can be gradually

added to the different DC values and more resources may be used in order to
improved network performance. On the contrary, if there are risks of network
congestion, their negative values can be gradually added to related DC values in
similar ways. Then, traffic and load would decrease and avoid network conges-
tion. Of course, values of iα and jβ are rather important and critical, but they are

difficult to determine accurately. Because this is a kind of fuzzy problem, to the
best of our knowledge, analysis methods based on statistical history data and
fuzzy mathematical techniques could be utilized for efficiently determining their
values. In addition, their concrete values may be defined as several units of corre-
sponding resource capacity in actual environments. There exists the mapping
relationship between service levels and values of iα and jβ . Values of iα and jβ

can be determined according to the percentage of corresponding DC values. Natu-
rally, queues with higher priority have larger percentage.

 Scheduling Scheme with Fairness and Adaptation in the Joint Allocation 159

5 Performance Study

5.1 Simulation Settings

The simulation process was divided into two parts.
Firstly, in order to verify the performance of different models in single node, the net-

work topology is designed in fig. 2 (left). Eight hosts were set as input traffic sources and
each host had 10 flows, which were corresponding to flow ID. Then, 80 flows can be
classified into four levels from the highest priority to the lowest one in sequence. In addi-
tion, each host generated packets according to ON (20 packets/s) and OFF (no packets)
periods independently and identically distributed with Pareto distribution.

Furthermore, the sizes of packets were randomly selected with a uniform distribution
varying from 300 bits to 3000 bits. Flows with higher priority require capacities of
processor varying in the rage of 30 M to 50 M and bandwidth in the range of 10Kbps to
30Kbps. Otherwise, flows with lower priority require capacities of processor varying in
the rage of 1M to 10M and bandwidth in the range of 1Kbps to 6Kbps. All output link
bandwidth were set to 800Kbps, and power of processor was 80 MHz. The time of
simulation could last for 400 seconds. In addition, the sources 4 and 5 that would send
higher rates of packets (i.e., 50 packets/s) from 200 second on were set as unfriendly
flows in order to verify the adaptation of different scheduling algorithms.

Fig. 2. Scenarios of single node with eight sources and four output ports and 3×3 mesh network

Secondly, the scenario of multiple paths and nodes was shown in fig.2 (right). The
traffic sources from15 nodes produced UDP packets with sizes of uniform distribution
varying from 200 to 2000 bytes. The routing tables in intermediate nodes were pro-
duced in advance according to the distance from destination. In each node, H-DRR
algorithm was executed and scheduled for heterogeneous resources. 15 nodes were
classified as five levels with different quanta. At the same time, the requirements from
different priorities could be described as the vector ()kQuanta Bandwidth, ,Processing ,

which denoted that flows with priority- k required the capacities of processing and
bandwidth and pre-defined quanta. Thus, the requirements from five levels were de-

160 Y. Hua, C. Wu, and M. Wu

fined as ()bkbpscycles 2000,35,45 , ()bkbpscycles 1500,25,30 , ()bkbpscycles 1200,17,20 ,

()bkbpscycles 700,10,12 and ()bkbpscycles 300,4,6 , respectively from the highest priority

to the lowest one . At the same time, T]200,300,400,500,600[== βα .The power of
processor was 140 MHz and the output link was 1000Kbps for different flows shared.
Packets from two nodes, node 6 and 10 with double sending rates, were unfriendly
from 250 second on. Other settings were the same as the first simulation. All results
were average values of simulation for 30 times.

5.2 Comparison and Analysis

In the simulation, the comparison of performance was made among FCFS (First
Come First Serve), WF2Q [2], DDRR (Double Deficit Round Robin, two independent
DRR schedulers utilized), PPLS [1] and H-DRR in the aspects of delay, throughput
and fairness guarantees with and without unfriendly packets according to different
intervals. Before unfriendly packets arrived, the comparisons of performance were in
usual conditions. The parameters, delay and throughput, was defined like other com-
mon principles. The fairness guarantee could be defined according to the deviation
from ideal GPS scheduling. At the same time, except PPLS, two schedulers (i.e.,
processor and bandwidth schedulers) were set for FCFS, WF2Q, and DDRR in order
to realize the allocation of heterogeneous resources.

0 50 100 150 200 250 300 350 400
0

500

1000

1500

2000

2500

3000

Legend
H-DRR
WF2Q
FCFS
DDRR
PPLS

T
h

ro
u

g
h

p
u

t
(K

b
p

s)

Time (second)

Unfriendly packets arrive

0 50 100 150 200 250 300 350 400
0

100

200

300

400

500

600

700

800

900

Legend
H-DRR
WF2Q
FCFS
DDRR
PPLS

T
h

ro
u

g
h

p
u

t
(K

b
p

s)

Time (second)

Unfriendly packets arrive

 Fig. 3. Throughput in scenario of single node Fig. 4. Throughput in scenario of multiple
nodes

Throughput:
The chats of comparison in throughput are presented in Fig.3 and 4. In Fig.3, the
packets in first 10 seconds were ignored in order to make traffic reach steady state.
Before the unfriendly packets arrived, the worst performance was FCFS among the
presented algorithms. The average throughputs for H-DRR, WF2Q, DDRR and PPLS
were 2654.32Kbps, 2487.56 Kbps, 2458.64 Kbps, 2486.24 Kbps, respectively. H-
DRR has some advantages of throughput in single node because processor and band-
width were scheduled cooperatively. However, when the unfriendly packets arrived,
the whole performance was affected and the throughput of FCFS was close to zero
because of no fair scheduling and management for preempted situations. At the same

 Scheduling Scheme with Fairness and Adaptation in the Joint Allocation 161

time, adaptation of other algorithms worked and negative effects may be reduced to
some extent. Nevertheless, the throughput of only H-DRR was approximate to former
data because the pre-checked mechanisms were utilized. In this point, the advantage
of H-DRR was rather clear.

In Fig.4, in the topology with multiple paths and nodes, H-DRR had the ability to
adapt and adjust when the wicked flows arrived. Furthermore, the average through-
puts of H-DRR, WF2Q, FCFS, DDRR and PPLS in the whole process were 795.24
Kbps, 602.64 Kbps, 175.39 Kbps, 548.67 Kbps and 624.68 Kbps, respectively.

Delay:
It is understood that fairness could not be guaranteed in FCFS for lack of fair schedul-
ing mechanism. Therefore, H-DRR, DDRR, and PPLS were selected for the compari-
son of delay guarantee. The results of simulation were shown in Fig.5-6 with delay
versus flow ID. However, H-DRR, PPLS and DDRR may have better differentiated
QoS guarantees with fair round-robin way. The average values in delay of H-DRR,
PPLS and DDRR were 0.017s, 0.067 and 0.084s, respectively, in fig.5. The approxi-
mate conclusion could also be made from the results in Fig.6. The average delay in H-
DRR was close to 0.027 and those in PPLS and DDRR were 0.094s and 0.245s re-
spectively among all flows.

0 10 20 30 40 50 60 70 80
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Legend
H-DRR
DDRR
PPLS

D
el

ay
 (

S
ec

o
n

d
)

Flow ID

0 2 4 6 8 10 12 14 16
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Legend
H-DRR
DDRR
PPLS

D
el

ay
 (

S
ec

o
n

d
)

Flow ID
Fig. 5. Delay in scenario of single node Fig. 6. Delay in scenario of multiple nodes

0 50 100 150 200 250 300 350 400
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Legend
H-DRR
WF2Q
DDRR
PPLS

D
ev

ia
ti

o
n

Time (second)

Unfriendly packets arrive

0 50 100 150 200 250 300 350 400
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Legend
H-DRR
WF2Q
DDRR
PPLS

D
ev

ia
ti

o
n

Time (second)

Unfriendly packets arrive

Fig. 7. Deviation in scenario of single node Fig. 8. Deviation in scenario of multiple nodes

162 Y. Hua, C. Wu, and M. Wu

General Fairness:
The performance in fairness could be reflected by the deviation from ideal GPS
scheduling. Because FCFS has no fair scheduling mechanism, FCFS was excluded in
this comparison again. In Fig.7, before 200 second, the results of fairness among
algorithms may be approximate overall. However, when the unfriendly packets ar-
rived, it may be observed that only H-DRR could provide efficient and robust fairness
guarantee. Although other algorithms had adaptation and made some adjustments,
corresponding mechanisms were derived from fair round-robin way without efficient
mechanisms to protect legal packets. Thus, the overall performance in fairness was on
the decline. In Fig.8, the corresponding conclusion could also be made according to
the simulation results. The average deviation values of algorithms other than H-DRR
were about 0.021 in Fig.7 and 0.026 in Fig.8.

Therefore, from the results of the different simulation environments, we can state
that H-DRR may achieve better performance in throughput, delay and fairness guar-
antee with and without unfriendly packets.

Instance Fairness:
Now, a concrete example is shown in order to verify the fairness performance of H-
DRR. One video application, one voice application and three data applications were
looked on as the traffic sources. Hereafter, the voice application has the higher prior-
ity and the data applications have the lower priority. Then, G.726 Encoder was util-
ized for producing voice packets with bit rate (32kbps) and packet length (80bytes).
MPEG-4 Encoder produced the packets of video application with bit rate (128kbps),
frame rate (50) and frame number (4000). At the same time, data applications were
based on the arrival rates with Poisson distribution. Their mean packet length was 400
bytes and average packet rate was 50 packets/s. In addition, the output bandwidth was
800kbps and initial vector PQ=[900, 700, 400, 350, 300]T for five applications and
BQ=[1500, 800]T for two output ports. Then, other settings were the same as the pre-
vious simulation.

Table 2. Delay results based on H-DRR algorithm

Scenario/Application Video Voice Data-1 Data-2 Data-3
Single node (ms) 96.5 135.7 250.6 269.5 347.5

multiple nodes (ms) 122.3 204.6 347.8 401.2 456.3

The delay results can be found in Table.2. Differentiated performance may be real-
ized based on the different pre-defined priorities. In contrast, packets with higher
priority has better delay guarantee than ones with lower priority. At the same time, the
differentiated percentage of the delay data is corresponding to the pre-defined PQ
values approximately. In two scenarios, the proportion of three types (video, voice
and data, and the average PQ value for data application is 350) is 1:2:5.2 according
to the defined PQ vector above. The simulation results show that the average propor-
tion of transmission delay is 1:62.1:94.2 . The result is close to the pre-defined propor-
tion and fairness for different types may be guaranteed efficiently.

 Scheduling Scheme with Fairness and Adaptation in the Joint Allocation 163

6 Conclusion

In this paper, we proposed an idea of improved fairness allocation. The idea empha-
sized not only fair allocation of heterogeneous resources but also the separate sched-
uling mechanisms according to different adaptation requirements. This method could
reduce waste of resources and improve the utilization. Corresponding architecture and
H-DRR algorithm have also been presented and analyzed in detail. Extensive simula-
tion results proved the methods feasible and efficient. Thus, the methods proposed
may efficiently solve the problem of network heterogeneous resources allocation in
cooperative manner. In addition, it may also contain other types of resources, such as
wavelength resource in optical network, capacity of power in wireless network, ability
of sensor in sensor network. Because the solutions in different environments hold the
same essence of fair scheduling, the method may be used for other concrete applica-
tions and can also be improved and expanded easily.

References

1. Yunkai Zhou, Harish Sethu, On Achieving Fairness in the Joint Allocation of Processing
and Bandwidth Resources, IWQoS 2003, LNCS 2707, (2003) 97–114.

2. Bennett, J.C.R.; Hui Zhang, WF2Q: Worst-case fair weighted fair queuing, in Proc. IEEE
INFOCOM, vol.1, (1996) 120–128.

3. M. Shreedhar, G. Varghese, Efficient fair queuing using deficit round-robin, IEEE/ACM
Trans. Networking, vol. 4, (1996). 375–385

4. Luciano Lenzini, Enzo Mingozzi, and Giovanni Stea Tradeoffs Between Low Complexity,
Low Latency, and Fairness with Deficit Round-Robin Schedulers IEEE/ACM Transaction
on networking, vol. 12,no. 4, (2004) 681 - 693

5. Shih-Chiang Tsao and Ying-Dar Lin Pre-order deficit round robin: a new scheduling al-
gorithm for packet-switched networks Computer Networks, Volume 35, Issue 2-3 (2001)
287 - 305

6. Chuanxiong Guo SRR: an O(1) time-complexity packet scheduler for flows in multiser-
vice packet networks IEEE/ACM Transactions on Networking Volume 12, Issue 6 (2004)
1144 - 1155

7. Yunkai Zhou and Harish Sethu Towards end-to-end fairness: a framework for the alloca-
tion of multiple prioritized resources, IEEE International Performance, Computing, and
Communications Conference, (2003) 495 - 504

8. Vijay Ramachandran, Raju Pandey and S-H. Gary Chan Fair resource allocation in active
networks Proceedings of Ninth International Conference on Computer Communications
and Networks, (2000).468-475

9. Parekh, A.K. Gallager, R.G. A generalized processor sharing approach to flow control in
integrated services networks: the single-node case IEEE/ACM Transactions on Network-
ing Volume: 1, Issue: 3 (1993) 344 – 357

10. Hemant M. Chaskar and Upamanyu Madhow Fair scheduling with tunable latency: a
round-robin approach IEEE/ACM Transactions on Networking (2003) 592 - 601

Solving the Symmetric Tridiagonal
Eigenproblem Using MPI/OpenMP

Hybrid Parallelization�

Yonghua Zhao1,2,3, Jiang Chen1, and Xuebin Chi1

1 Supercomputing Center, Computer Network Information Center,
Chinese Academy of Sciences, 100080, Beijing, China

{yhzhao, tschj, chi}@sccas.cn
2 Graduate School, Chinese Academy of Sciences, 100080, Beijing, China

yhzhao@sc.cnic.cn
3 Department of Computer Science, Dezhou University, 253000, Shandong, China

Abstract. We present a hybrid MPI/OpenMP parallel implementation
for the eigenvalues of symmetric tridiagonal matrices on cluster of SMP’s
environments. The algorithm is based on a divide-and-conquer method
which uses the split-merge technique and Laguerre’s iteration. We study
two different implementations of the algorithm: one based on MPI and
the other based on a hybrid parallel paradigm with MPI/OpenMP. We
take a coarse grain OpenMP approach to parallel implementation for
solving the eigenvalues of symmetric tridiagonal submatrices within a
SMP node. And dynamic work sharing is used in Laguerre’s iterations.
This has two effects: first, the amount of synchronization has been
reduced; secondly, this could have an effect on the load balance. In ad-
dition, we analyze the communication overhead on two different imple-
mentations. An experimental analysis on the DeepComp 6800 shows the
hybrid algorithm performs good scalability.

1 Introduction

The symmetric tridiagonal eigenvalue problem has been intensively studied on
parallel computers and hence forms a group of excellent algorithms developed
for this problem. There are quite a few reliable algorithms with various features;
these include parallel QR method [1,2], bisection and multisection method (B/M)
[3], the Cuppon’s Divide-and-Conquer method (D&C) [4] and homotopy method
[5]. Recently, Dhillon&Parlett proposed algorithm MRRR [7,8] that gives the
first stable O(nk) algorithm to compute k eigenvalues and eigenvalues of a sym-
metric tridiagonal matrix. Not only does the Dhillon/Parlett’s approach have
better serial complexity than other methods, but it also has a natural parallel
structure.
� This work is supported by the Chinese Hitech Program (863) “Supercomputing

Grid Node Construction” (2002aa104540), and the Informatization Construction of
Knowledge Innovation Project of the Chinese Academy of Sciences “Supercomputing
Environment construction and Applications” (INF105-SCE).

J. Cao, W. Nejdl, and M. Xu (Eds.): APPT 2005, LNCS 3756, pp. 164–173, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Solving the Symmetric Tridiagonal Eigenproblem 165

The divide and conquer algorithm has natural parallelism as the initial prob-
lem is partitioned into several subproblems that can be solved independently.
Basic strategy of the algorithm is to express the tridiagonal matrix as a row-
rank modification of a direct sum of two smaller tridiagonal matrices. The entire
eigenproblem can then be approximated by some methods in terms of the eigen-
problems of the smaller tridiagonal matrices, and this process can be repeated re-
cursively. Parallelizing tridiagonal eigensolvers based on the Divide-and-Conquer
algorithm have been researched by many individuals [6,10,11,12,14].

We chose to study the Divide-and-Conquer algorithm based on the rank-
two modification to divide the matrix and applying the Laguerre iteration to
approximate the eigenvalues. This algorithm is designed originally for shared-
memory parallel architectures by Li and Zeng [11]. Afterward, the algorithm
is designed and implemented on distributed-memory parallel architectures by
Treffz and Huang, et al [14]. The reason for choosing the algorithm is that it
contains most of the advantages of above mentioned algorithms:

1. The same parallel structure as Cuppen’s method but less memory contention.
2. The same accuracy as B/M.
3. The same flexibility as B/M in evaluating partial spectrum.
4. The same advantage as QR and B/M in separating the evaluation of eigen-

values and eigenvectors.

Largescale highly parallel systems based on cluster of SMP architecture are
today’s dominant computing. They can be thought of as a hierarchical two-level
parallel architecture, since they combine features of shared and distributed mem-
ory machines. As a consequence, the hybrid programming paradigm combining
message passing and shared-memory parallelism has become popular in the past
few years.

The hybrid model has already been applied in many applications, ranging
from [9,13] to atmospheric research [10], to molecular dynamics analysis [16].
Usually, programmers resort to MPI for the message passing communication,
using OpenMP as an interface for writing multi-threaded application. The adop-
tion of this model is facilitated by both the architectural developments of modern
supercomputers and the characteristics of a wide range of applications [15,18].

In this paper we focus on how to accommodate and exploit particular features
of Cluster of SMP’s environments in order to improve performance of eigensolvers
of symmetric tridiagonal matrices. We present a hybrid MPI/OpenMP parallel
implementation for the eigenvalues of symmetric tridiagonal matrices on cluster
of SMP architecture. We take into account two different implementations of
the algorithm: one based on MPI and the other one based on a hybrid parallel
paradigm with MPI/OpenMP. We take a coarse grain OpenMP approach to
parallel implementation for the eigenvalues of symmetric tridiagonal submatrices
within SMP node. And dynamic work sharing is used in Laguerre’s iterations
for load balance. An experimental analysis on the DeepComp 6800 shows the
hybrid algorithm shows good scalability.

This paper is organized as follows: the second section gives the basic structure
of the split-merge algorithm. The third section discusses the parallel algorithm

166 Y. Zhao, J. Chen, and X. Chi

in MPI and MPI/OpenMP hybrid. The fourth section analyzes the performances
of these two paradigms. We give some conclusions in the last section.

2 The Basic Structure of the Split-Merge Algorithm

Let T be an n × n tridiagonal matrix, in order to find some or all the zeros of
f(λ) ≡ det[T − λI], let us introduce the split matrix T̂ by replacing some bk in
T with zero, and write

T = T̂ +

⎛
⎜⎜⎜⎜⎝

...

· · · 0 bk

bk 0 · · ·
...

⎞
⎟⎟⎟⎟⎠ . (1)

The eigenvalues of T̂ ,

T̂ =
(

T0

T1

)
, (2)

consists of eigenvalues of T0 and T1.

Theorem 1. [11] Let

λ1 < λ2 < · · · < λn and λ̂1 < λ̂2 < · · · < λ̂n

be the eigenvalues of T and T̂ respectively. Then⎧⎨
⎩

λ̂1 ∈ (λ1, λ2)
λ̂i ∈ (λi−1, λi+1), 2 ≤ i ≤ n − 1
λ̂n ∈ (λn−1, λn)

(3)

⎧⎨
⎩

λ1 ∈ (λ̂1 − |bk| , λ̂1)
λi ∈ (λ̂i−1, λ̂i+1), 2 ≤ i ≤ n − 1
λn ∈ (λ̂n, λ̂n + |bk|)

(4)

It follows immediately from the above theorem the following corollary.

Corollary 1. For each i = 1, · · · , n, in the open interval (λ̂i, λi) (or (λi, λ̂i)
if λi < λ̂i), there is no λj or λ̂j for j = 1, · · · , n. In the other words, for
i = 1, · · · , n, let Li the open internal with end points λi and λ̂i, then {Li}n

i=1 is
the collection of disjoint intervals.

According to this corollary, for each i = 1, · · · , n the Laguerre iteration start-
ing from λ̂i can reach λi without any obstacles. Thus, to evaluate the i-th small-
est eigenvalue λi of T , the corresponding eigenvalue λ̂i of T̂ is always used as a
starting point in our algorithm.

The eigenvalues of T̂ consist of the eigenvalues of T0 and T1. To find the
eigenvalues of T0 and T1, the splitting process may be applied recursively until

Solving the Symmetric Tridiagonal Eigenproblem 167

it become a 2 × 2 or 1 × 1 eigenvalue problem or it can be terminated with an
m×m problem and we can use the QR algorithm or some other method to solve
the tridiagonal problem. The sequential split-merge algorithm has the structure
which can be viewed as a “tree” of tasks, as shown in Fig. 1. Task TL(m) is to
solve a small matrix of order m that can be found by some algorithm such as QR
decomposition. TL(2im) is to approximate the eigenvalues for the submatrix of
order 2im by Laguerre’s iteration.

Stage k

Stage 2

Stage 1

TL(2
k

m)

TL(4m) TL(4m)

merge-sort merge-sort

TL(2m)

merge-sort

TL(2m)

merge-sort

TL(2m)

merge-sort

TL(2m)

merge-sort

TL(m)TL(m) TL(m)TL(m)TL(m)TL(m) TL(m)TL(m) TL(m)TL(m) TL(m)TL(m)Stage 0

......

..
..
..

Fig. 1. Task tree of the algorithm

3 Parallel Algorithm

3.1 MPI Parallelization Algorithm

The algorithm is well-suited to efficient parallelization. First, when the matrix
T is split in a tree as in Fig. 1, solving the eigenproblem of each submatrix is
independent of the others and thus can be done by one processor or a group of
processors. Next, from down to up, we can regard the root in each subtree of the
graph as a master processor and all other processors are leaves. Each processor
at leaf sends its approximated eigenvalue to the master processor of subtree.
That processor then gathers and sorts the eigenvalues, and scatters them back
to all the other processors in the subtree. Eigenvalues of symmetric tridiago-
nal submatrix at stages can be evaluated separately by performing independent
Laguerre’s iteration on all processors in the subtree.

For convenience, let us assume that the number of processors and the order
of input matrix are both a power of two, 2k and 2t, respectively. Fig. 2 shows
MPI parallel algorithm. The algorithm first divides the original matrix into 2k

submatirces of order 2s (s = t − k), then computes the eigenvalues of these
submatrices in parallel on different processors. At stage 0 those computations
that are carried out on each processor are completely independent and they
do not involve performing any kind of communications. At the next stage, the
master processor gathers eigenvalues from other processors, merges and sorts the
eigenvalues, then scatters them among the processors; use Laguerre’s iteration
to find 2s eigenvalues corresponding to task TL(2s+j).

168 Y. Zhao, J. Chen, and X. Chi

Algorithm 1. MPI parallel split-merge method
execute task T(2s)

do j=1 to k

master proc = int(myid/2j)*2j

if (master proc .eq. myid)

gather eigenvalues from other proc in the same group
merge and sort 2s+k received eigenvalues
distributes them evenly among myid, ..., myid+2j − 1

else

Send 2s approximated eigenvalues to master proc

Receive 2s from process master proc

endif

use Laguerre’s iteration to find 2s eigenvalues corresponding to
task TL(2s+j)

enddo

Fig. 2. MPI parallel split-merge algorithm

This algorithm has been successfully implemented on distributed memory
machines [14]. The inherent variance in the number of Laguerre’s iterations jus-
tified more sophisticated approaches to load balancing.

3.2 Hybrid MPI/OpenMP Parallelization

In the MPI/OpenMP hybrid paradigm, each SMP node runs a multi-thread
MPI process. In order to create an overall high efficient algorithm, we have
to stick the algorithms for hierarchical architecture. In the MPI algorithm of
eigenvalue problem of symmetric tridiagonal matrix, there are three different
operations: (I) each process computes the eigenvalues of a divided submatrix; (II)
approximated eigenvalues are gathered, sorted and broadcast among processes;
(III) each process solves the approximated eigenvalues of combined submatrices
by Laguerre’s iterations. However in the MPI/OpenMP hybrid parallelization,
the algorithm divides the matrix onto the processes of node, so task (I) and task
(III) can be finished by the threads within node.

Multi-thread parallelization in task (I) is similar to the multi-process paral-
lelization in MPI. It includes the submatrix division and solving among threads
on the same node, approximated eigenvalues exchange among threads and solv-
ing approximated eigenvalues of combined submatrices by Laguerre’s iterations.
This can employ coarse grain SPMD OpenMP model. Due to shared memory
among threads within a node, when the matrix is divided onto threads, the
array region of each thread needs to be computed to map the array onto the
threads. The eigenvalues gathering and broadcasting can be operated via data
duplication rather than message passing.

OpenMP parallelism of task (III) solves the approximated eigenvaules of
combined submatrices on nodes. In a process, solving the eigenvalues of the sub-
matrix by Laguerre’s iteration is a loop operation. It can be simply performed

Solving the Symmetric Tridiagonal Eigenproblem 169

by OpenMP PARALLEL DO directive. Because the numbers of Laguerre’s it-
erations on different approximated threads may be different, this can lead to
load imbalance. To improve the load balance and reduce the amount of synchro-
nization involved, PARALLEL DO directive with SCHEDULE clause should be
adopted to distributed iterations among threads dynamically.

In the MPI/OpenMP hybrid paradigm, a process is performed by multi-
ple threads in parallel on a node. Comparing to the pure MPI paradigm, the
MPI/OpenMP hybrid paradigm can decrease the number of processes on the
same number of processors. In Fig. 2, because the number of iteration j equals
to log2[number of processes], the number of iterations in the MPI/OpenMP hy-
brid paradigm is less than that in the pure MPI program, which would diminish
communication overhead between processors. Moreover, because each iteration
needs a synchronization to interchange computed eigenvalues, the MPI/OpenMP
hybrid paradigm decreases the synchronization overhead as well.

In addition, all MPI communication in the MPI/OpenMP hybrid paradigm
occur within the OpenMP parallel region, but are handled by only one thread
within each SMP node. This configuration assembles the nodal messages into a
single large message and thus reduces the network latency overhead.

4 Results and Discussion

In the analysis of our algorithms we make 4 test programs that compute the
eigenvalues of a fixed size tridiagonal symmetric matrix. We utilize a group of
test matrices similar to that used in [12]. This group consists of 12 types of
matrices that produce different behaviors. In this section we give out the test
result on a Wilkinson matrix that is type 6 in that group, and the order of test
matrix is 16384.

The test programs are run on DeepComp 6800 at Supercomputing Center,
Chinese Academy of Sciences. DeepComp 6800 consists of 265 nodes; each node
owns 4-way Intel Itanium 2 1.3 GHz processors, 8 GB or 16 GB memory; all the
nodes are inter-connected by QsNet with bandwidth of 300 MB/s and latency of
7 μs. The operating system is Redhat Linux Advanced Server 64-bit 2.1, the MPI
library is QsNet optimized MPICH 1.2.4. All the test programs are compiled by
Intel C compiler 64-bit 7.1 with the option “-O3”.

The number of processors is the product of the number of MPI processes
and the number of OpenMP threads per process, the number of MPI processes
is varied from 1 to 64, and the number of OpenMP threads per process is var-
ied between 2 and 4. While using 4 OpenMP threads, we adopt 2 different
schedules in work sharing among threads: static and dynamic, and only static
work sharing is adopted when using 2 OpenMP threads. Therefore there are 4
programs in total: the pure MPI program, in which the number of processors
equals to the number of MPI processes that is varied form 4 to 128 (4, 8, 16, 32,
64 and 128); and the MPI/OpenMP hybrid program with 2 threads, in which the

170 Y. Zhao, J. Chen, and X. Chi

Table 1. Running times of the pure MPI and the MPI/OpenMP hybrid programs

Num. of
Time (s)

Processors Pure MPI
MPI/OpenMP MPI/OpenMP MPI/OpenMP

2 threads 4 threads static 4 threads dynamic
4 71.06 70.98 70.10 70.10
8 42.06 41.38 40.82 35.56
16 22.81 22.56 20.98 19.92
32 11.95 11.85 10.32 9.51
64 6.21 6.15 5.03 4.77
128 3.30 3.24 2.42 2.22

Table 2. Speedups of the pure MPI and the MPI/OpenMP hybrid programs

Num. of
Speedup

Processors Pure MPI
MPI/OpenMP MPI/OpenMP MPI/OpenMP

2 threads 4 threads static 4 threads dynamic
4 1 1 1 1
8 1.690 1.715 1.717 1.971
16 3.115 3.146 3.341 3.519
32 5.948 5.991 6.793 7.371
64 11.452 11.546 13.936 14.696
128 21.533 21.891 28.967 31.577

number of MPI processes is varied from 2 to 64 (2, 4, 8, 16, 32 and 64); and the
MPI/OpenMP program with 4 threads, in which the number of MPI processes
is varied from 1 to 32 (1, 2, 4, 8, 16 and 32).

The running time and parallel speedup of these 4 programs are listed in
table 1 and table 2, and their figures are shown in Fig. 3, respectively. The
parallel speedup is computed by the following formula defined by Liu et al [20]
that is different to the common definition:

Sn node =
Tp(1 node)
Tp(n node)

, (5)

where Tp(1 node) is the parallel running time on 1 node, Tp(n node) is the
parallel running time on n nodes.

These two figures illustrate the wall clock running time and parallel speedup
versus the total number of processors for two programming paradigms, includ-
ing the pure MPI and the MPI/OpenMP hybrid. In the 4 programs, The pure
MPI and the MPI/OpenMP hybrid with 2 threads are the slowest ones that
their performance are almost same while the latter one is slightly faster, the
MPI/OpenMP hybrid with 4 threads using static schedule is faster than these
two and the MPI/OpenMP hybrid with 4 threads using dynamic schedule
achieves the best performance. The speed gaps between them are getting larger
with the increase of the number of processors. The MPI/OpenMP hybrid with 4

Solving the Symmetric Tridiagonal Eigenproblem 171

0

10

20

30

40

50

60

70

80

1286432168

T
im

e
 (

s
)

Number of Processors

 pure MPI

 MPI/OpenMP (2 threads)

 MPI/OpenMP (4 threads static)

 MPI/OpenMP (4 threads dynamic)

4 4 8 16 32 64 128

1

2

4

8

16

32

S
p

e
e

d
u

p

Number of Processors

 pure MPI

 MPI/OpenMP (2 threads)

 MPI/OpenMP (4 threads static)

 MPI/OpenMP (4 threads dynamic)

Fig. 3. wall clock running time (left) and parallel speedup (right) of pure MPI program,
MPI/OpenMP hybrid program with 2 threads and MPI/OpenMP hybrid program with
4 threads

threads using dynamic schedule is about 13%–30% faster than the pure MPI and
the MPI/OpenMP Hybrid with 2 threads, and it is 5%–12% faster than the pro-
gram using static schedule; the gap between the pure MPI and the MPI/OpenMP
hybrid with 2 threads is less than 2%.

The parallel speedups of all the programs demonstrate good scalability in the
parallel speedup. Apparently, the pure MPI and the MPI/OpenMP hybrid with
2 threads have the worst speedup, the curves of them are almost overlapped; and
the MPI/OpenMP hybrid with 4 threads using dynamic schedule also performs
the best in speedup that is very close to the ideal speedup; the speedup of the
MPI/OpenMP hybrid with 4 threads using static schedule is still in the middle.
When the number of processors is more than 8, the two MPI/OpenMP hybrid
with 4 threads programs get much better speedups.

OpenMP reduces the communication overhead within the same node which is
one of the reasons that make the MPI/OpenMP hybrid programs achieve better
performance. It also diminishes the number of iterations by log2 Nth, where Nth

is the number of OpenMP threads per process. Moreover, dynamic work sharing
schedule in OpenMP can help getting better load balance, which is another
reason for the performance increase.

5 Conclusions

On a cluster of SMP’s, the MPI/OpenMP hybrid paradigm outperforms the MPI
paradigm in solving the eigenvalues of a tridiagonal matrix. With the increase
of the number of OpenMP threads within a MPI process and using the same
number of processors, the performance of the MPI/OpenMP hybrid increases
correspondingly. Generally, dynamic work sharing schedule can get better per-
formance than static schedule because it promotes load balance.

The relative performance of the MPI/OpenMP hybrid and MPI is determined
by several factors. Therefore, not all problems can get the performance benefit

172 Y. Zhao, J. Chen, and X. Chi

from using the MPI/OpenMP hybrid paradigms as that is presented in this
article. Programmers should make the tradeoff according to their problem.

In practice, serious consideration must be given to the nature of codes be-
fore embarking on a hybrid parallelization implementation. In some situations
however significant benefit may be obtained from a hybrid parallelization imple-
mentation. For example, an MPI code has the following problems:

– Load imbalance or fine-grain granularity may cause poor scalability.
– Fast processors make the communication performance significant and the

level of parallelization is sufficient.
– MPI code suffers from memory limitations due to the use of a replicated

data strategy.
– A hybrid MPI/OpenMP implementation could be more efficient for a larger

problems giving poor scalability for a high number of processors.

References

1. Sameh, A., Kuck, D.: A parallel QR algorithm for symmetric tridiagonal matrices.
IEEE tans. Comput. C-26 (1977) 81–91

2. Arbenz, P., Gates, D., Sprenger, C.: A parallel implementation of the symmetric
tridiagonal QR algorithm. In Proc. Fourth Symp. On the Frontiers of Massively
Parallel Computation (IEEE CS Press, 1992)

3. Cuppen, J.J.M.: A divide and conquer method for symmetric tridiagonal eigen-
problem. Numer. Mathematik 2 (36) (1981) 177–195

4. Wilkinson, J.H.: The Algebraic Eigenvalue Problem. Oxford, Clarendon Press, 1965
5. Li, T.Y., Zhang, H., Sun, X.H.: Parallel homotopy algorithm for the symmetric

tridiagonal eigenvalue problem. SIAM J. Scientific and Statistical Comput. 12
(May, 1991) 469–487

6. Dongarra, J.J., Soorenson, D.C.: A Fully Parallel Algorithm for the symmetric
Eigenvalue Problem. SIAM J.Sci.Stat. Comput., vol. 8, no. 2. pp.s139–s154, 1987

7. Dhillon, I.S., Fannm, G., Parlett, B.N.: Application of new algorithm for the sym-
metric eigenproblem to computational quantum chemistry. In processings of the
Eigen SIAM Conference on Parallel processing for Scientific Computing, Minneapo-
lis, MN, March 1997. SIAM

8. Dhillon, I.S., Parlett, B.N.: Multiple representations compute orthogonal eigenver-
tors of symmetric tridiagonal matrices. Lin. Alg. Appl., 387 (2004) 1–28

9. Luong, P., Breshears, C.P., Ly, L.N.: Coastal ocean modeling of the U.S. west
coast with multiblock grid and dual-level parallelism. In Supercomputing 2001:
High Performance Networking and Computing (SC2001)

10. Pavani, R., De Ros, U.: Solving the tridiagonal symmetric eigenvalue problem on a
transputer network. n. 146/p, Dipartimento di mathematica, Politecino di Milano,
1994

11. LI, T.Y., Zeng, Z.: Lagurre’s iteration in solving the symmetric tridiagonal eigen-
problem. SIAM J. Scientific Comput. 15 (1994) 1145–1173

12. Pavani, R., De Ros, U.: A Distributed divide-and-conquer approach to the parallel
symmetric eigenvalue problem. The International Conference on High-Performance
Computing and Networking, Milano, 1995

Solving the Symmetric Tridiagonal Eigenproblem 173

13. Bova, S.W., Breshears, C., Cuicchi, C., Demirbilek, Z., Gabb, H.A.: Dual-level
parallel analysis of harbor wave response using MPI and OpenMP. Int. J. High
Perform Comput. Appl. 14 (2000) 49–64

14. Trefftz, C., Huang, C.C., Li, T.Y., Zeng, Z.: A scalable eigenvalue solver for sym-
metric tridiagonal matrices. Parallel Computing 21 (1995) 1213–1240

15. Cappello, F., Etiemble, D.: MPI versus MPI+OpenMP on the IBM SP for the
NAS Benchmarks. In Supercomputing 2000: High Performance Networking and
Computing (SC2000)

16. Loft, R.D., Thomas, S.J., Dennis, J.M.: Terascale spectral element dynamical core
for atmospheric general circulation models. Supercomputing 2001: High Perfor-
mance Networking and Computing (SC2001)

17. Crawford, C.H., Evangelinos, C., Newman, D., Karniadakis, G.E.: Parallel bench-
marks of turbulence in complex geometries. Comput. Fluids 25 (1996) 677–698

18. Henty, D.S.: Performance of hybrid message-passing and shared-memory paral-
lelism for discrete element modeling. In Supercomputing 2000: High Performance
Networking and Computing (SC2000)

19. Dong, S.H., Em Karniadakis, G.: Dual-level parallelism for high-order CFD meth-
ods. Parallel Computing 30 (2004) 1–20

20. Liu, W., Zheng, W.M., Zheng, X.W.: The concept of node-oriented speedup on
SMP cluster. Computer engineering and design, Vol. 21, No. 5, Oct. 2000

J. Cao, W. Nejdl, and M. Xu (Eds.): APPT 2005, LNCS 3756, pp. 174 – 183, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Trust Management with Safe Privilege Propagation*

Gang Yin1, Huai-min Wang1, Tao Liu2, Ming-feng Chen3, and Dian-xi Shi1

1 School of Computer Science,
National University of Defense Technology, China

jack_nudt@yahoo.com.cn
2 School of Electronic Science and Engineering,

National University of Defense Technology, China
bravewendy@163.com

3 China Xi’an Satellite Control Center,
cmf1968@sina.com

Abstract. Trust management uses delegation to enable decentralized
authorization across administrative domains. Delegation passes one’s authority
over resources to trusted entities and thus enables more flexible and scalable
authorization. However, unrestricted delegation may result in privilege
proliferation and breach the privacy of information systems. The delegation
models of existing trust management systems do not provide effective control
on delegation propagation, and the correctness of constraint enforcement
mechanisms is not formally analyzed, which may lead to privilege proliferation.
In this paper, we propose a role-based constrained delegation model (RCDM),
which restricts the propagation scope of delegation trees by a novel delegation
constraint mechanism named spacial constraint. This paper also introduces a
rule-based language to specify the policies and the deduction algorithm for
constrained delegation defined in RCDM. The soundness and completeness
properties of the deduction algorithm ensure the safety and availability of our
delegation model.

1 Introduction

Trust management (TM) is an attractive approach to authorization in decentralized
environments. Several TM systems have been proposed in recent years, e.g.,
SPKI/SDSI [2], PolicyMaker [4], KeyNote [5], Delegation Logic [7], RT [8] and
Cassandra [6]. One important characteristic of TM systems is using delegation to
transfer authority between entities, and the delegation chains enable the
authorization from resource owner to users through multiple delegation steps.
However, delegation chains may lead to “privilege proliferation” and breach the
privacy of information systems.

* This work is supported by Grand Fundamental Research 973 Program of China

(No.2005CB321804), National Natural Science Foundation under Grant No.90412011; the
National High Technology Development 863 Program of China (No.2003AA115210;
No.2004AA112020).

 Trust Management with Safe Privilege Propagation 175

The essential reason for privilege proliferation in delegation-based systems is
inefficient control over delegation chains. The typical constraints on delegation are
boolean control and integer control over the depth of delegation chains. Boolean
control prohibits further delegation or allows unrestricted re-delegation. Keynote
[5], SPKI [2] and RT [8] support this kind of constraint. DL [7] supports integer
control which provides more flexibility than boolean control, but it supposes that
the trust relationships are transitive within the upper-bound of delegation depth,
which is too optimistic and may lead to undesired propagation of privileges. DL
also supports constraints on delegation width, but to enforce such constraints, it
uses a temp key to sign an assistant policy, which may introduce risks and
inconvenience. Furthermore, existing TM systems have not analyzed the
correctness of the delegation deduction algorithm to ensure that the constraints are
really enforced when make authorization decision.

In this paper, we propose a delegation model with safer privilege propagation
named RCDM (Role-based Constrained Delegation Model). RCDM restricts the
propagation scope of delegation trees by a novel delegation constraint structure
named spacial constraint. A rule-based policy language is also introduced to specify
the core policies and deduction algorithm for constrained delegation in RCDM. The
rest of this paper is organized as follows. Section 2 defines the main components of
RCDM including a basic model and spacial constraint model. In section 3, we
describe the syntax and semantics of a rule-based specification language designed for
RCDM. The correctness of the deduction algorithm is formally analyzed. Finally we
discuss the related work and conclude this paper.

2 Role-Based Constrained Delegation

In this section, the main components of the role-based constrained delegation model
(RCDM) are defined.

2.1 Basic Model

We first define a role-based authorization system, based on which a constrained
delegation system will be defined as a general extension.

Definition 1. An authorization system (AS) is a 7-tuple (E, R, AR, A, S, ∋, ∝), where
E, R, AR, A and S are sets of entities, roles, administrative roles, actions and
statements; ∋ and ∝ are relations:

 A role r∈R⊆E×N is denoted as e.rn, where N is the set of role names.
 A administrative role ar∈AR⊆E×2N is denoted as e.ar(rn1, rn2,…,rns), represents

the privileges to manage the authorization of roles. {e.rn1,…,e.rns} are
dominated roles of ar; DE is a function: AR E, DE(ar)=e is the defining entity.

 An action a∈A⊆E×R is denoted as (e, r). ATE is a function: A E, ATE(a)=e is
the target entity of a; ATR is a function: A R, ATR(a)=r is the target role of a.

 A statement s∈S⊆E×A is denoted as (e, a), which means e asserts a.
 ∋⊆E×AR is a control relation. Given e∈E, ar∈AR, e∋ar means e controls ar, and

e is also called the source of the authority [4] over ar. DE(ar)∋ar always holds.

176 G. Yin et al.

 ∝⊆AR×R is a dominate relation. Given ar∈AR, r∈R, ar∝r means ar dominate r.
Suppose ar=e.ar(rn1, rn2,…,rns)∈AR, ar∝e.rni, i∈[1..s].

We now define a constrained delegation system based on AS.

Definition 2. A constrained delegation system (CDS) is a 5-tuple (AS, D, C, DP,),
where D, C and DP are sets of delegation, delegation constraint and delegation path;

 is a relation:

 A delegation d∈D⊆E×E×AR×C is denoted as a 4-tuple (x, y, ar, c), which
means that x delegate ar to y, and uses c to restrict the further propagation of ar.

 A delegation path ∈DP⊆2D×S is denoted as (x0, c0),…,(xn-1, cn)(xn, a)ar, which
means xi delegates ar to xi+1, using ci to restrict the propagation of ar, i∈[0..n-1],
and finally xn performs the action a. The natural number n is called the
delegation depth of . If n=0, =(x0, a)ar∈DP is called a dummy delegation path.

 ⊆DP×C is a satisfy relation. Given ∈DP, c∈C, c means that satisfies c.

Definition 3. Given =(x0, c0)(x1, c1),…,(xn-1, cn-1)(xn, a)ar∈DP, is a sound

delegation path if and only if i ci for all i∈[0..n-1], where i=(xi, ci),…,(xn-1, cn-

1)(xn, a)ar. A dummy delegation path is always sound. Given s=(x, a)∈S, s is a sound
statement if and only if there exists a sound delegation path =(x0, c0)(x1, c1),…,(xn-1,
cn-1) (x, a)ar∈DP, and x0∋ar, ar∝ATR(a).

When an entity makes authorization decision, the action in a sound statement will
be allowed by the authorization entity.

2.2 Spacial Constraint on Delegation

CDS allows an entity to pass privilege along delegation path; the entity may delegate
privileges to more than one entity and thus the delegation process forms a delegation
tree, which is formally defined as follows.

Definition 4. A delegation tree t∈T starting from a delegation d∈D is denoted as a 4-
tuple (d, Nodes, Leafs, Arcs), d=(e0, e1, ar, c0) is the root delegation of t; Nodes⊆E
and Arcs⊆E×E are sets of nodes and edges of t. Given =(e0,c0)(e1,c1)…(en-1,cn-

1)(en,a)ar∈DP, ei∈t.Nodes, i∈[1..n]; ei,ei+1 ∈t.Arcs, i∈[1..n-1]; ATE(a)∈t.Leafs.

The delegation tree t clearly defines a propagation structure of privilege starting
from d, where t.Nodes is the set of delegation-agencies who may be delegated with
ar; t.Leafs is the set of delegation-targets who are targets of actions performed by
delegation-agencies. The propagation of privileges will be controlled if we can
control the shape of delegation tree. Base on this observation, we propose a constraint
model based on delegation tree, named spacial constraint.

Definition 5. A spacial constraint structure is a 2-tuple (SC,), where
SC⊆TS×Nat×TS is a set of spacial constraints, TS is a set of trust scopes [3], Nat is a
set of natural numbers. A spacial constraint c∈SC is written sc(ac, dc, tc), where

 Trust Management with Safe Privilege Propagation 177

c.ac∈TS is the constraint on the scope of delegation-agencies; c.dc∈Nat is the
constraint on the upper-bound of delegation depth, c.tc∈TS is the constraint on
delegation-targets. More detailed description follows:

 A trust scope ts∈TS⊆2E is a set of entities with some trusted attributes.
Currently we use roles to define the trust scopes, for example, the trust scope
{e e is a member of e.n, e.n∈R}∈TS can be denoted as e.n.

 The constant =sc(E, ∞, E)∈SC defines a null constraint, where ∞∈Nat is a
constant upper-bound of all the constraints of delegation depth.

 Given i=(ei,ci)…(en-1,cn-1)(en,a)ar∈DP, i<n, i ci if and only if (ej∈ci.ac)∧(n-i≤
ci.dc)∧(ATE(a)∈ci.tc), j∈[i+1..n].

Note spacial constraint also supports numerical control on delegation depth, which
is discussed in the introduction section. Here we use depth control to avoid delegation
loops and unnecessary inference beyond the upper-bound of delegation depth.
According to the definition of CDS, SC can be a realization of C, which will provide
CDS with practical constraint mechanism on delegation.

3 Policy Specification and Semantics

The authors have proposed REAL05 [3], a rule-based extensible authorization
language for controllable authorization in decentralized environments. In this section,
we present a revised subset of REAL05 for management-level authorization, which is
denoted by REALM.

3.1 Syntax

The syntax of REALM contains terms, predicates and rules. REALM also introduces
two new predicates, PRA and hasActivated, which make the language more practical.

Definition 5 (Predicate). A predicate x.P(e
r

) is used to define security assertions,

where x is the principle of the predicate, P is the predicate name, e
r

 is a list of terms

and also called the parameter list of the predicate. x.P(e
r

) can be read as: “x says

P(e
r

)”. The following RCDM components are expressed with predicates:

 A statement s=(x, a)∈S⊆E×A where a=(y, z.rn)∈A, is expressed with UAS
predicate: x.UAS(y, z.rn), which means that x authorizes y with the role z.rn.

 A delegation d=(x, y, ar, c)∈D⊆E×E×AR×SC is expressed with DRA predicate:
x.DRA(y, ar, c), which means that x delegates ar to y, using c to restrict the
further propagation of ar.

 The predicate PRA is used for binding permissions to roles: x.PRA(pm, x.r),
which means entity x binds a permission pm to role x.r. A permission identifies
a protected resource or function.

 The predicate hasActivated is used for role activation: x.hasActivated(y, x.rn)
means that entity y has activated the role x.rn under the grant of entity x.

REALM extend the expressive power of RCDM with rules, which add conditions to
predicates and thus can express more complex and dynamic policies.

178 G. Yin et al.

Definition 6 (Rule). A rule has the following form,

H B1, B2, …, Bn.

where H, Bi(i∈[1..n]) are predicates. H is the head of the rule, the principle of H is the
issuer of the rule. B1, B2, …, Bn are body of the rule. The parameters in the predicates
can be variables which start with “?”. If n=0 then the rule is called a fact. The
meaning of the rule can be read as: to deduce H, we must deduce B1, B2, …, Bn.

Given a rule set P, if a predicate p is deducible from P, we say P p. Then the

meaning of a rule can be described as: given a rule r, if P p for each p in B(r), then

P H(r). Given a rule r, and r is a UAS rule and DRA rule, if P H(r), then H(r)
uniquely maps to an element in S or D. For example, given a UAS rule “x.UAS(y, z.r)

 B1, B2, …, Bn”, if P x.UAS(y, z.r), then (x, y, z.r)∈S.

3.2 Semantics

REALM uses rules to define the policies based on RCDM. But to enforce the
semantics of RCDM, such as the sound delegation and the sound statement, we need
to define semantic rules for RCDM to facilitate delegation deduction.

Definition (Delegation Trace Structure). The delegation trace structure is a triple

(TR, SC, R), where t∈TR⊆2E×Nat×2E is called a delegation trace or trace for short,
written as tr(as, dd, ts), which traces a delegation path. t.as is the set of delegation-

agencies; t.dd is the delegation depth and t.ts is the set of delegation-targets. R

⊆TR×SC is a relation, given t∈TR, c∈SC, (t, c)∈ R if and only if (t.as⊆c.ac)∧(t.dd≤
c.dc)∧(t.ts⊆c.tc).

The delegation trace will be used to verify the soundness of sub-delegation chains
during inference (see m2 in tab.1). For example, the trace of the delegation path
=(e0,c0)(e1, c1)…(en-1,cn-1)(en,a)ar∈DP is tr({e1,…,en}, n, {ATE(a)}).

Definition (Semantic Predicate). The semantic predicates are used to construct the
algorithms for delegation reduction, which are defined as follows:

 x.doa(y, ar, t) means entity x passes the admin-role ar to entity y through one or
more delegation steps, and t is the trace of the delegation chain.

 x y means (x, y)∈ R, where x is a trace and y is a spacial constraint.
 x⊆y means every entity in entity set x belong to the trust scope defined by y.
 x≤y means x is no more than y, where x and y are natural numbers.

The language engine supports two kinds of queries, which are used to make
decision on role activation requests and resource access request.

Definition (Query). There are two classes of queries that REALM can answer:

 Role activation query: ? x.canActivate(y, x.rn), which means whether entity x
will allow y to activate the role x.rn.

 Resource access query: ? x.canAccess(y, p), which means whether entity x
will allow y to access the resource identified by the permission p.

 Trust Management with Safe Privilege Propagation 179

The role activation query is raised by authorization entity when a user wants to
activate some roles to use in current session. If the query is deduced, then the
authorization entity will create a hasActivated predicate, indicating that the user can
use the role to access resources. When the user makes request to access resources
controlled by the authorization entity, the authorization entity will create a resource
access query to decide whether to allow the current request. The semantics of the two
queries are defined in tab.1.

The meta-rules in tab. 1 define an algorithm for proof of compliance with REALM.
We use M to denote these rules. Given a set of REALM rules P and a query Q, Q is

deducible if (P∪M) Q. m1 and m2 define recursive process for multi-step delegation
reduction. m3 and m4 define the semantics of role-activation-query, while m5 defines

the semantics of resource-access-query. m6 defines the semantics of predicate “ ”.
The semantics of “⊆” is not listed in table 1 because it needs to deal with some
special cases, please see [3] for a detailed implementation.

Table 1. The Deduction Algorithm for Constrained Delegation

[Meta Rules for Delegation of Authority]

(m1) ?x.doa(?y, ?ar, ?t) ?x.DRA(?y, ?ar, ?c), tr({?y}∪?t.as, ?t.dd, ?t.ts) ?c.

(m2) ?x.doa(?y, ?ar, ?t) ?z.DRA(?y, ?ar, ?c), tr({?y}∪?t.as, ?t.dd, ?t.ts) ?c,
?x.doa(?z, ?ar, tr({?y}∪?t.as, ?t.dd+1, ?t.ts)).

(m3) ?x.canActivate(?y, ?x.?rn) ?x.UAS(?y, ?x.?rn).
(m4) ?x.canActivate(?y, ?x.?rn) ?z.UAS(?y, ?x.?rn)), ?x.doa(?z, ?x.ar(?rn), tr([], 1, [?y])).

[Meta Rules for Access Control]
(m5) ?x.canAccess(?y, ?p) ?x.hasActivated(?y, ?x.?rn), ?x.PRA(?p, ?x.?rn).

[Meta Rules for Delegation Constraint Computation]

(m6) ?t ?c ?t.as ⊆ ?c.ac, ?t.dd ?c.dc, ?t.ts ⊆ ?c.tc.

Now we need to demonstrate the correctness of delegation reduction algorithm
defined in tab.1, i.e., soundness and completeness. The soundness in this context
means that if a query like “? x.canActivate(y, x.rn)” is deduced, then there exists a
sound statement with the form “(x, y, x.rn)”. The completeness here means that if a
statement like “(x, y, x.rn)” is proved to be a sound statement, then the query like
“? x.canActivate(y, x.rn)” can be deduced based on REALM semantics. First we
give a lemma to facilitate the proof of the soundness and completeness results.

Lemma. Given a set of REALM rules P, let PS=P∪M, PS x.doa(y, ar, t) if and only
if there is a chain of rules = r0,r1,…,rm in P, where H(ri)=xi.DRA(xi+1,ar,ci),
ti=tr({xi+1,…,xm+1}, t.dd+(m-i), ∅), x0=x, xm+1=y, i∈[0..m], and,

 t ci and ti ci for each i∈[0..m];

 P H(ri) for each i∈[0..m].

Proof. We first prove the if part. Do induction on the length l of . If l=1,

P x0.DRA(x1, ar, c0). According to m1 and t c0, PS x0.doa(x1, ar, t) holds, i.e.,

PS x.doa(y, ar, t). Suppose the if part holds for l=k>1, now consider the case when

180 G. Yin et al.

l=k+1. There exists k+1=r0,r1,…,rk in P, where H(ri)=xi.DRA(xi+1, ar, ci), i∈[0..k], and

(a, b, c) hold for each i∈[0..k]: (a) P H(ri); (b) there exists t∈TR and t ci; (c)

ti=tr({xi+1,…, xk+1}, t.dd+(k-i), ∅) ci. Now we need to prove PS x0.doa(xk+1, ar, t).
Consider k=r0,r1,…,rk-1, t’=tr({xk+1}∪t.as, t.dd+1, t.ts). From (c), xk+1∈ci.ac and

t.dd+1≤t.dd+(k-i)≤ci.dc for each i∈[0..k-1]. So it is clear that t’ ci for each i∈[0..k-1].

From (c), tr({xi+1,…,xk}, t.dd+(k-1-i), ∅) ci for each i∈[0..k-1]. Then by induction

assumption, PS x0.doa(xk, ar, t’). From (b) and (c), tr({xK+1}∪t.as, t.dd, t.ts) ck.

Consider the rule rk in P, H(rk)=xk.DRA(xk+1, ar, ck) and P H(rk). Therefore by using

m2, PS x0.doa(xk+1, ar, t) follows.
Now we prove the only if part. Clearly, there exists a sequence of proof steps that

ends with x.doa(y, ar, t). Do induction on the steps s of the sequence. If s=1, m1 will
be used to deduce the result. There must be a rule r0∈P, H(r0)=x0.DRA(x1, ar, c0) and

P H(r0), x0=x, x1=y, t c0, tr(∅, t.dd, ∅) c0, so the only if part holds. Suppose the
only if part holds for s=k>1, consider the case when s=k+1. The proof must start from

m2, so (d, e, f) must hold: (d) there is a rule r∈P, H(r)=z.DRA(y, ar, c) and P H(r);

(e) tr({y}∪t.as, t.dd, t.ts) c; (f) PS x.doa(z, ar, t’), where t’=tr({y}∪t.as, t.dd+1,
t.ts). Consider (f), it is clear that the steps of the proof sequence that ends with
x.doa(z, ar, t’) is less than k. By induction assumption, there exists a chain

t=r0,r1,…,rv in P, where H(ri)=xi.DRA(xi+1, ar, ci), x0=x, xv+1=z, i∈[0..v], and (g, h, i)

hold for each i∈[0..v]: (g) P H(ri); (h) t’ ci; (i) tr({xi+1,…,xv+1}, t’.dd+(v-i), ∅) ci.
Therefore, the chain w=r0,r1,…,rw is in P, where H(ri)=xi.DRA(xi+1, ar, ci),

P H(ri), w=v+1, rw=r (i.e., xw+1=y, cw=c), i∈[0..w]. From (e), t cw; from (f) and (h),

t ci for each i∈[0..w-1]. Then t ci for i∈[0..w]. From (e), tw=tr({xw+1}, t.dd, ∅) cw.

From (f), (h) and (i), ti=tr({xi+1,…,xw+1}, t.dd+1+(v-i), ∅) ci, i∈[0..w-1]. Therefore

ti ci, where ti=tr({xi+1,…,xw+1}, t.dd+(w-i), ∅), i∈[0..w].

The lemma shows some important properties of delegation traces during inference
process defined in table 1. Now we prove the soundness and completeness result.

Theorem (Soundness and Completeness of Semantics). Given a set of REALM

rules P, let PS=P∪M, PS x.canActivate(y, x.rn) if and only if there is a rule r∈P,

H(r)=z.UAS(y, x.rn) and P H(r), (z, y, x.rn) is a sound statement.

Proof. We first prove the only if part (soundness). According to the rules in M, the
result x.canActivate(y, x.rn) must be deduced from m3 or m4. In the first case: there

must be a rule r∈P, H(r)=x.UAS(y, x.rn) and P H(r). It is clear that x∋x.ar(rn) and
ar∝ATR(a), where a=(y, x.rn)∈A. So there exists a “dummy” delegation path ξ=(x,
a)x.ar(rn)∈DP, and (x, a) is a sound statement.

In the second case, i.e., the deduction starts from m4, then following results hold:

(a) there is a rule r∈P, H(r)=z.UAS(y, x.rn) and P H(r); (b) PS x.doa(z, ar, t), where
ar=x.ar(rn), t=tr(∅, 1, {y}). From (b) and lemma, there is a chain of rules =

 Trust Management with Safe Privilege Propagation 181

r0,r1,…,rm in P, where H(ri)=xi.DRA(xi+1,ar,ci), ti=tr({xi+1,…,xm+1}, t.dd+(m-i), ∅),

x0=x, xm+1=z, i∈[0..m], and the following result hold for each i∈[0..m]: (c) t ci and

ti ci; (d) P H(ri). Then there is a delegation path ξ=(x0, c0)(x1, c1),…,(xm, cm)(xm+1,
a)ar∈DP, where a=(y, x.rn). From (b) and (c), it is clear that (xj∈ci.ac)∧(m+1-i≤
ci.dc)∧(ATE(a)∈ci.tc), i∈[0..m], j∈[i+1..m+1]. According to def. 5, it is clear that

ξi=(xi, ci),…,(xm-1, cm)(xm+1, a)ar ci, i∈[0..m]. Therefore ξ is sound, and because
ar∝ATR(a) and x∋ar, (xm, a) is also sound, i.e., (z, y, x.rn) is a sound statement.

Now we prove the if part (completeness). Given a rule r∈P, H(r)=z.UAS(y, x.rn)

and P H(r), (z, y, x.rn)∈S is a sound statement. According to def. 3, there exists a
sound delegation path =(x0, c0)(x1, c1),…,(xm-1, cm-1)(xm, a)ar∈DP, where x0=x,
xm=z, ATE(a)=y, ar=x.ar(rn) and x0∋ar, ar∝ATR(a). Now consider two cases: m=0

and m≥1. If m=0, then there exists a rule r in P, H(r)=x.UAS(y, x.rn) and P H(r). By

using m3, PS x.canActivate(y, x.rn) follows.

If m≥1, then there exists a rule r in P, H(r)=xm.UAS(y, x.rn) and P H(r); and a

chain =r0,r1,…,rm-1 in P, where H(ri)=xi.DRA(xi+1,ar,ci) and P (ri), i∈[0..m-1].
According to def. 3 and def. 5, (xj∈ci.ac)∧(m-i≤ci.dc)∧(ATE(a)∈ci.tc) holds for each

i∈[0..m-1] and j∈[i+1..m]. Let t=tr({}, 1, {y}), clearly, t ci and ti ci, where

ti=tr({xi+1,…,xm}, t.dd+(m-1-i), ∅), i∈[0..m-1]. Then according to lemma, PS
x0.doa(xm, ar, t). Therefore by using m4, PS x.canActivate(y, x.rn) follows.

The soundness result ensures the safe propagation of privileges when we use
delegation to realize decentralized authorization. The completeness result ensures the
availability of an authorization system, i.e., the sound statements should be authorized.

4 Related Work

We have briefly reviewed some of the related work. Now we give further comparison
of our work with some highly related work. PolicyMaker [4] and KeyNote [5] are
systems where the concept of trust management was motivated and evaluated.
PolicyMaker allows arbitrary programs to be used in credentials and policies.
KeyNote uses a special assertion language to define delegation policies. Both
PolicyMaker and KeyNote do not provide mechanisms to control the privilege
proliferation during delegation. RT [8] is a family of role-based trust management
languages whose semantics are built upon Datalog rules. RT supports boolean control
over delegation of role authorities. The role intersections in RT can be viewed as a
kind of constraint on the scope of delegation targets.

Cassandra [6] expresses policies in a language based on DatalogC [9], which bears
some similarities to our system. The expressiveness of Cassandra (and its
computational complexity) can be tuned by choosing an appropriate constraint
domain. The rules in Cassandra can refer to remote policies (for automatic credential
retrieval and trust negotiation). However, Cassandra does not embed any delegation
control mechanism in its reserved semantics. For example, the integer control on

182 G. Yin et al.

delegation is totally managed by security administrators in Cassandra, which will
easily lead to mistakes in security management.

PeerTrust [10] is a TM language that provides trust negotiation capabilities for servers
and clients, with facilities to import and reason about access control policies, digital
credentials, and metadata about local resources requiring protection. The authors
demonstrate how to use PeerTrust to avoid an explicit registration step on the Semantic
Web. An implementation of implicit registration and authentication that runs under the
Java-based MINERVA Prolog engine was introduced. PeerTrust is closely related to SD3
[11], which is an extension of Datalog, security policies are a set of assumptions and
inference rules in SD3. However, both PeerTrust and SD3 lack control on delegation.

B. C. Neumann uses restricted proxy model [1] to support a variety of restrictions
on authorization and delegation, including grantee, for-use-by-group, issued-for,
quota, authorized, group-membership, accept-once. But the restricted proxy model
does not provide restriction specification and semantics computation. Some of these
restrictions can be expressed by REALM. For example, the authorized restriction can
be viewed as an access-level constraint on delegation targets [3]. RCDM model can
be easily modulated to adapt the delegation at access-level.

The authors have presented REAL05 [3], which can be used to define constrained
delegation policies both for management-level and access-level. But the correctness
of the deduction algorithm in [3] is not analyzed. In this paper, the soundness and
completeness of the semantics are proved. During the analysis work, we find that
some of the components in GCDM model [3] could be redefined to be more
intelligible and reasonable. We add the component R and S into authorization system
AS, and redefine the main components such as delegation path, delegation tree, and

the semantics of relation (which is denoted by in REAL05). These work results
in a well-defined management-level delegation model named RCDM. The main
components in RCDM can be clearly expressed with REALM. Based on the semantics
of REAL05, the semantics of REALM defines a deduction algorithm for delegation of
role authorities, whose correctness is formally analyzed in this paper.

5 Conclusion

Trust management is an attractive alternative for authorization in future distributed
systems. The constraints on delegation will enable TM systems to adapt scenarios where
authorization can not totally depend on trust relationships between entities. Existing TM
systems support boolean or integer to control re-delegation, some supports width
control. However, these systems did not prove that their constraint mechanisms do work
correctly, which we think it is necessary for the whole security of decentralized systems.
This paper is trying to do such a work, and we find it is very helpful to find the
inconsistency between the constrained delegation model and its deduction semantics.

Acknowledgements

The authors would like to thank Hai-ya Gu and Yan-qing Chen for their helpful
discussions and the anonymous reviewers for their valuable comments.

 Trust Management with Safe Privilege Propagation 183

References

1. B. C. Neumann, “Proxy-Based Authorization and Accounting for Distributed Systems,” in
Proceedings of the 13th International Conference on Distributed Computing Systems,
Pittsburgh, PA, May 1993.

2. C. M. Ellison, B. Frantz, B. Lampson, R. Rivest, B. M. Thomas, and T. Ylonen. SPKI
Certificate Theory. IETF RFC 2693, 1998.

3. Gang Yin, Huaimin Wang, Dianxi Shi, Haiya Gu, “Towards more Controllable and
Practical Delegation”, Mathematical Methods, Models and Architectures for Computer
Networks Security Workshop (MMM-ACNS’05), St. Petersburg, Russia, LNCS 3685,
Springer Verlag, 2005.

4. M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized trust management. In Proceedings of
17th Symposium on Security and Privacy, pages 164-173, Oakland, 1996. IEEE.

5. M. Blaze, J. Feigenbaum, John Ioannidis, and Angelos D. Keromytis. The KeyNote trust-
management system, version 2. IETF RFC 2704, September 1999.

6. Moritz Y. Becker, Peter Sewell, Cassandra: Flexible Trust Management, Applied to
Electronic Health Records Proceedings of the 17th IEEE Computer Security Foundations
Workshop (CSFW'04).

7. Ninghui Li, Benjamin N. Grosof, and Joan Feigenbaum. Delegation logic: A logic-based
approach to distributed authorization. ACM Transaction on Information and System Secu-
rity (TISSEC), February 2003.

8. Ninghui Li, John C. Mitchell, and William H. Winsborough. Design of a role-based trust
management frame-work. In Proceedings of the 2002 IEEE Symposium on Security and
Privacy, pages 114-130. IEEE Computer Society Press, May 2002.

9. Paris C. Kanellakis, Gabriel M. Kuper, and Peter Z. Revesz. Constraint query languages.
Journal of Computer and System Sciences, 51(1):26-52, August 1995.

10. Rita Gavriloaie, Wolfgang Nejdl, Daniel Olmedilla, Kent E. Seamons, and
MarianneWinslett. No Registration Needed: How to Use Declarative Policies and
Negotiation to Access Sensitive Resources on the Semantic Web. The 1st European
Semantic Web Symposium, May. 2004, Heraklion, Greece.

11. T. Jim. SD3: A Trust Management System With Certified Evaluation. In IEEE
Symposium on Security and Privacy, Oakland, CA, May 2001.

12. Vijay Varadharajan, Philip Allen, Stewart Black. An Analysis of the Proxy Problem in
Distributed systems. IEEE Symposium on Research in Security and Privacy. Oakland, CA
1991.

J. Cao, W. Nejdl, and M. Xu (Eds.): APPT 2005, LNCS 3756, pp. 184 – 193, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Vector Space Based on Hierarchical Weighting:
A Component Ranking Approach

to Component Retrieval

Gui Gui and Paul D. Scott

Department of Computer Science, University of Essex, Colchester ,UK
{ggui, scotp}@essex.ac.uk

Abstract. In this paper, we present an approach to software component ranking
intended for use in searching for such components on the internet. The method
used introduces a novel method of weighting keywords that takes account of
where within the structure of a component the keyword is found. This
hierarchical weighting scheme is used in two ranking algorithms: one using
summed weights, the other using a vector space model. Experimental
comparisons with algorithms using TF-IDF weighting that ignore component
structure are described. The results demonstrate consistent superiority of the
hierarchical weighting approach.

1 Introduction

The internet is rapidly becoming a major repository of software components. In order to
realise the potential of this resource, software developers need effective search engines
that can retrieve those components that match their requirements. Conventional search
engines are unsuitable for this task because they are oriented towards retrieving
documents comprised largely of natural language text. Software components, viewed
as text objects, differ from natural language documents in that they have a much more
rigid structure but a greatly impoverished vocabulary.

The simplest possible approach is to retrieve all components that contain the
keywords that appear in the query. Unfortunately, this typically returns a large number
of components of which only a small percentage are actually relevant; that is, only a
few of the many components retrieved match the user’s requirements. A more
sophisticated approach, in which the retrieved components are ranked by relevance, is
thus essential.

In this paper, we propose a new ranking algorithm that exploits component structure
by combining text information ranking techniques with the hierarchical structure
analysis of components. In our proposal, keywords are retrieved from naming
information at different hierarchical levels within components and used as index words.
A hierarchy weighting (HW) scheme is developed to define the relative importance of
keywords found at different levels in the structural hierarchy of components. The
similarity of components and queries can then be defined using a vector space
representation [3], [4] of the set of index keywords. In our work, we focus on Java

 Vector Space Based on Hierarchical Weighting 185

components. The main contribution of our proposal is that it demonstrates the
importance of component structure to deriving an accurate ranking of the relevance of
components to queries.
 The paper is organized as follows: Section 2 reviews related work and introduces the
novel features of our approach; Section 3 describes the proposed hierarchy weighting
scheme and the vector space based on hierarchy weighting for component ranking;
Section 4 presents some experiments and analysis. The paper concludes with a
discussion of the implications of our findings.

2 Related Work

Much of the existing literature on component retrieval techniques is based on their
application to component repositories that take the form of well organized, documented
and maintained libraries of software components. Such repositories are undoubtedly a
valuable resource to a software engineer but, by their very nature, they are highly
labour intensive. In contrast, our concern in the present paper is with retrieving
components from the internet. Typically little or no documentation is available for such
components and any indexing must be done automatically because of the huge numbers
of components to be considered.

There are two main approaches to ranking in existing component retrieval systems:
ranking by usability and ranking by relevance (Table 1). Ranking by usability, which
attempts to identify well engineered components that can readily be incorporated as
part of a complex piece of software, is outside the scope of the present paper. Here we
are concerned only with ranking by relevance which attempts to identify components
that meet the users’ functional requirements.

Table 1. Categories of component ranking

Ranking by usability Ranking by relevance
SourceForge [12] Domain, facet classification [15], [11]
Based on formal specification [10], [7] TF-IDF [14]
Based on usage relationship (Spars [8]) Natural language processing [13]

Concept lattice [9]
Ontology processing [5], [6]

The various approaches to ranking components by relevance differ chiefly in the
complexity of the representations used to describe both components and queries.
Semantic based component retrieval [13] uses a natural language representation.
Components are described by specific domain models in natural language. Relevant
components are retrieved using a closeness measure based on semantic and syntactic
analysis. The use of natural language provides a natural and flexible way to express
users’ queries and describe the context of a component. Unfortunately, this approach
presupposes that natural language descriptions of components either exist or can be
constructed so it is not really a practical method for retrieving components from the
internet where documentation may be sparse or non-existent. Furthermore, the natural

186 G. Gui and P.D. Scott

language processing involved is likely to make any such system very slow if large
numbers of components must be examined.

Some approaches simplify natural language processing by using concept lattices [9]
and ontology processing [5], [6]. Ranking by adopting an ontology builds a relationship
between domain models and reuse repository. The limitations of this proposal are that it
assumes the existence of an ontology and search quality depends on the availability and
accuracy of ontology and domain model. Alternatively concept lattices can be used to
represent the relationship between keywords and components. As with the natural
language approach, these methods presuppose that a great deal of work has been done in
constructing an appropriate ontology and categorizing the components appropriately.
Hence again, it appears unsuitable for retrieving components from the internet.

Components can be classified into different categories according to domain and facet
information [11], [15]. Ranking of components is based on the relationship of domains.
However, the granularity of ranking based on domain classification is too big to rank
each individual component properly. Some components that can not be classified into
any pre-existing categories or the intersections of categories could result in loss of
some components. The flexibility of component retrieval can be lost by forced
classification of components.

All of the above approaches seem more suited to aid retrieval from well maintained
and systematically organized software repositories than for searching the internet. An
alternative is to make use of the standard text information retrieval techniques that have
proved so effective in searching for ordinary text documents on the internet. Such
approaches typically index a document by the keywords it contains and match queries
to documents on the basis of the keywords they have in common. The majority of such
systems associate a weight with each occurrence of a keyword that provides an estimate
of how much evidence the keyword provides about the content of the document.

Washizaki and Fukazawa [14] have ranked components using TF-IDF weighting, in
which the weight is proportional to frequency of the keyword in the component and
inversely proportional to the number of components in the repository that include that
keyword. Although this approach can achieve some success, it is limited because it
does not exploit all the information that is readily available from a component. In
particular, it only considers keyword frequency and takes no account of the structure of
a component; the significance of a keyword may well depend on where it appears
within the component. Naming information has proved to be effective in component
clustering [1], [2].

Consequently it appears worthwhile to develop a weighting scheme that reflects not
only the frequency of a keyword but also its location within the structure of a software
component.

3 Hierarchical Weighting and Vector Space Representation

The work reported in this paper is concerned with retrieving Java components. The
decision to concentrate on Java was taken for two main reasons. First, very large
numbers of Java components, often taking the form of Java Beans, are available in the
public domain on the internet. Second, the Java facilities of reflection and introspection
permit the exploration of the structure of such components.

 Vector Space Based on Hierarchical Weighting 187

Programmers often provide clues to the function of a component in the names they
give to the various entities of which it is composed. These include the names given to
the classes and methods and the name of the file containing the component. Hence
index keywords can be obtained by searching for legitimate words within the collection
of names used by the programmer. Some of these keywords will provide more
information than others about the function of the component. Thus, in addition to
extracting the keywords, it is desirable to associate a weight with a each keyword, in a
each component, that reflects how much evidence it provides about component
functionality. The main hypothesis of this paper is that the location of a keyword within
the structure of a component provides a strong indication of how much functional
evidence it provides.

Let },...,...,{ 21 ni ccccC = be the set of all the components in the entire collection

where n is the total number of components. },...,...,{ 21 mi kkkkK = is the set of index

keywords extracted from the entire collection of components. A weight ijW is assigned

to each index keyword ik in the component jc in order to measure the importance of

ik in expressing the content of component jc . If keyword ik appears in the

component jc , 0>ijW ; if not, 0=ijW .

Java components are normally compressed as jar files that can include several
classes, each of which contains several methods. Keywords are extracted from the file

names, class names and method names. Set jark = (jark1 , jark2 ,…, jar
Nk) comprises

the keywords retrieved from the jar file name, set ick = (ick1 , ick2 ,… ic
rk) comprises

the keywords retrieved from the name of class ic , and set ifk = (ifk1 , ifk2 ,… if
sk)

contains the keywords retrieved from name of method if . The relationship of

keywords from different levels is shown in Fig. 1.

Thus, the complete set of keywords for a given component is:

 U U
n

i

m

j

f

s

ffc
r

ccjar
N

jarjar j

j

jji

i

ii kkkkkkkkkK
1 1

212121),...,(()),...,((),...,(
= =

∪∪= (1)

Keywords from higher levels of the hierarchy are more likely to convey information
about the overall function of the component. Hence it is appropriate to give greater

weight to keywords from higher levels in the hierarchy. Thus, jar
ijW > class

ijW > method
ijW

Fig. 1. Keywords hierarchical level breakdown

188 G. Gui and P.D. Scott

where lev
ijW denotes the weight assigned to the ith keyword at level lev in the jth

component. The number of retrieved keywords usually increases as one moves down
the hierarchy. Typically there is only one jar file which will contain several classes,
each of which contains several methods. Hence a simple way of assigning greater
weight to keywords retrieved from higher levels is:

lev

ijlev
ij

f
W

ψ
= (2)

where ijf is the frequency of occurrences of keyword ik and levψ is the number of

entities at hierarchy level lev in the jth component. It is clear that, provided a jar file
contains more than one class and each class contains more than one method, then if a

given keyword occurs with the same frequency at all levels of the hierarchy jar
ijW >

class
ijW > method

ijW . The total weight assigned to a give keyword i in a particular

component j is thus:

method

method
ij

class

class
ijjar

ij
method

ij
class

ij
jar

ijij

ff
fWWWW

ψψ
++=++= (3)

Hence the frequency of keywords and their location within the structure of a component
are combined to estimate their importance in describing the function of that component.

These hierarchical keyword weights can be used in two distinct ways to match
queries to components. The first, termed HW, is simply to give each component a
similarity score formed as the sum of the hierarchical weights of all words appearing in
the query. A more sophisticated alternative, termed VS-HW, is to adopt a vector space
representation [3]. Each component is represented as a vector as

),...,,(21 mjjjj WWWc =
r

 in the space of all index terms. A query is represented as a

vector),...,,(21 mqqq WWWq =
r

 where
iqW denotes the importance of the ith keyword to

the query q (always either 0 or 1 in the present study). The similarity of component and
the query,),(jcqSim , is then defined as:

==

=

==

=

++

++
=

⋅
=

t

i
iq

m

i
method

method
ij

class

class
ijjar

ij

t

i
method

method
ij

class

class
ijjar

ij

t

i
iq

m

i
ij

t

i
iqij

j

W
ff

f

ff
f

WW

WW
cqSim

1

2

1

2

1

1

2

1

2

1

)()(

)(

)()(

),(

ψψ

ψψ (4)

4 Experimental Results

In order to investigate the efficacy of this hierarchical weighting scheme for reliably
ranking components, approximately 10,000 components were retrieved from the
internet using a randomly seeded spider program. Keywords were then identified as
fragments of filenames, class names and method names using a dictionary based
approach. A total of 21,778 such keywords were found. In addition to the two ranking
schemes based on hierarchical weightings, comparative experiments were also
conducted using the TF-IDF weighting scheme [3] which is widely used in

 Vector Space Based on Hierarchical Weighting 189

conventional text retrieval. It differs from our hierarchical weighting scheme chiefly in
that in that it assigns the same weight to a keyword wherever it appears within the
structure of a component. Both direct (TF-IDF) and vector space (VS-TF-IDF) variants
of TF-IDF ranking were implemented.

Searches were carried out using 50 different queries; 20 were single word queries,
the remainder comprised either two or three keywords. The total number of
components retrieved (i.e. achieving a score greater than zero) for each query varied but
fell in the range 140-180 with an average of 158. The components returned were
categorized as relevant or irrelevant to the query by inspection; the average number of
relevant results was 67.

Three methods were used to compare the performance of the four ranking schemes:
average cumulative relevant results distribution, precision distribution and precision
histograms [3].

4.1 Average Cumulative Relevant Results Distribution

The cumulative relevant results distribution graph is a plot of the number of relevant
results retrieved in the highest ranked x components as x is increased from 1 to T, the
total number of components retrieved. An ideal ranking scheme would rank all the
relevant components before all those that are irrelevant. Hence the ideal distribution
takes the form of a straight line from 0,0 to R,R, where R is the number of relevant
components, followed by a second (flat) straight line from R,R to T,R. The quality of a
ranking scheme is indicated by how closely it approaches this ideal. Completely
random ranking would result in a single straight line from 0,0 to T,R.

Fig. 2 shows the average cumulative relevant results distribution for all four ranking
schemes over the 50 queries. It can be seen that all four algorithms generally perform
much better than random ranking, although the TF-IDF results are indistinguishable
from random ranking in the 20 highest ranked components. None achieves ideal

Fig. 2. Average cumulative relevant results distributions

190 G. Gui and P.D. Scott

performance, but it is clear that VS-HW performs better than the other three
procedures. The performance of HW is only slightly worse. The rankings achieved by
the two TF-IDF procedures are markedly worse.

4.2 Distribution of Mean Precision

The precision of a retrieval procedure is simply defined as the proportion of all
retrieved items that are relevant. The rth-precision is the precision achieved for the r
highest ranked retrieved items. The mean value of rth-precision over all values of r
provides another way of comparing the rankings achieved by different ranking
procedures, since a higher mean value indicates that more of the highly ranked items
were relevant.

Fig. 3. Mean rth-precision distributions

Fig. 3 shows the mean rth-precision values achieved by the four ranking procedures
for each of the 50 queries. To provide a baseline indication of performance across all
the queries, the horizontal lines indicate the average mean rth-precision achieved by
each procedure over all queries. That is, each line indicates the value of:

N

iARP
ARPMean

N

i== 0

)|(
)((5)

where)|(iARP is the mean rth-precision achieved by ranking algorithm A on the ith

query and N is the total number of queries.
It is clear that, as in the cumulative relevant results distributions, the two algorithms

using hierarchical weighting perform considerably better than the two based on
TF-IDF. Not only are their overall performances higher, as indicated by the baselines,
but they are also more consistent since the deviations from the baseline are much
smaller. Once again, the best results are obtained using VS-HW and the worst using
TF-IDF.

 Vector Space Based on Hierarchical Weighting 191

4.3 Precision Histograms

Precision histograms [3] allow comparisons between two ranking algorithms by
considering the differences between their rth-precision values at a specific value of r: the
total number of relevant results for the current query. Consider two ranking algorithms, A
and B, and let M be the total number of relevant results. Let)(iMPA and)(iMPB be the

M-th precision values achieved by algorithm A and B for query i. Hence the difference
between these two value)(/ iMP BA , is:

)()()(/ iMPiMPiMP BABA −= (6)

If)(/ iMP BA is zero, the two algorithms have equivalent performance for that query.

Positive values of)(/ iMP BA imply that algorithm A performs better than algorithm B

while a negative values of imply B has better performance.
Figure 4 shows the histograms achieved when each of the hierarchical weighting

procedures are compared with each of the TF-IDF procedures on all 50 queries. The
results are consistently positive demonstrating that the hierarchical weighting procedures
perform better on the entire test set.

A quantitative measure of the difference between two algorithms across a set of
queries can be obtained by considering the mean value of)(/ iMP BA :

N

PM i
BA

==

N

1
BA

/

(i))MP -(i)(MP
 (7)

Computing these mean differences for the four histograms demonstrates again that
the performance of the two procedures using hierarchical weighting is superior to both
of those using TF-IDF weighting (See Table 2).

Fig. 4. M-th Precision Histograms

192 G. Gui and P.D. Scott

Table 2. Mean Mth-precision differences

Procedures Compared Mean Mth-precision difference
HW/TF-IDF 0.138
HW/VS-TF-IDF 0.078
VS-HW/TF-IDF 0.20
VS-HW/VS-TF-IDF 0.136

5 Conclusion

In this paper, we have proposed a new approach to software component ranking that
exploits the hierarchical structure of components to estimate how much information a
keyword, extracted from an entity’s name, provides about the overall function of the
component. A simple scheme has been proposed, in which the weight associated with
the occurrence of a keyword within an entity’s name is inversely proportional to the
number of entities of the same type in the component. This hierarchical weighting
scheme has been incorporated into two ranking algorithms: one which simply uses the
summed weight of all keyword and one which uses a vector space representation. The
performance of these algorithms has been assessed by comparing them to their
counterparts that use TF-IDF weighting and take no account of the component
structure. Our results demonstrate the consistent superiority of the hierarchical
weighting algorithms. The vector space algorithm performed slightly better than the
simple summed weight method.

The work reported here is part of a larger project to develop a complete system for
retrieving software components from the internet and it is clearly to this field that it makes
the most direct contribution. However, we suggest that our findings may be of wider
interest. In particular, the use of hierarchical weighting may be of similar value in
information retrieval applications that involve any type of semi-structured text documents.

References

1. Andritsos, P., Tzerpos, V.: Information-Theoretic Software Clustering. IEEE Transactions
on Software Engineering. Vol. 31, Issue 2 (2005) 150 - 165

2. Anquetil, N., Lethbridge, T.C.: “Recovering Software Architecture from the Names of
Source Files,” J. Software Maintenance: Research and Practice, vol. 11, pp. 201-221, May
1999.

3. Baeza, R., Neto, B.: Modern Information Retrieval. ACM Press, Addison Wesley, New
York (1999)

4. Belew, R. K.: Finding Out About A Cognitive Perspective on Search Engine Technology
and the WWW. Cambridge University Press (2000)

5. Bernstein, A., Klein, M.: Towards High-Precision Service Retrieval. Proc. International
Semantic Web Conference (ISWC-02), Sardinia, Italy (2002)

6. Braga R.M.M., Mattoso, M., Werner, C.M.L.: The use of mediation and ontology
technologies for software component information retrieval. Symposium on Software Reuse
(SSR'01), Toronto, Canada, (2001)

 Vector Space Based on Hierarchical Weighting 193

7. Fischer, B.: Specification-Based Browsing of Software Component Libraries. Journal of
Automated Software Engineering, Vol. 7, No. 2, (2000) 179-200

8. Inoue, K., Yokomori, R., Fujiwara, H., Yamamoto, T., Matsushita, M., Kusumoto, S.:
Component Rank: Relative Significance Rank for Software Component Search. In: Proc.
International Conf. on Software Engineering (ICSE2003), Portland, OR, (2003) 14–24

9. Lindig, C.: Concept-based component retrieval. In: Working Notes of the ZJCAI-95
Workshop: Formal Approaches to the Reuse of Plans, Proofs, and Programs. Kohler, J.,
Giunchiglia, F., Green, C., Walther, C. (eds) (1995) 21-25

10. Penix, J., Alexander, P.: Efficient Specification-Based Component Retrieval. Automated
Software Engineering, Vol. 6. Kluwer Academic Publishers (1999) 139-170

11. Seacord, R., Hissan, S., Wallnau, K.: Agora: A Search Engine for Software Components.
IEEE Internet Computing, Vol.2, No.6 (1998)

12. Sourceforge.: Sourceforge.net. http://sourceforge.net/. Accessed August 4th (2005)
13. Sugumaran, V., Storey, V.C.: A Semantic-Based Approach to Component Retrieval. The

DATA BASE for Advances in Information Systems. Vol. 34, No. 3. ACM SIG
Management Information Systems (2003) 8-24

14. Washizaki, H., Fukazawa, Y.: Component-Extraction-based Search System for Object
Oriented Programs. Proc. 8th International Conference on Software Reuse, Lecture Notes in
Computer Science, Vol. 3107, Springer-Verlag, Berlin Heidelberg New York (2004)

15. Zhang, Z., Svensson, L., Snis, U., Srensen, C., Fgerlind, H., Lindroth, T., Magnusson, M.,
Stlund, C.: Enhancing Component Reuse Using Search Techniques. Proceedings of IRIS 23.
Laboratorium for Interaction Technology, University of Trollhttan Uddevalla (2000)

A High Availability Mechanism
for Parallel File System�

Hu Zhang1, Weiguo Wu1, Xiaoshe Dong1, and Depei Qian1,2

1 Department of Computer Science, Xi’an Jiaotong Univ.,
Xi’an, Shaanxi, China 710049
zhanghu@mailst.xjtu.edu.cn

2 School of Computer Science, Beihang Univ., Beijing, China 100083

Abstract. Parallel file systems achieve a high I/O throughput by divid-
ing a file into multiple blocks and storing them on multiple I/O nodes.
However, the reliability and availability of the parallel file systems are
sacrificed for the stripping of file data over multi I/O nodes. A new mech-
anism named Logic Mirror Ring (LMR), has been developed to improve
the reliability and availability of the parallel file systems in this study. A
logic mirror ring is built over all I/O nodes to indicate the mirror rela-
tionship among the nodes, i.e., each node maintains not only its own data
but also the mirror data of other nodes. The fault tolerant capability of
the system is improved because the node maintaining the mirror data of
the failed node will take over the requests to the failed node. The mirror
depth can be adjusted to different levels based on the requirements of
the reliability and availability. A model is developed to evaluate the re-
liability and availability of the parallel file systems. The effects of LMR
on the reliability and availability of the parallel file system is studied.
The results show that LMR can be used to improve the reliability and
availability of the parallel file systems effectively.

1 Introduction

Parallel file system is widely used in clusters dedicating to I/O-intensive parallel
applications. As a common way, the independent storage devices attached to
I/O nodes are connected together as a whole single storage space via parallel
file system. The file data is divided into stripes or blocks and stored in multi
I/O nodes, and the meta data server is used to provide a single name space
and directory hierarchy. Consequently, the cluster that employs parallel file sys-
tem can get high I/O performance and scalability if the network of cluster can
provides enough bandwidth.However, the parallel file system’s reliability is sac-
rificed for stripping of file data over multi I/O nodes. For example, there is a
parallel file system with N identical I/O nodes, assuming that the Mean Time
To Failure (MTTF) of the I/O nodes is H hours and all other components of
the cluster, such as network, are fault-free, then, the MTTF of whole parallel
� This research is supported by National 863 Plan under grant No.2004AA111110 and

2002AA104550.

J. Cao, W. Nejdl, and M. Xu (Eds.): APPT 2005, LNCS 3756, pp. 194–203, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A High Availability Mechanism for Parallel File System 195

file system is H/N hours. It means that if we want to achieve higher I/O perfor-
mance by adding more I/O nodes, the whole file system subjects to failure more
easily. Therefore, the way to improve the reliability and availability of parallel
file system becomes an important issue.

In this paper, a new mechanism, named Logic Mirror Ring (LMR), is de-
veloped. The nature of LMR is to mirror data to enhance the reliability of the
parallel file system. Its feature is to construct the mirroring and failover rela-
tionship between current I/O nodes, but not to require any special nodes to
store backup data, and not to change the topology of the original parallel file
system. Each piece of data is replicated and stored in multi nodes, and the differ-
ent copies of data would be synchronized to be identical. As another important
feature of LMR, the mirror depth of LMR can be adjusted to meet different
requirements of reliability of parallel file system according to the applications. A
model is also developed to evaluate the reliability and availability of the parallel
file system employing LMR. Through the model, Effects of LMRs are studied
herein at various nodes number, mirror depth, and other factors. The result
shows that: LMR can improve the reliability of parallel file system with a factor
of 32 when the mirror depth is 2 with a tradeoff of write performance degrading
to 50% and double storage space. Furthermore, LMR is able to make parallel
file system tolerate any single point failure of I/O nodes when the mirror depth
is larger than 1.

2 The Mechanism Based on LMR

2.1 Model of Parallel File System

Modern distributed storage systems have a feature that the metadata and data is
divided into two individual parts to be stored and managed [8]. For a parallel file
system, there must have one or more metadata servers to manage and store the
file’s metadata, and multi data servers to maintain the file data [3,5,6,7]. Clients
are the applications that access the parallel file system via the APIs, which are
provided by the parallel file system. These three entities are connected through
networks. Fig. 1 is a typical architecture of parallel file system.The research of
this paper are based on such parallel file system model.

2.2 Logic Mirror Ring (LMR)

Definition 1. Logic Mirror Ring (LMR) is a virtual directed circle that
indicates the mirror relationship of the data servers in the parallel file system.
LMR is constructed with multi nodes connected as a loop, and each node of the
loop represents a data server of the parallel file system.

For example, there is a parallel file system with n nodes (data servers), and
these data servers can be marked with S0, S1, · · · , Sn. A LMR can be constructed
in any orders with all of these nodes, and each node must appear in the LMR ex-
actly once. In this paper, the LMR R0 = {S0, S1, · · · , Sn} is selected to facilitate
description of mechnism.

196 H. Zhang et al.

client

Metadata

Server Data

Server

Metadata

Server

Metadata

Server

Data
Server

Data

Server

client

client

...

...
...

Fig. 1. Architecture of Parallel File System

Definition 2. Mirror depth is a numeric number m that indicates how many
replicas of each piece of data in the parallel file system. It implies that each piece
of data have m copies residing in different nodes. For a parallel file system with
n nodes, mirror depth will be in the range of 0 < m ≤ n .

Definition 3. The concept of Adjacent Distance relate to the concept of
LMR. Given a LMR R and two nodes Sk and Sl, defined the positive direc-
tion as the direction of LMR, if there are i − 1 nodes between Sk and Sl, we
define the adjacent distance from Sk to Sl as i,therefore, the adjacent distance
from Sl to Sk is −i for opposite direction.

6

node1

3

node4

4

node5

2

node3

5

node6

1

node2

5 6 6 1

4 5
1 2

3 4 2 3

(a) n=6 m=2 (b) n=6 m=3

i

The Direction of LMR

Original data of node i

Mirror data of node i’s
original Data

1

i

2

3

45

6

1 2

3

45

6

node1 node2

node4node5

node3
node6

Fig. 2. Data layout of a parallel file system employing LMR

A High Availability Mechanism for Parallel File System 197

In a parallel file system with LMR R0 , when the mirror depth is set to m,
then for any node Si in the R0, The data that is originally designated to store
in node Si should be mirrored to the nodes which adjacent distance to Si are
less than m. For example, if the mirror depth is 3, the original data of each node
should be mirrored to the next node and next of the next node, in other words,
for any node Sk in R0, there are three share of data stored in Sk , one is the
original data of Sk, one is the original data of S(n+k−1) mod n, and the other one
is the original data of S(n+k−2) mod n. Fig. 2(a) and Fig. 2(b) illustrate the data
layout of a parallel file system which employs LMR. The LMR have 6 nodes, and
its mirror depth is set to 2 and 3 respectively. As shown in Fig. 2, a data server
of parallel file system employing LMR maintains not only its original data but
also the replicas of other data servers.

2.3 Adjacent Replication

Definition 4. The Adjacent Replication is a mechanism used to synchronize
the original data and its replicas between original node and its backup nodes.
During the runtime of a parallel file system, every modification of original data
should be synchronized to the backup nodes instantly through adjacent replication.
/bf Adjacent Replication is a mechanism which used to synchronize the original
data and its replica between original node and its backup nodes.

2.4 Theory of Fault Tolerant

For a parallel file system with LMR R0 and mirror depth of m, every node will
response the requests of accessing original data of that node, and all replicas
located in the other nodes will be synchronized with the original data through
adjacent replication when all nodes are in normal state. If a node fails, assuming
node Sk, its next node Sk+1 (its adjacent distance from is 1) will takeover all
the request to the original data of Sk, and the other backup data of Sk will be
synchronized with the backup data of Sk which reside in Sk+1. As a result, node
deals with the original requests both to Sk and Sk+1. If the node Sk+1 also fails
at that moment, then node Sk+2 will takeover the requests both to Sk and Sk+1.

1 2

n

1

3

1

2

n4

...

node1

2

3n

n-1

n-1

n-2

node2 node3 node4 node n

Original data of node i

Mirror data of node i’s
original data

i

i

i

Mirror data accessed
as original data of node I

Note: * The Mirror Depth of the illustrated system is 3.
* The big cross over node means that the node is failed.

Fig. 3. The fault-tolerant theory of LMR

198 H. Zhang et al.

In this way, the node that is next to a failed node will takeover the requests to
all consecutive failure nodes just in front of it. And the whole parallel file system
works until the number of failed node reaches the mirror depth (Fig. 3 shows how
the mechanism works). Therefore, in the extreme situation that the parallel file
system still work when some nodes fail. There must have a node which responds
all requests to m consecutive failure nodes. For example, when the mirror depth
is m, if nodes Sk to Sk+m−2 are all down, then node Sk+m−1 will respond the
requests sent to node Sk,Sk+1 ,· · ·,Sk+m−1 (to facilitate describe, k+m−1 < n).

The following theorem can be concluded from the description above.

Theorem 1. For a parallel file system with LMR and mirror depth of m, it
would not loss any data when the number of consecutive failed nodes is less
than (m − 1).

3 Analysis of Reliability and Availability

In this section, a Markov-Chain model is developed to analyze the reliability
and availability of the parallel system with LMR. The following assumptions are
made to make the model easy to be analyzed:

a. The node changes its status instantly, which imply that no different nodes
change status simultaneously. This assumption eliminates some middle sta-
tuses. These middle statues have a negligible impact on the results of relia-
bility analysis;

b. The probabilities to failure and to recovery of different nodes are indepen-
dent, and all the nodes have same failure rate and recovery rate;

c. The replicas in different nodes are consistent in the moment of a node fails.

3.1 Reliability Evaluation

The reliability can be evaluated by Mean Time To Data Loss (MTTDL) of the
system. MTTDL can be derived from a Markov Chain model. Fig. 4 shows the

Table 1. Notations used in this section

Symbol Description Symbol Description
MTTDL Mean Time To Data Loss n Numbers of I/O nodes.

μm Failure rate of node when Mirror Depth m Mirror Depth
is m, and μm = 1/MTTFm.

γm Repair rate of node when Mirror Depth s Number of status in
is m, and γm = 1/MTTRm. Markov model

MTTFm Mean Time To Failure when Mirror A Availability of whole
Depth is m system

MTTRm Mean Time To Repair when Mirror
Depth is m

A High Availability Mechanism for Parallel File System 199

Fig. 4. The Markov State Diagram

Markov state diagram of the parallel file system [4,9,11], which have n nodes
forming a LMR and the mirror depth is set to m.

In Fig. 4, states marked with the number i represent the situation that there
is no data loss while i nodes fail. According to Theorem. 1, one node can takeover
all the data services of m consecutive nodes. Therefore, the maximal state note
(s − 1) satisfies (1).

s − 1 = n − � n

m
� (1)

p′(i) is defined as a function which presents the probability of the system
being active when one more node fails in state (i− 1). For the states i < m− 1,
failure of any one more node will not be result in data loss. But when system is
in the states of i ≤ m−1, one more node failure may lead to data loss. Therefore,
the p′(i) can be expressed as:

p′(i) = p(i|i − 1) =
p(i ∩ i − 1)

p(i − 1)
= { 1 i < m

p(i)
p(i−1) i ≤ m

(2)

The p(i) in (2) represents the probability of being active while the system
has i failure nodes. It seems that p(i) can’t be calculate from given n, m and
i with formula methods. Therefore, we developed a program to calculate p(i),
and then get every p′(i). Finally, with the given μm and γm, all transfer proba-
bility between states of Markov-Chain diagram can be figured out, and then the
MTTDL of system can be calculated from the Markov-Chain model [9].

Fig. 5 illustrates the reliability of the system with different n and m. As
shown in Fig. 5, this mechanism improves the system reliability dramatically.
According to the calculated result of MTTDL, e.g. the mechanism improves the
reliability by a factor of around 32 when the Mirror Depth is 2. Fig. 5(a) and
Fig. 5(b) is a comparison of the system with different value of and MTTF1 and
MTTR1 of its node. It can be seen that MTTF1 and MTTR1 have a strong
impact on the reliability of the whole system.

The failure rate μm and the repair rate γm of a node should have different
value at different Mirror Depth m. If μ1 and γ1 represent the failure rate and
repair rate of a single node at m = 1, and current system has a mirror depth

200 H. Zhang et al.

Fig. 5. Compare of MTTDL of system with different setup

of m, then, in general, one node responds the same quantity of read requests
and m times write requests as that of a node in the original system (A parallel
file system is called original system when its mirror depth is 1), Assuming the
failure rate of a single node depends on the hardware and software which build
the node instead of the number of the requests arrived it. Therefore, the failure
rate of a single node is(The mirror depth is m):

μm = μ1 (3)

If a node fails, the time to re-synchronize all m portions of mirror data in the
node is the most time-consuming process in the whole repair process. It should
invoke m times synchronization operations than the original system. Therefore,
the repair time of one node is:

MTTRm = m · MTTR1 (4)

According to the definition of repair rate and (4):

γm =
1

MTTRm
=

1
m · MTTR1

=
γ1

m
(5)

3.2 Availability Analysis

A parallel file system with LMR still work until meets a data loss, the Mean
Time To Failure (MTTF) of it can be considered identical with its MTTDL.
Furthermore, when sysytem down, there must have m consecutive nodes fail,
and the m consecutive nodes must be repaired sequentially, then the MTTR of
whole system is:

MTTR = m · MTTRm (6)

The following equation can be obtained from (4) and (6):

MTTR = m2 · MTTR1 (7)

From the definition of availability [13] and (7), the availability of the parallel file
system can be expressed as:

A =
MTTF

MTTF + MTTR
=

MTTDL

MTTDL + m2MTTR1
(8)

A High Availability Mechanism for Parallel File System 201

Fig. 6. Availability of system with different setup

Fig. 6 illustrates the availability of the system when it is in different configura-
tions which are shown in Fig. 5. It is obvious that the new mechanism improves
the system availability significantly when the Mirror Depth set to 2 and 3.

When constructing a parallel file system with node number n, given the
MTTF1 and MTTR1 of single node and the requirement of availability (A) of
who file system, the MTTDL can be derived from (8). Therefore, an appropriate
Mirror Depth which meets the requirement of availability can be obtained in a
numerical method. And the method is derived from the process of calculating
the MTTDL.

4 Related Works

Many companies and research organizations dedicate to improve the reliabil-
ity and availability of parallel file system. And many parallel file systems with
different availability mechanism are developed, such as GPFS, Lustre,
CEFT-PVFS, etc.

GPFS [3,4] is a parallel shared-disk file system that designed by IBM’s Al-
maden Research Center, and it has been wildly used as a mature product. In
GPFS, disks and computer nodes are connected through a dedicated storage
network to achieve high I/O throughput, the file data is divided into stripe and
stored in multi disks to make it possible to be accessed concurrently. The GPFS
emploies dual-attached RAID controller and file level duplication to tolerate disk
failures. Furthermore, GPFS can tolerate the partial failure of network, the data
related to the network will be insolated from other parts of the file system, and
the data relating to the network would not be accessed, but the whole file sys-
tem still work. In contrast with GPFS, LMR doesn’t need dedicated devices to
guarantee high reliability and availability of parallel file system.

Lustre [5,6] is a SAN file system built with three components: clients, Clus-
ter control system, and Storage Target. SAN connects the three components
together. The Cluster control system maintain the name space and file system
meta-data coherence, cluster recovery etc. the Storage Target are OSDs (Ob-
jected Storage Device), which is programmable, the OSDs can be configured
as RAID0, RAID1 or RAID5 to enhance the system’s ability of fault-tolerate.
Just like GPFS, Lustre isolate the failure parts of system, and maintain the

202 H. Zhang et al.

other parts available when some nodes fail. And the recovery operation will
cure the system soon. Comparing with LMR, Luster need dedicated device like
SAN and OSD.

PVFS [7] is an open source parallel file system developed by Clemson Uni-
versity. PVFS has three components: clients, I/O server, meta-data server. File
data are declustered into stripes and stored in I/O servers in a Round-Robin
style. The meta-data server manages the name space and file meta-data. PVFS
can provide high aggregate I/O bandwidth and high scalability. But there is no
special mechanism employed to improve the reliability of PVFS. Several research
projects have been done to enhance PVFS’s reliability. Such as, CEFT-PVFS
project. CEFT-PVFS [4] (Cost-Effective and Fault-Tolerate PVFS) implement
a soft RAID10 over PVFS, it combines the origin system and another identical
system together, and the two system mirror mutually, when one node fail, client
can redirect the requests of that node to its mirror node. Comparing with LMR,
CEFT-PVFS have a little higher reliability than LMR when Mirror Depth set
to 2, but, CEFT-PVFS change the topology of original system and has a worse
performance in read operations.

5 Conclusion

In this article, a new mechanism named LMR has been developed to improve
the reliability and availability of parallel file system. LMR constructs the mirror-
ing and failover relationship between current I/O nodes, and doesn’t change the
topology of the original system. The effects of LMR on the reliability and avail-
ability of systems with different node number n and Mirror depth m are studied.
The result shows that LMR can satisfy the different requirements of availability
and reliability by adjusting system mirror depth. Furthermore, the write per-
formance is reduced to 1/m of original system, but the read performance is not
decreased. The statistics of file operation shows that the read operations takes
much larger portion than the write operations. [14,15], which indicates LMR is
effective in the parallel file system.

References

1. J. Wu, P. Wyckoff, and D. Panda, “PVFS over InfiniBand: Design and Performance
Evaluation”, The International Conference on Parallel Processing (ICPP-03) , Tai-
wan 2003

2. IA64 Cluster Document
(www.hlrs.de/hw-access/platforms/zx6000/user oc.pdf) 2003

3. F. Schmuck and R. Haskin, “GPFS: A Shared-Disk File System,” in Proceedings
of the Conference on File and Storage Technologies (FAST’02) Monterey, CA 2002

4. Y. Zhu, H. Hong, X. Xin, D. Feng and D. R. Swanson, “Design, Implementation
and Performance Evaluation of A Cost-Effective Fault-Tolerant Parallel Virtual
File System”, The International Workshop on Storage Network Architecture and
Parallel I/O, New Orleans, LA, 2003

A High Availability Mechanism for Parallel File System 203

5. O. Rodeh, A. Teperman. “zFs - A Scalable Distributed File System Using Object
Disks”, in Proceedings of the 20th IEEE/11th NASA Goddard Conference on Mass
Storage Systems and Technologies(MSS’03) San Diego, California, 2003

6. P. J. Braam, “The Lustre Storage Architecture”, (http://www.clusterfs.com) 2004
7. P. H. Carns, W. B. Ligon III, R. B. Ross, and R. Thakur, “PVFS: A Parallel File

System For Linux Clusters”, (http://www.parl.clemson.edu/pvfs/papers.html)
2000.

8. S. A. Brandt, E. L. Miller, D. E. Long, L. Xue, “Efficient Metadata Manage-
ment in Large Distributed Storage System”, in Proceedings of the 20th IEEE/11th
NASA Goddard Conference on Mass Storage Systems and Technologies(MSS’03)
San Diego, California, 2003

9. Sung Hoon Baek, Bong Wan Kim, Eui Joung Joung, and Chong Won Park, “Relia-
bility and performance of hierarchical RAID with multiple controllers”, in Proceed-
ings of the 20th annual ACM symposium on Principles of Distributed Computing,
2001

10. Q. Xin E. L. Miller, T. Schwarz, D. E. Long, “Reliability Mechanisms for Very
Large Storage System”, in Proceedings of the 20th IEEE/11th NASA Goddard
Conference on Mass Storage Systems and Technologies(MSS’03) San Diego, Cali-
fornia, 2003

11. David McDysan, “QoS & Traffic Management in IP & ATM Networks”, TsingHua
University Press, 2000, pages 153-164.

12. Li Yuya, “The mathematic of Reliability”, Huazhong Univ of Science and Tech-
nology Press,1990

13. Chris Oggerino, “The Fundamental of High Availability”, China Electrical Power
Press, 2002

14. Mary Baker, Ohn Hartman, Michael Kupfer, Ken Shirriff, and John Ousterhout,
“Measurements of a Distributed File System”, in Proceedings of the 13th SOSP,
October 1991 15.

15. Nils Nieuwejaar, David Kotz, Apratim Purakayastha, Carla Schlatter Ellis, and
Michael L. Best, “File-access characteristics of parallel scientific workloads” IEEE
Transaction on Parallel and Distributed Systems, Vol. 7. No. 10. 1996

A User-Guided Semi-automatic Parallelization
Method and Its Implementation

Chuliang Weng, Zhongguo Chen, Xinda Lu, Minglu Li, and Yong Yin

Department of Computer Science and Engineering,
Shanghai Jiao Tong University, Shanghai 200030, China

weng-cl@cs.sjtu.edu.cn

Abstract. In this paper, we propose a user-guided semi-automatic par-
allelization method, which is based on code templates corresponding to
parallel programming paradigms and the concept of meta-task indepen-
dent with each other. As an implementation of this method, we develop
the system Metaparallel, which is based on Java language and MPICH,
and the framework of Metaparallel is discussed. At last, the paralleliza-
tion flow is studied with a case. In addition, we test the usability of
Metaparallel by the practical engineering problem.

1 Introduction

Parallel programming could be classified into two kinds: implicit parallelism and
explicit parallelism. Implicit parallelism means the programmer does not explic-
itly specify parallelism, but lets the compiler and the run-time support system
automatically exploit it [1]. Usually the automatic parallelization of sequential
programs is the approach of implicit parallelism. This is undertaken by compiler
which analyzes the dependence of the sequential program and converts the se-
quential program into the corresponding parallel program. Whereas, when the
programmer explicitly specifies parallelism in programs, it is called as explicit
parallel programming. Explicit parallelism includes three parallel programming
models: shared-variable, data-parallel and message-passing.

Implicit parallelism or automatic parallelism is expected to parallelize the
sequential codes into the parallel program codes without additional efforts of
the sequential programmers. However, the parallel performance of automatic
parallelism is poor and much more parallelism of sequential codes can not be
exploited automatically [2][3]. On the other hand, with the explicit parallelism
model, programmers should be versed in the parallel programming knowledge
such as parallel architectures and parallel programming models in order to de-
velop efficient parallel programs.

In this paper, we present and implement a user-guided semi-automatic
parallelization mechanism, in which sequential codes can be parallelized auto-
matically with the user’s guidance. This method integrates the accessibility of
implicit parallelism and the efficiency of explicit parallelism, and is helpful for
programmers in the engineering domain to develop parallel programs without
the redundant burden.

J. Cao, W. Nejdl, and M. Xu (Eds.): APPT 2005, LNCS 3756, pp. 204–213, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A User-Guided Semi-automatic Parallelization Method 205

2 Related Works

The message-passing model is one kind of explicit parallelism, and PVM (Par-
allel Virtual Machine) and MPI (Message Passing Interface) are two important
libraries of the message-passing model. Currently, MPI is the standard of the
message-passing program, and the message-passing model and MPI had been
adopted widely in scientific computing research and industry domains.

There are many research efforts on automatic parallelization of programs
for a long time. One kind of approaches is using parallel compilers for auto-
matic parallelization [4][5][6][7]. The automatic parallelizing approach cannot
generate parallel codes as good as hand coding for many applications, because
the complexities of practical applications cannot be manipulated effectively.
Another important approach is the interactive parallelization, which includes
works [8][9][10]. With this interactive approach, programmers can input their
knowledge to the parallel compiler for improving the capability and efficiency
of parallel compilers. In addition, the source code transformation is the other
important method for parallelization, which includes works [11][12][13].

In this paper, we focus on the semi-automatic parallelization. The proposed
method and the implemented system are based on meta-task and template,
and an interactive graphic interface is provided for users to guide the proce-
dure of parallelization, for achieving the goal of accessibility, structuredness and
template-based scalability.

3 Semi-automatic Parallelization Method

In this paper, our parallelization goal is to transform sequential codes into par-
allel codes, which conforms with the message-passing model and can run in the
MPICH environment. The architecture is shown as Fig. 1.

As Fig. 1 shows that the sequential application is transformed into the parallel
program by the Metaparallel system, which had been implemented with Java
language. Behind the Metaparallel system, the following key technologies are
adopted.

Sequential Application

Metaparallel System

Parallel Program (MPICH)

-- computing node

Fig. 1. The architecture of parallelization

206 C. Weng et al.

3.1 Programming Template

In the message-passing model, there are some parallel programming paradigms:
master-slave, pipeline, workpool, divide-and-conquer, and phase-parallel [1].
Usually, parallel programs include two kinds of executing parts, that is, com-
putation parts and communication parts. Different parallel programs have the
different combination means of computation parts and communication parts.
Through analyzing a large number of the pratical parallel codes of different ap-
plications, it can be found out that there are some common characteristics of
these parallel codes, which can be reflected as programming paradigms. So we
implemented the programming templates based on the above five programming
paradigms. Users can select one appropriate template for generating their parallel
applications. In addition, users can make a new programming template to satisfy
the practical requirement in order to implement the scalability of this method.

In the template, the main characteristic of multiple processes in the parallel
program is determined. For example, in the master-slave paradigm, it is the mas-
ter process that is responsible for assigning data to the other slave processes and
gathering the computing results. However, in the pipeline paradigm, processes
are organized as a pipeline, and one process receives data from its front process
and sends data to the process behind it.

Moreover, the specific computing codes is needed to be inserted to the tem-
plate code for generating executable parallel programs. The inserting procedure
is accomplished with the guidance of users. The user should provide sequential
codes, determine the parts that can be executed in parallel, and indicate the
data association of parts that have to be executed sequentially.

There are also the other two operations for users to generate parallel pro-
grams. One operation is the modification of some existing codes in the template,
which is not suitable for specific applications. And the other operation is the dele-
tion of some existing codes in the template, which is no use for users’ applications.

With the guidance of users involving the selection of programming paradigms,
the inserting of specific computing codes and the modification of existing codes
in the template, the parallel program corresponding to a sequential application
can be generated by the Metaparallel system.

3.2 Meta-task

We adopt the term “meta-task” to represent the segment of codes, which has
to be executed in sequence. The communication between one meta-task and
others in the parallel program is the data exchange such as receiving data from
other meta-tasks or sending data to other meta-tasks in the parallel program.
And meta-tasks are the practical computing parts of the specific application.
The codes of meta-tasks are provided by users and are inserted to the template
codes in order to generate the finial parallel program of the application.

There are two ways for inserting meta-tasks into the template codes. One way
is inserting the codes of meta-tasks directly into the template codes, which is
very simple. However, there are some problems with this means, one is the name
conflict of variables and functions, and the other is that the meta-task can not be

A User-Guided Semi-automatic Parallelization Method 207

debugged and executed independently for it is just a segment of program codes,
which will increase the difficulty of debugging the problem of a large scientific
computing program. The other way is to adopt the object-oriented mechanism
to encapsulate the meta-task. The interface is defined for the corresponding
meta-task, and is called in the template codes. Users implement the functions
in the interface according to the specific application, and these functions are the
practical computing parts of the specific application. In this paper, the second
means of inserting meta-tasks into the template codes is adopted.

3.3 Transparency of Heterogeneity

Usually, a parallel computing environment consists of heterogeneous machines
and different operating systems. An effective automatic parallelization tool
should shield users from the heterogeneity for lightening the burden of users.
So Java language is adopted to implement the template by us, and users are
also expected to implement or encapsulate the legacy codes into the meta-task
with Java language in response to their specific scientific computing applica-
tions. As Java language is a crossing-platform programming language, which
can transparent the heterogeneous characteristic of different kinds of computers.
The performance of Java language had been discussed in many literatures and it
is validated that Java language is also suitable for high performance computing.

Through Metaparallel, a large-scale computing application will be trans-
formed into parallel programs executed in the MPICH environment. As MPICH
is implemented for C language and Fortran language, so the mpiJava toolkit
is adopted to bridge the difference in the programming language between the
java-implemented parallelization environment and the C-implemented MPICH.
mpiJava is an object-oriented Java interface to the standard Message Passing
Interface, and provides a Java-based wrapper of MPI, through which MPICH
functions can be invoked in the Java programs.

3.4 Structuredness

Based on template and meta-task, a method of the user-guided semi-automatic
parallelization is proposed. The main idea is that a meta-task is an individual
sequential “atom”, which maybe need input data from other meta-tasks or send

1

42

3

8

9

56
7

the
selected
template

3

9

5

6

872

4

1

meta-tasks

templates

the generated
parallel program

Fig. 2. The generation procedure of parallel programs

208 C. Weng et al.

output data to other meta-tasks. It is the template that will describe the data
association of these meta-tasks and organize these meta-tasks so that meta-tasks
can run harmoniously in parallel. This is illustrated as Fig. 2.

As Fig. 2 shows that with the selected template, the nine meta-tasks are
organized as a logic circle, and there is a continuous data stream flowed in the
looped pipeline, and the meta-tasks execute at different stages simultaneously
in an overlapped fashion. This scenario existed in the solving of the large-scale
equation system derived from the structure dynamics analysis [14].

4 System Design and Implementation

In this section, Metaparallel, a system of the user-guided semi-automatic paral-
lelization, is discussed in terms of the system design, and the implementation of
the system is refereed.

4.1 The Framework of the Metaparallel System

The proposed user-guided semi-automatic parallelization tool is an integrated
development environment, illustrated as Fig. 3. The system includes the general
integrated development environment, and parallelizing modules.

Firstly, according to the specific application, the user should code or encapsu-
late the meta-task as a SingleTaskSubmit object, which is the sequential program
in Java and should implement the interface Metatask. Then the user should de-
bug and execute the sequential codes as an individual program, ensuring the
correctness of meta-tasks. From the perspective of software engineering, it is
helpful to develop and debug a large-scale application, also helpful to maintain
the existed application, because it has good structuredness.

P
arallel P

rogram
 G

enerator

Parallelization Console

meta-tasks

initialization
data

template
codes

parallel
parameters

Object Generator
generated

objects

P
arallel W

izard

parameter
files

P
arallel P

rogram

Integrated E
dit

E
nvironm

ent

System

D
eployer

C
om

piler and
D

ebugger

R
uning

W
indow

Integrated Development Environment

Fig. 3. The Framework of Metaparallel

A User-Guided Semi-automatic Parallelization Method 209

One of the parallelizing modules is Parallel Wizard, which is a graphic in-
teractive interface. With Parallel Wizard, Users input the parallelization pa-
rameters (including initialization data, parallel parameters, etc.), which define
parallelization strategies and parallelization rules for a specific application, and
then select the appropriate program template from available templates, and the
template codes are generated. Another aspect to be considered is to handle the
data. Users should specify data types and covert them into the types that could
be recognized by the generated program, and these data will be stored in a
parameter file.

The other parallelizing module is Object Generator. It is Object Generator
that generates some relative objects from the meta-tasks, which will be called
by the final parallel program. The Object Generator is an important part of the
system, which not only creates source codes of objects but also compiles them
into Java class file. The most important object to be created is DataManger for
handling data. It is used to fetch data from data sources and parse the initial
data according to the configuration parameters. The object can also convert data
into user-defined types when the user-defined type is fit for the communication
between computing nodes. It also has member functions to store results back
to relative storages. The instance of DataManger will be employed in the final
parallel program.

Parallel Program Generator is responsible for generating the final parallel
program, which will be executed in the MPICH environment. During the course
of creating the codes of the parallel program, the determined template will be
the skeleton of the parallel program, and the related objects are instanced as one
part of the parallel program. Also a parameter file will be created that records
configuration parameters input by user during Parallel Wizard, which is also used

Fig. 4. The Metaparallel environment

210 C. Weng et al.

to organize the multiple processes when the parallel program is executed. One
more important operation is to insert the instance of the meat-task implemented
as a Java object to the program skeleton with the necessary modification.

Besides above components, the system also includes the general integrated
development environment, which consists of Integrated Edit Environment, Sys-
tem Deployer, Compiler and Debugger, and Running Window. Integrated Edit
Environment is used to edit the program. Compiler and Debugger is for compil-
ing and debugging sequential programs and parallel programs based on the Java
toolkit, System Deployer is responsible for deploying the parallel program in the
cluster of machines. Finally, the sequential program and the parallel program
can be executed in Running Window.

4.2 Implementation

The Metaparallel system is implemented with Java language based on the follow-
ing software toolkits: MPICH1.2.5, mpiJava1.24, JDK1.4.2, Fortran and
C/C++. The whole environment of Metaparallel is shown as Fig. 4. We have
implemented the functions discussed in above sections.

5 Case Study

In this section, A case of parallelization of fractal computing by Metaparallel is
given as follows.

1. Application Analysis. In this phase, users should analyze the application
to determine the parallel programming paradigm, and then select an ap-
propriate template from available templates. As fractal computing is the
embarrassing parallel computation, where each iteration of fractal comput-
ing is independent from the other iterations, so the master-slave paradigm
is adopted. Therefore, the corresponding master-slave template is chosen as
the skeleton of the parallel program.

2. Parallel Wizard. Through this phase the user guides the procedure of par-
allelization. The user should input parameters required by the system, and
import the source codes of fractal computing as the meta-task.

3. Generating Relative Objects. After the system has got the necessary in-
formation, the system should generate the code of relative objects (in this
example, they are DataManagement object and ViewFrame object) and the
system implicitly compiles the generated codes into Java classes.

4. Generating Parallel Codes. With necessary objects and the code template,
the parallel code can be generated now. The result of the generation is the
parallel source code shown as Fig. 5. The brief comparison between the meta-
task source code and the generated parallel source code is also displayed in
Fig. 5. We can find out that the parallel source code is generated with many
parallel instructions and some invocations of the class of the meta-task.

5. Compiling and Debugging. Users can compile and debug the generated par-
allel code to make sure that the parallel program is correct.

A User-Guided Semi-automatic Parallelization Method 211

Fig. 5. A case of Metaparallel

Fig. 6. The result of execution

6. Deploying and Running. The compiled parallel program is deployed in the
parallel computing environment based on MPICH in this phase. Finally, the
user can run the program in Running Window of Metaparallel, although the
program can also be executed manually in the command mode.

In this case, a master process is created for assigning and reclaiming the
computing data, and displaying the computing result, and three slave processes

212 C. Weng et al.

Table 1. Execution time and speedup

node number execution time(s) speedup parallel efficience(%)
1 5813 1.000 100.0
2 2915 1.994 99.7
3 1952 2.978 99.2
4 1460 3.982 99.5
5 1182 4.918 98.4

are created to calculate the fractal fern leaf. The execution result of the generated
parallel program is shown as Fig. 6.

In addition to this example, we have parallelized the practical engineering
computing application, the dynamic analysis for the track structure [14]. In
this engineering case, the pipeline parallel programming paradigm is adopted to
reduce the execution time of solving a large-scale equation system derived from
the structure dynamics problem. The execution time and speedup are listed as
Table 1 with increasing the homogeneous computing nodes.

6 Conclusion

In this paper, we challenge the issue of parallelizing the program. Based on
meta-task and template, a user-guided semi-automatic parallelization method is
proposed and a parallelizing system Metaparallel is implemented.

The accessibility of Metaparallel is achieved with the graphic interactive
mode, and the sturcturedness of Metaparallel is implemented based on the con-
cept of meta-task, and the customized template can be used for the scalability.
Through the case study, the parallelizing procedure is discussed, and the paral-
lelizing result of the practical engineering application indicates that the proposed
approach is feasible and the system is effective for parallelization.

Acknowledgements

This research was supported by the project “General High Performance En-
gineering Numerical Simulation Computing Platform” of Shanghai Municipal
Informatization Commission, and the National Natural Science Foundation of
China (No. 60173031 and No. 60473092).

References

1. Hwang, K., Xu, Z.: Scalable Parallel Computing - Technology, Architecture, Pro-
gramming. McGraw-Hill, New York (1998)

2. Boulet, P., Brandes, T.: Evaluation of automatic parallelization strategies for HPF
compilers. In: Proceedings of HPCN Europe 1996. Volume 1067 of Lecture Notes
in Computer Science. (1996) 778–783

A User-Guided Semi-automatic Parallelization Method 213

3. Dion, M., Robert, Y., Philippe, J.L.: Parallelizing compilers: what can be achieved?
In: Proceedings of HPCN Europe 1994. Volume 797 of Lecture Notes in Computer
Science. (1994) 447–456

4. Eigenmann, R., Hoeflinger, J., Padua, D.: On the automatic parallelization of the
perfect benchmarks. IEEE Transactions on Parallel and Distributed Systems 9
(1998) 5–23

5. Lim, A.W., Lam, M.S.: Maximizing parallelism and minimizing synchronization
with affine partitions. Parallel Computing 24 (1998) 445–475

6. Wilson, R.P., French, R.S., Wilson, C.S., Amarasinghe, S.P., Anderson, J.M.,
Tjiang, S.W.K., Liao, S.W., Tseng, C.W., Hall, M.W., Lam, M.S., Hennessy, J.L.:
SUIF: an infrastructure for research on parallelizing and optimizing compilers.
ACM SIGPLAN Notices 29 (1994) 31–37

7. Blume, W., Doallo, R., Eigenmann, R.: Parallel programming with Polaris. Com-
puter 29 (1996) 78–82

8. Ierotheou, C.S., Johnson, S.P., Cross, M., Leggett, P.F.: Computer aided paralleli-
sation tools (CAPTools) - conceptual overview and performance on the paralleli-
sation of structured mesh codes. Parallel Computing 22 (1996) 163–195

9. Hiranandani, S., Kennedy, K., Tseng, C.W., Warren, S.K.: The D editor : a new
interactive parallel programming tool. In: Proceedings of the Supercomputing’94,
IEEE Computer Society Press (1994) 733–742

10. Yang, B., Wang, D., Zheng, W.: Several critical techniques in constructing interac-
tive environment of parallelizing compiler. Journal of Software (Chinese) 12 (2001)
698–705

11. Kuck, Inc., A.: Parallel performance of standard codes on the compaq professional
workstation 8000: Experiences with visual KAP and the KAP/Pro toolset under
windows NT. (1997) Champaign, IL.

12. Mitra, S., Kothari, S.C., Cho, J., Krishnaswarmy, A.: ParAgent: A domain-specific
semi-automatic parallelization tool. In: Proceedings of the 7th International Con-
ference on High Performance Computing. Volume 1970 of Lecture Notes In Com-
puter Science. (2000) 141–148

13. Felber, P.: Semi-automatic parallelization of java applications. In: Proceedings of
the International Symposium on Distributed Objects and Applications (DOA’03).
(2003) http://www.eurecom.fr/∼felber/publications/DOA-03.pdf.

14. Weng, C., Lu, X.: Application of network-based parallel computing to dynamic
analysis for track structure. Journal of Shanghai Jiaotong University (Chinese) 38
(2004) 497–500

J. Cao, W. Nejdl, and M. Xu (Eds.): APPT 2005, LNCS 3756, pp. 214 – 225, 2005.
© Springer-Verlag Berlin Heidelberg 2005

CAPU: Enhancing P2P File Sharing System
with Capacity Aware Topology∗

Hongliang Yu, Weimin Zheng, Dongsheng Wang, Haitao Dong, and Lu Li

Department of Computer Science and Technology, Tsinghua University,
Beijing, 100084, China

{hlyu, zwm-dcs}@tsinghua.edu.cn

Abstract. Measurement works show that the unstructured P2P file sharing
systems such as Gnutella face the problem of poor scalability and inefficiency
search for unpopular items. In this paper, we propose new mechanisms that
greatly enhance the performance of file sharing system. Our work exploits the
prevalent heterogeneity of the nodes in existing unstructured networks in terms
of capacity to construct a quasi-hierarchical topology-aware topology which
achieves approximately optimal system throughput. Based on this overlay
topology, we propose proactive file index propagation scheme to facilitate
search. We also introduce a two-stage search algorithm integrate probabilistic
biased random walk that search for popular items and low-redundant multicast
(MPR) searching for rare items, achieving approximately O(1) search
efficiency for popular items and receivable search latency for rare items
respectively. We evaluate our design through simulations and the results show
3 to 5 orders of magnitude improvement in total system capacity compared to
other Gnutella-like system.

1 Introduction

Among various usages of P2P architecture, file sharing is one of the dominant
applications. From Napster [1] (the earliest P2P system, emerging in 1999), Gnutella
[2], Freenet [3], KaZaA [4], to BitTorrent [5], P2P file sharing systems attract millions
of users and become the biggest bandwidth consumer of the internet.

Based on their overlay topology and data placement strategy, P2P file sharing system
can be put into two categories: unstructured and structured. Because of the lawsuit of
RIAA, Napster and its various centralized-search mocker had to face their destination.
Decentralized system, such as Gnutella and KaZaa that decentralized-download as well
as decentralized-search, emerged as the most prevailing P2P file sharing system. Peers
joining into such overlay systems connect with each other in an ad-hoc fashion, which
form random overlay topology. And the placement of the files in unstructured systems
is also extremely unrestrained. When a node queries with some key, it sends the query
message to all its neighbors in the system. On receiving such a query request, if the

∗ This work was supported by the National Natural Science Foundation of China under Grant No.

60433040.

 CAPU: Enhancing P2P File Sharing System with Capacity Aware Topology 215

node has files satisfied this query, it returns a list of content according with the query to
the originating node, else it forwards the request recursively within a given TTL scope.
Clearly, this approach is not scalable, as load on each node grows linearly with the total
number of query, which grows with system size. Besides, it can only get partial
answers, that is to say unless the flooded query request traverses all the nodes in the
overlay, it can not find distinct copies of desired file, which is presented in [6] as the
problem of searching ‘needle and hay’. [6] indicates that Gnutella-like unstructured file
sharing system is so called mass-market system, it can easily find popular files (hay)
but it suffers long response time and low recall rate to find rare files (needle).

To solve the searching scalable problem, several approaches have been simultaneously
but independently proposed, all of which support a distributed hash table (DHT)
functionality. In these systems[6][9][10], which we call DHTs, peers are connected
according to some strict rules, and files are associated with a key, which is produced,
for instance, by hashing the file name, and each node in the system is responsible for
storing a certain range of keys. By these means, DHTs provide scalable query
responsible time and acceptable load balance mechanism. Though for several years
there have been durative mania in research community for DHT, such systems still
have no sign to be put into use for file sharing. This phenomenon is due to two factors,
the first is that DHTs are great vulnerable to peer churn rate, the second is that DHTs
are not easy provide partial query techniques, such as keyword searching. Based on the
facts mentioned above, [6][11] address that unstructured systems are more suitable for
file sharing application than structured networks.

Our work in this paper is based on the following unfathomed problems in
unstructured networks:

1. Scalability: When faced with a high aggregate query rate and a large system
size, nodes become overloaded and the throughput of the system degrade
significantly.

2. Search Efficiency: Previous works have observed that the flooding-based
approach is an efficient, simple solution for finding copies of popular files, but
they also identify the poor latency and result quality for queries that focus on
rare items.

The Gnutella measurements presented in [7] prove our points in that Gnutella is less
effective for locating rare items: 41% of all queries receive 10 or fewer results, and 18%
of queries receive no results though there are matching content existing in the system.
Furthermore, the results have poor response times. For queries that return a single
result, the first result arrives after 73 seconds on average. For queries that return 10 or
fewer results, 50 seconds elapsed on average before receiving the first result.

There are several previous works to improve the scalability of Gnutella-like system,
such as use biased random walk to substitute flood-based search and active algorithm to
limit the query load into each node to avoid overloading[6][11]. We admit these works
are in the right direction to solve problems mentioned above. But their approach still
can not provide an all-purpose effective scheme both for the scalability of system load
and for the efficiency of searching for rare items. The design of CAPU are based on the
prevalent heterogeneity of the nodes in existing unstructured networks in terms of
capacity, including processing power, disk latencies, access bandwidth, and etc[12].

216 H. Yu et al.

The first feature of CAPU is that we construct a quasi-hierarchical topology-aware
topology that balance query, and maintenance cost among nodes, thus achieve the
approximately optimal system throughput. The second feature is based on this
quasi-hierarchical overlay topology, every node report pointers of the files stored in it to their
high-level neighbors, and the high-level neighbors combine pointers of its files and the
pointers reported by other node together, and report to its higher level neighbor. Simulation
results show that this recursive proactive file index propagation great expedite the search
process. And finally we scheme out a query algorithm, which integrate biased random walk
and low-redundant multicast (MPR), achieving approximately O(1) search efficiency for
popular items while receivable search latency for rare items.

We evaluate CAPU through simulation-based experiments. The results show that our
approach can provide 3 to 5 times improvements in terms of length of search path.

The rest of this paper is organized as following. In section B, we present the detailed
design of CAPU, including the overlay protocol, the file index update strategy, and
search algorithm. Simulation results are given in Section C. Section D and Section E
are related works and final conclusion.

2 CAPU Design

The key components of our work include:

1. A quasi-hierarchical capacity- aware topology protocol that ensure a
approximately optimal overlay topology in terms of high system throughput,
load balance, low diameter, and high resilience to failure.

2. Proactive file index propagation exploit the capacity-aware topology, every
node recursive propagate local file pointers and the file pointers reported by its
lower-level neighbors to the its upper level neighbors, thus make full use of the
quasi-hierarchical topology to provide cache for query in advance, and shorten
length of query path.

3. Two-stage search algorithm take advantage of the capacity-topology and file
index strategy, the first stage bias random search message to high capacity node
dynamic-adaptive to query load, if not getting query result until reaching the
highest level node, then the second stage search algorithm is triggered. The
second stage introducing Multi-Point Relays (MPRs)[13] to multicast query
request among highest level nodes, reducing the number of re-transmission
packet compared with flooding. So far as we know, this is the first work to
introduce MPR into multicast in P2P system.

The concept of capacity or heterogeneity level is essential to our protocol. Unlike the
design in[6][11], which consider nodes distributed continuously in term of capacity, we
classify different heterogeneity into finite discrete levels, which make the construction
of quasi-hierarchical topology realistic. Though there are several means to mark off
capacity level, in general, one could model the capability of a node as a vector
consisting of several components including access network bandwidth, CPU
frequency, memory size, disk access latency, etc. These parameters are highly relevant
to the amount of resources a node is willing to contribute to the P2P system. In our

 CAPU: Enhancing P2P File Sharing System with Capacity Aware Topology 217

model, we consider bandwidth is the most critical resource for file sharing application.
It is observed in Gnutella [14] that nodes show several orders of magnitude difference
in their access network bandwidth (slow dial-up connection, DSL connections, Cable
connections, to high speed LAN connections). So, it is easy to classify node capacity
according to the bandwidth. In the following of this paper, we assume that the set of
node classes are given to us based on access network bandwidth.

Algorithm 1: Quasi-hierarchical capacity aware topology protocol

()L I : capacity level
()Th I : degree upper-bound

()B I : bootstrap node set
(), ()N I D I : neighbor node set and its size

(), ()N I D Ip p : neighbors with higher capacity level than X and its size

(), ()N I D Ic c : neighbors with lower capacity level than X and its size

(), ()N I D Is s : neighbors with same capacity level with X and its size

{new node I join}
 if I is new node into system then

Get ()B I from web cache;
For each node ()J B I∈ , such that () ()L J L I≥

Send PING msg to J
 end if
 {when node I receive PING message for node J }
if () ()D I Th I< then

 Send PONG back msg to I ;
else {node I has no free degree }

if ()M N I
c

∃ ∈ , such that () ()L M L J< then

 Send PONG back msg to I ;
 end if
 end if
 {when node I receive PING message from at least ()Th I nodes}

Denote the set of all the nodes returning PONG msg as S ;
Select the top ()Th I nodes with max level and free degrees;
Send CONNECT request message to all these nodes;
{when node I receive CONNECT message for node J }
if () ()D I Th I< then

Add J into ()N I
c

, accept the connect request;

else
if

Select node ()M N Ic∈ , such that ()L M is minimum;

Delete M from ()N I
c

; Redirect M ’s link to J ;

Add J into ()N I
c

, accept the connect request;

end if
end if

218 H. Yu et al.

2.1 Quasi-Hierarchical Capacity-Aware Topology Protocol

The capacity adaptive topology protocol is the key algorithm for node to select,
connect, drop, and maintain neighbors. The goals of this algorithm include:

1. Ensure that the degree of node is directly proportional to the nodes’ capacity,
nodes of the same capacity level have balanced degree.

2. The capacity level of all the nodes in the directional shortest path from node A
to node B (suppose A’s capacity level is lower than B) are intervenient between
capacity level of them.

3. A node, whose capacity level is not maximum, has at least one neighbor with
higher capacity level than it.

The first goal is to fully exploit the heterogeneous capacity of participating nodes as
well as to balance topology maintenance and query load among nodes in term of node
capacity. The second goal is to ensure that weak nodes are prevented from becoming
hotspots or bottlenecks that throttle the performance of the system, thus avoiding
bottle-necks to decrease the average query response time. Hence, a powerful node
would maintain more connections and more file pointers, receive more queries on
average compared with a weak node. The third goal ensure that weak node is within
O(1) reach of higher capacity ones, which at most equals the number of capacity levels,
thus shorten the file indices propagating and query hops. Besides, since the high
capacity-level nodes are likely to stay connected to the system for a longer period of
time, the probability that a node would loose a connection with a higher-level node is
lower than that of a lower-level node, thereby increase fault tolerance of the system.
Consequently, from a comprehensive perspective of the system design, this
quasi-hierarchical load balanced architectures obtain high overall system throughput.

The neighbor list of a node X, denoted as N(X), is divided into two groups, which are
parent neighbor list(Np(X),and child neighbor list(Nc(X)). Parent neighbor list of node
X include all the neighbors with higher capacity-level nodes than X or the same level.
Similarly, child neighbor list consists of neighbors with lower capacity-level. We
define node X’s degree (D(X)) as the sum of size of X’s neighbor list.

() () ()D X D X D Xp c= +

For every node, it has a degree threshold (Th(X)) exponentially proportional to its
capacity-level.

When a node X join the network, it obtains a list of node addresses using a rendezvous
mechanism by either contacting a host cache server as Gnutella[2] or consulting its own
cache from a previous session in a fashion similar to an initial connection. We denote the
capacity level of node X as L(X), and the set of bootstrap address returned from host
cache as B(X). Node X select all the on-line nodes whose capacity-level are higher than or
the same as L(X), and send PING message to these nodes, the PING message carrying
information of X, such as L(X), and N(X)(in case of rejoining). On receiving this PING
message, node N check if D(N) is lower than Th(N), or if N finds that its has neighbors
with lower capacity level than X, it reply a PONG message to the source node X,
piggybacking the information of N, such as L(N), and Dc(N).

X prefers connecting to nodes with higher capacity level, and if two nodes are of the
same level, X prefers selecting to the one with smaller children neighbor list. With this

 CAPU: Enhancing P2P File Sharing System with Capacity Aware Topology 219

priority constraint, X sorts the nodes, which send back PONG message and have higher
or at least the same capacity-level, into a sorted list. Then X send the CONNECT
request message to the top Th(X) nodes in the sorted list. If the size of the sorted list is
less than Th(X), X fetch bootstrap nodes from host cache again, and continue PING
process. If a node N receive this CONNECT message from X, it checks if its D(N) is
smaller than Th(N), if D(N) < Th(N), X accept this CONNECT request, and add X into
its child neighbor list(Nc(X)), and accept to connect with X. If D(N) is equal to Th(N),
node N select the neighbor with the lowest level, say M, and send message to M to
redirect M’s link from N to X, add X into its child neighbor list (Nc(X)), and establish
connection with X.

The node in CAPU system periodically send keep alive message to nodes in its
neighbor list to keep the connection. If the node has not received this heartbeat message
for a node in the for several period, the node is consider dead and will be flushed. In
next section, we will show that this keep alive message is attached with other data, such
as file index, neighbor list, and weight of link. A detailed pseudo-code of this protocol
is shown in Algorithm 1. Results from experiments measuring the topology adaptation
process are discussed later in Section C.

2.2 Proactive File Index Propagation

To fully exploit the heterogeneous capacity of nodes in the peer-to-peer networks,
every node in CAPU system proactively propagate the file index of the content in it and
the file indices propagated by its neighbor to it to its higher capacity-level neighbors.
This scheme is different from the approach in other works, such as[6][15], in which
node only maintain node information of one-hop neighbors. In CAPU, the
quasi-hierarchical capacity-aware topology enable node report their file information
recursively from down to top, consequently from weak nodes to powerful nodes. In the
keep alive message from node to its higher capacity level neighbors, it reports the
change of its previously reported file pointers. If the file index has not been updated in
a certain time interval, the file index will be prune. This ensures that all index
information remains mostly up-to-date and consistent throughout the lifetime of the
node. When a node receives a query, it lookups locally to see if there is some contents
matching this query. If only the nodes storing the matching content has a directed path
in the overlay topology to this node, the node will respond via a simple local query, thus
greatly shorten the query path length, and the response time.

The rationality of this approach is related on the work of [14] they prove that the
proactive cache mechanism can improve search efficiency significantly in peer-to-peer
networks. But because their work is based on Path Caching with Expiration (PCX),
which can reduce the search path length only after successfully found the content. In
the setting of unstructured file sharing system, because of lacking scalable search
algorithm, the first time for a user to look for the rare content is very difficult, that is to
say, CUP can only benefit search for popular items. So, unlike CUP, we place the file
cache in the possible search path (refer to CAPU’s search algorithm in next section)
beforehand. And because we only propagate indices from low-level node to high-level
node, nodes with large file index are all powerful nodes and have little chance to be
over loaded. This approach shorten the search path length significantly, which reduce

220 H. Yu et al.

Fig. 1. Proactive file index propagation

the query message in the system and reduce the query load of low-level nodes. Besides,
due to the propagation scheme, upper level nodes are aware of large amount of file
information in the system, which makes it possible to design scalable search algorithm
to find rare items.

Figure 1 show an example of CAPU approach.

2.3 Two-Stage Search Algorithm

The two-stage search algorithm consists of two step, probabilistic biased random walk
and MPR-based multicast. Proactive file index propagation protocol provide efficient
illumination for query process, in that unlike other cache mechanism who place cache
along the succeeded search path, CAPU prepare file index in the possible search path
transcendentally. And because of the quasi-hierarchical topology, the query request is
relayed from originating node to the higher capacity-level gradually so it is highly
possible that the query is answered in the middle path, which avoids the high level
nodes to be over loaded, and the possibility of a query message revisit certain node is
low. To avoid some node become the hotspot of query and thus overloaded, we adopt
load balance bias random walk mechanism. If the query has reached a node of highest
capacity-level while still finding no content matching it, the key of this query is
considered as rare key, and the second stage of CAPU search algorithm is triggered. We
multicast this query request among the highest capacity-level nodes. Instead of using
the flood-based multicast like Gnutella, we introduce MPR-based multicast to reduce
the number of duplicate re-transmissions while forwarding a broadcast query packet,
thus to cut down the consumption of bandwidth caused by message collision.

In the following part, we present the search algorithm in detail. When a node
originate or receive a query message, if there are content matching the query in its local
content list or in its file index list provided by its lower-level neighbor, it respond to the
originator with the corresponding node address storing the content. If it can not find
locally, it then forward the query to a neighbor in its parent neighbor list.

To ensure the load balance between nodes we design probabilistic biased random
walk query forwarding algorithm. When node I is to forward the query request, the
probability to send the query to node J in Np(I) is ,wi j .

 CAPU: Enhancing P2P File Sharing System with Capacity Aware Topology 221

We specify ,wi j as following:

1,
()

wi j
J N Ip

=
∈

 (1)

1,
()

wi j
I N Jc

=
∈

 (2)

A matrix of nonnegative weights ,i jw satisfying (1) is called stochastic; if it satisfies

(2) as well, it is called doubly stochastic. If a matrix is irreducible (the associated graph
is connected) and doubly stochastic, then a Markov chain with this transition matrix has
the uniform distribution as its unique steady state distribution.

Algorithm 2: Updating link weights

,
w

i j
: the weight of node I associated with parent neighbor J

,
w

j i
: the weight of node I associated with child neighbor J

,
()

w wi jout
J N Ip

=
∈

; ,
()

w w j iin
J N Ic

=
∈

;

for all ()J N I
p

∈ {update parent link weights}

,

,

wi j
w

i j wout
= ; send

,
w

i j
 with keep alive to J

end for
for all ()J N Ic∈ {update child link weights}

 ,
,

w j i
w j i

win
= ; send

,
w

i j
 with keep alive to J

end for

The weights of links are periodically updated by node I attached with keep alive
message as follows:

,
() , ():, , ()()

wi j
w i w J N I wout i j p i j w ioutJ N Ip

← ∀ ∈ ←
∈

 (3)

,
() , () :, , ()()

wj i
w i w J N I wj iin c j i w iinj N Ic

← ∀ ∈ ←
∈

 (4)

After an update of the, node I communicates the new weights ,i jw in equation (3)

with all the neighbors in its parent neighbor list, and communicates updated in

,j iw equation (4) with neighbors in its child neighbor list. This update process can be

piggybacked in the keep live message in the topology maintenance process. When a
new node is integrated either in the parent neighbor list or in the child neighbor list of
a node, its weight is initialized to the mean weight of the nodes already in the
neighbor list. This update algorithm is a special case of iterative scaling, for details
please refer [15].

222 H. Yu et al.

If until the query request reach the highest capacity-level, it still can not find the
matching content, then the MPR-based multicast algorithm is triggered. This technique
restricts the number of re-transmitters to a small set of neighbor nodes, instead of all
neighbor, like in pure flooding. This set is kept small as much as possible by efficiently
selecting the neighbors which covers (in terms of one-hop radio range) the same network
region as the complete set of neighbors does. This small subset of neighbors is called
multipoint relays of a given network node. Multipoint relaying technique works in a
distributed manner, each node calculates its own set of multi point relays, which is
completely independent of other nodes’ selection of their MPRs. Each node reacts when
its neighborhood nodes change and accordingly modifies its MPR set to continue
covering its two-hop neighbors. The information required to calculate the multipoint
relays is the set of one-hop neighbors and the two-hop neighbors, i.e. the neighbors of the
one-hop neighbors. To obtain the information of two-hop neighbors, in CAPU protocol,
the highest capacity-level node attaches the list of its own neighbors, while sending its
keep alive message to other highest capacity-level nodes in its sibling neighbor list. With
these information, a node can heuristically calculate its approximately optimal MPR set
(for finding a multipoint relay set with minimal size is NP-hard). Algorithm 3 is the
pseudo-code of this heuristic algorithm. The multicast process is illustrated in Figure 2.
The detailed two-stage search algorithm is shown in Algorithm 4.

Algorithm 3: Calculate MPR

Ns
2(X): the union of sibling neighbor list of all the nodes in X’s sibling neighbor list

MPR(X): Multipoint relaying set of X
()MPR X φ←

2

()
s

S N X←

for all node ()M N Xs∈ , such that |
2

() ()N M N X
s s

∩ |=1

Put M into ()MPR X

()S S N M
s

← −

end for
while (S φ≠)

For node () ()M N X MPR X
s

∈ − ,such that | ()N M S
s

∩ | is the maximum

Put M in ()MPR X

()S S N M
s

← −

end while

Algorithm 4: Two-stage search algorithm

()K I : file content stored in node I ;
()F I : file index propagated to I from its child neighbors

if X is the initial node then

 Choose node J from ()N I
p

proportional to ,wi j

 Send query to J
else

 CAPU: Enhancing P2P File Sharing System with Capacity Aware Topology 223

if ()K I has matching file for the query then
send the matching file back to initial node; return;

else
if ()J N Ip∃ ∈ such that () ()L J L I>

Choose node J from ()N I
p

proportional to ,wi j

 Send query to J
else

 MPR multicast the query
end if
end if

end if

3 Experimental Result

In this section, we present experimental results obtained with a simulator for CAPU
system. The simulator was implemented on ONSP, an overlay networks simulation

0 1 2 3 4
0

1

2

3

4

5
x 10

4

Level

N
od

e
N

um
be

r

0 1 2 3 4

0

10

20

30

40

50

60

70

Level

D
eg

re
e

RANDOM
CAPU

Fig. 2. Node number distribution over node
capacity level

Fig. 3. Degree distribution over node capacity
level

10
0

10
1

10
2

10
3

10
4

0

20

40

60

80

100

120

Rank of key

H
op

s

Gnutella
GIA
CAPU

Fig. 4. Average length of query path distribution over popularity of key

,

224 H. Yu et al.

platform, which can parallel simulating the function of most off-the-shelf peer-to-peer
protocols. By implementing the event logic according to the protocol’s definition, the
user can easily simulate various protocols. Our experiments were performed on a 32
processors cluster (Pentium IV CPU and 2G memory), running Linux Redhat 7.0. We
use a set of real query trace obtained from Gnutella.

Our experiments focus on the aggregate system behavior in terms of its capacity to
handle queries under a variety of conditions. We show how the individual components of
our system and the synergies between them affect the total system capacity. In all the
experiment showed below, number of nodes is 10,000. The key distribution is according
to Zipf distribution, with α equal 0.95. Figure 2 shows the node distribution over
capacity level. This data is based on [12]. Figure 3 shows degree distribution over node’s
capacity level. The RANDOM represent the random connected overlay, we can see that
our capacity-aware effectively ensure high capacity nodes have high degree. Figure 4 is
the experimental result of search hops of Gnutella, Gia[6], and CAPU, In this experiment,
we use Zipf key distribution, rank of key refers to the rank of the key popular in the
system. We can see that CAPU is especially efficient in searching for rare items.

4 Related Works

For the topology construction strategy, Chawathe et al [6] suggest Gia and use dynamic
topology adaptation that puts most nodes within short reach of high capacity nodes.
Their topology adaptation scheme defines a level of satisfaction and ensures that high
capacity nodes are indeed the ones with high degree and that low capacity nodes are
within short reach of higher capacity ones. This scheme is different from our protocol,
as Gia ensures that high capacity nodes are indeed the ones with high degree and that
low capacity nodes are within short reach of higher capacity ones, while CAPU ensure
that the construction of a quasi-hierarchical topology as the foundation for cache
propagation and search algorithm. Mudhakar et al [2] present a similar topology as
CAPU. But in their paper, they did not provide any effective protocol to construct this
topology. There are also proposals to solve the scalability problem caused by
flood-based query scheme, Lv. et al [11] propose to replace flooding-based
query-forwarding with random walks. Researchers provide different cache scheme to
enhance search efficiency. Recent searching results are cached for quick searching in
the next time[14]. Considering peers’ heterogeneity, Kazaa[4] utilizes powerful peers
as supernodes that they hold much larger file lookup tables and provide query resolving
for many other peers like a searching hub. Our work can be considered as an expansion
of this simple super-node based solution. Boon T. L. et al [7] propose a hybrid solution,
which flood query for popular items but use DHT for rare items. But the authors point
out that the publishing load for rare item is a heavy burden for the super nodes.

5 Conclusion

We have proposed CAPU, a enhanced unstructured P2P file sharing system, which
include quasi-hierarchical capacity-aware topology, proactive file index propagation,
and two-stage search algorithm integrating probabilistic biased random searching for

 CAPU: Enhancing P2P File Sharing System with Capacity Aware Topology 225

popular items and MPR-based multicast algorithm searching for rare items. Our
simulation results suggest that these approaches provide 3 to 5 of magnitude
improvement in the total capacity of the system while retaining significant robustness
to failures. We also compare the impacts of different components of our system, which
show that the reciprocation of these algorithms benefit the system greatly.

References

[1] Napster. http://www.napster.com
[2] Gnutella. http://gnutella.wego.com
[3] Clarke, I., Sandberg, O., Wiley, B., and Hong, T.W. Freenet: A distributed anonymous

information storage and retrieval system. http://freenet.sourceforge.net.
[4] KaZaA. http://kazaa.com.
[5] BitTorrent. http://bitconjurer.org/BitTorrent/
[6] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and S. Shenker. Making

Gnutella-like P2P Systems Scalable. In Proceedings of ACM SIGCOMM 2003, Germany,
August 2003 .

[7] B. T. Loo, R. Huebsch, I. Stoica, and J. Hellerstein. The Case for a Hyrid P2P Search
Infrastructure. In IPTPS 2004.

[8] Ben Zhao, John Kubiatowicz, and Anthony Joseph. Tapestry: An infrastructure for
fault-tolerant wide-area location and routing. Technical Report UCB/CSD-01-1141,
Computer Science Division, U. C. Berkeley. April 2001.

[9] A. Rowstron and P. Druschel. Pastry: Scalable, distributed object location and routing for
large-scale peer-to-peer systems. (Middleware 2001). November 2001.

[10] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord: A scalable
peer-to-peer lookup service for Internet applications. In Proceedings of ACM SIGCOMM
2001 . August 2001.

[11] Lv, Q., Ratnasamy, S., and Shenker, S. Can Heterogeneity Make Gnutella Scalable. In
Proceedings of IPTPS ’02. Cambridge, MA, Mar. 2002

[12] Saroiu, S., Gummadi, P. K., and Gribble, S. D. A Measurement Study of Peer-to-Peer File
Sharing Systems. In Proceedings of Multimedia Computing and Networking 2002
(MMCN’02) (San Jose, CA, Jan. 2002).

[13] A. Qayyum, L. Viennot, A. Laouiti. “Multipoint relaying: An efficient technique for
flooding in mobile wireless networks”. INRIA research report RR-3898, 2000

[14] M. Russopoulos, and M. Baker. "CUP: Controlled Update Propagation in Peer-to-Peer
Networks." USENIX 2003 Annual Technical Conference, San Antonio TX, Jun 2003

[15] M. Naor, U. Wieder, Know thy Neighbor's Neighbor: Better Routing for Skip-Graphs and
Small Worlds, In Proceedings of IPTPS’04, San Diego, USA, Feb 2004

[16] I. Csisza´r, “Information Theoretic Methods in Probability and Statistics,” Information
Theory Soc. Rev. articles

[17] Mudhakar S., Bugra G. and Ling L. “Scaling Unstructured Peer-to-Peer Networks With
Multi-Tier Capacity-Aware Overlay Topologies” Proceeding of ICPADS 2004.

J. Cao, W. Nejdl, and M. Xu (Eds.): APPT 2005, LNCS 3756, pp. 226 – 233, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Implementing Component Persistence
in CCM Based on StarPSS

Jingbin An, Yan Jia, and Zhiying Wang

School of Computer Science, National University of Defence Technology,
Changsha, Hunan, China 410073

ajb@nudt.edu.cn

Abstract. In distributed computing environment, we always need to store the
objects’ state. CORBA Persistent State Service (PSS) provide a high-level ap-
proach to realize the persistence of CORBA object. In this paper, we present
StarPSS, a design and implementation of PSS in C++ language, and based on
the StarPSS, we propose a design of mechanism to implement component per-
sistence in CORBA Component Model (CCM) environment.

1 Introduction

Nowadays, most distributed applications need support of data entities with various
lifetimes, and such a support includes objects whose lifetime equals the execution
time of a certain block of code, or objects whose lifetime is dynamically controlled by
the application itself.

Generally, the support of lifetime is viewed as consisting of two groups with the
separation criterion being the ability to exceed lifetime of a single application exe-
cution. In accordance with this criterion, the ability to outlive a single application
execution is referred to as persistence, and the data entities that have this ability are
referred to as persistent. Conversely, the data entities that lack persistence are de-
noted as transient.

In order to make objects persistent, programmers is obliged to detract from there
focus to database programming. To relieve the programmer of this burden, it is help-
ful to provide persistence as a seamless extension of the existing types of data life-
times supported by the environment. If the persistence property of data does not inter-
fere with other features of the environment, e.g. the type system, the data access
mechanisms, etc, the environment is said to provide orthogonal persistence[1]. Or-
thogonal persistence minimizes cost of building persistent applications by separating
the details of persistence support from the rest of the application design.

In distributed computing environment, especially the OMG’s CORBA platform, a
service to supports persistence, eventually transparent orthogonal persistence, of
server-side objects is a direction of research all along. In middle of 1990’s, OMG
proposed the first CORBA persistence service, Persistent Object Service (POS). In
middle of the 1990’s, OMG proposed the POS (Persistent Object Service) which is
the first CORBA service for CORBA object persistence. POS provides a group of

 Implementing Component Persistence in CCM Based on StarPSS 227

interfaces and a suit of constructs to hold and manage the persistent state of ob-
jects[2]. But it is a pity that there have not any real implementation of POS after it is
put out owing to some reasons [3][4].Therefore a brand new service, PSS(Persistent
State Service), is established to substitute POS in year 2000.

At the same time, the limitations of traditional CORBA computing model is more
and more obvious, and rapidly increasing large-scale enterprise applications brought
forward more advanced demands, such as rapid development, lower cost, high reliabil-
ity, scalability, easy deployment. To meet these requirements, OMG adopted the
CORBA Component Model (CCM) to extend and subsume the CORBA Object Model.

With the dramatic evolution of distributed computing model, the persistence tech-
nology has also got a great progress. Now there are various persistence solution to
distributed application, such as CMP/SMP of CCM, CMP of Sun’s EJB [9],
JDO[10][11], the open source project Hibernate, etc.

In this paper, we propose our design and implementation of CORBA Persistent
State Service, which is named StarPSS, and present a solution to implement the com-
ponent persistence in CCM based on the service.

The rest of this paper is organized as follows. Section 2 describes the CORBA
PSS, and puts out the details of design and implementation of StarPSS. Section 3
shows how to implement CCM persistence via our persistent service. Section 4 sum-
marizes this paper.

2 StarPSS

2.1 CORBA Persistent State Service

The CORBA Persistent State Service provides a service to programmers who develop
CORBA object implementations. A client has no way to tell if the implementation of
an object uses this service. The task of PSS is just to define the interface between the
CORBA servant domain and persistent datastore domain, and by this internal inter-
face servants in CORBA server can access one or several datastores to save or re-
trieve server objects’ state information from persistent storage[5].

2.2 Basic Conceptions

PSS presents persistent information as storage objects stored in storage homes which
themselves are stored in datastores.

A datastore is an entity that manages data, for example a database, a set of files or
a schema in relational database.

A datastore is a set of storage homes, and each storage home has a type. Within a
datastore, there is at most one storage home of a given type.

A storage home contains storage objects. Each storage object has an ID unique
within its storage home, which is called short-pid, and a global ID, called a pid. A
storage home can only contain storage objects of a given type.

Within a datastore, a storage home manages its own storage objects and the storage
objects of all derived storage homes. A storage home and all its derived storage
homes are called a storage home family.

228 J. An, Y. Jia, and Z. Wang

In a storage home, there certainly is a list of state members of its storage type
which is called a key, and it identifies a storage object managed by the home uniquely.
A storage home can have any number of keys.

2.3 StarPSS

StarPSS is our implementation of CORBA PSS in C++ language which consists of:

1. PSDL Compiler
2. Generated Persistent Code
3. PSS Runtime Library

PSDL Compiler: In order to make a server object to be a persistent one, eveloper
should use PSDL to describe the storage object’s type information, and then compile
it via the PSDL compiler. The compiler generates the corresponding persistent code
for each type of storage object respectively.

The PSDL compiler is constituted by two parts: a fore-end used to scan and parse
the PSDL source file, and a back-end which is up to generated target persistent code
based on the grammar tree constructed by the fore-end.

Generated Persistent Code: The codes generated by the PSDL compiler includes two
main parts, one is interfaces via which PSS service users(CORBA server developers)
can access storage objects, and the other is the corresponding implementations of
these interfaces.

PSS Runtime Library: The implementation code of PSS is the application independent
part of the whole PSS service, and it is carried out as a common runtime library. Each
CORBA application using PSS must link this library. PSS runtime library includes
four parts: initializer, connector, catalogs, and database connections.

Initializer is responsible for the setup of the service, and it creates a local object
ConnectorRegistry by which service users can get access to PSS. In StarPSS, Initial-
izer is implemented as a local object named Initializer which implements the ORBIn-
tializer interface.

Connector corresponds to a type of real datastore. It manages storage home facto-
ries, storage object factories, and catalogs as well. Furthermore, connector also pro-
vides a group of operations, by which users can register factory objects or create all
kinds of catalogs.

Catalog in StarPSS represents two fold of meanings. Firstly, catalog can be looked
as a manager of storage home incarnations, and on the other side, catalog represents a
connection or a group of connections to datastore.

Since StarPSS is a service for users to access persistent datastore, we need to estab-
lish connections to database to store and retrieve state information of CORBA objects,
and apparently, the features, such as creating, destroying, and management of data-
base connections make up a basic part of PSS runtime. We will provide the details in
a section later dedicatedly.

 Implementing Component Persistence in CCM Based on StarPSS 229

2.4 Store Object State in RDBMS

StarPSS uses relational database as backend datastore to save persistent objects’ state
information. Figure 1 shows the mechanism how the StarPSS store the storage objects
in RDBMS. A storage home may manage several storage objects with the same type.
Each storage object has several state members m0, m1 , .., mn, which are defined in the
PSDL file, and a unique pid created by PSS automatically. StarPSS maps a specific
type of storage home to a table in relational database, and relevantly maps each one of
the storage objects managed by the storage home to a single record in the table. Each
field of the record is corresponding to the state members and pig respectively.

Fig. 1. Store object state in RDBMS

2.5 Session and Session Management

In PSS, we call a connection to datastore a session, and correspondingly call the man-
ager of connections as session manager. Session management of StarPSS has three
levels. The first level, namely the lowest one, is the basic session, the second one is
session pool, and the third is session manager.

Session/Transactional Session: StarPSS supports two kinds of basic sessions, one has
not transactional support and the other has. Users must create and destroy basic ses-
sions explicitly.

Session Pool: On top of basic session, session pools provide the user a more sophisti-
cated mechanism for implicit session management. Users only need to create an
instance of session pool, all things about establishment, destroying of database con-
nections will be taken over by the pool itself.

m0

:
.
.mn

pid F0 … Fn

Storage
Home

table in RDBMS

Storage Object
m1

230 J. An, Y. Jia, and Z. Wang

Session Manager: Session pool provides a service to share database connections, but
the connections can only be shared within the same catalog, in another words, the
share of connections is limited to catalog level. In order to share database connections
across different PSS application, StarPSS supports the third level of session manage-
ment, Session manager, which coordinates the usage of connections among multiple
catalogs.

3 Implementation of CCM Persistence Based on StarPSS

3.1 CORBA Component Model

To address the limitations with the earlier CORBA object model, the OMG adopted the
CORBA Component Model (CCM) as a part of the new CORBA 3.0 specification [6].

The CCM extends the CORBA object model by defining features and services that
enable application developers to implement, manage, configure, and deploy compo-
nents that integrate commonly used CORBA services, such as transaction, security,
persistent state, and event notification services, in a standard environment.

The CCM standard provides greater software reusability for servers and greater
flexibility for dynamic configuration of CORBA applications. On the base of widely
used CORBA, CCM is well positioned for use in scalable, mission-critical cli-
ent/server applications [7].

CCM components are the basic building blocks in a CCM system. A major contri-
bution of CCM derives from standardizing the component development cycle using
CORBA as its middleware infrastructure.

Component developers using CCM define the IDL interfaces that component im-
plementations will support, and then implement components using tools supplied by
CCM providers. The resulting component implementations can then be packaged into
an assembly file, such as a shared library, a JAR file, or a DLL, and linked dynami-
cally. Finally, a deployment mechanism supplied by a CCM provider is used to de-
ploy the component in a component server that hosts component implementations by
loading their assembly files. Thus, components execute in component servers and are
available to process client requests [8].

The CCM container provides the runtime environment for components. A con-
tainer’s runtime environment provides services, such as transaction, notification,
persistence and security, to the managed component. Each container manages compo-
nents and is responsible for initializing the managed component and connecting it to
other components and ORB services.

A component server is indeed an application server which can provides environ-
ment for multiple containers to manage the components. It stands between the clients
and DBMS in the 3-tiers architecture and upon which the business logic is executed
as components managed by specific containers.

3.2 Component Persistence

CCM supports the use of persistence mechanism for making component state durable,
e.g. storing it in a persistent store like a database. The CCM entity container API type
defines two forms of persistence support:

 Implementing Component Persistence in CCM Based on StarPSS 231

Container-Managed Persistence (CMP): With the CMP, the persistence of compo-
nents is managed by the container, and the component developer simply defines the
state which is to be made persistent. The container (in conjunction with generated
code) automatically saves and restores state as required.

Self-Managed Persistence (SMP): With the SMP, the component developer assumes
the responsibility for saving and restoring state when requested to do so by the con-
tainer. Self-managed persistence is triggered by the container invoking the callback
interfaces, which the component must implement.

Since there is no any compelling restriction in CCM specification, developers and
CCM container providers can choose any kind of persistence mechanism to imple-
ment the SMP and CMP. Here we choose our StarPSS as the infrastructure to imple-
ment the component persistence of CCM.

3.3 Implementating the CMP

Since the StarPSS is used, the container manages all interactions with the persistence
provider and the component developer need not use the persistence interfaces offered
by the container. We provide an automatic code generation for the storage factories,
finders, and some callback operations. These works are done by the CIDL Compiler.
The Component Implementation Description Language (CIDL) is a superset of the
PSDL. Component developers define the component’s state information using CIDL,
and the CIDL compiler parse this description file and generate all codes to automati-
cally manipulate persistence of the component. As Figure 2 shows, home executor of
component is bound to storage home of StarPSS, and correspondingly executor is
stored as storage object which is managed by the former storage home.

Container-managed persistence is specified in CIDL and can be configured at de-
ployment time to specify StarPSS-specific properties such as database server host,
database name, authentication information and connection pool parameters, etc.

Fig. 2. Component Persistence

Home executor Component home

Component Executor

Storage home

Storage object

Catalog

CI

ID

implements

stored as

binds to

implements

provides

232 J. An, Y. Jia, and Z. Wang

3.4 Guidelines for StarPSS-Based SMP

Like container-managed persistence, the component developer has two choices: to use
the CORBA persistent state service or any other third-party or user-defined persis-
tence mechanism. But since no declarations are available to support code generation,
the component developer is responsible for implementing both the callback interfaces
and the persistence classes.

If users choose StarPSS as the lower level persistence provider, the container sup-
ports access to a component persistence abstraction provided by the CORBA persis-
tent state service, which hides many of the details of the underlying persistence
mechanism from the component developer.

4 Conclusion and Future Work

In this paper, we introduced an implementation of CORBA persistent state service,
which is named StarPSS. And based on this service, we analysis the CORBA compo-
nent model’s persistence framework and proposed a solution of CCM component
persistence.The result of our work, which is named StarCCM, can be accessed at
SourceForge site[12].All of the source files and docments can be found on the home-
page as well as the binary packages.

The current version of StarPSS only supports one connector, which is for
PostgreSQL databases. In the future, other prevailing database systems will be
also supported.

Moreover, the performance is another important problem need to pay more at-
tention to, and we plan to do some work on this aspect including evaluation and
improvement.

Acknowledgement

This work was funded by National Natural Science Foundation of China Under grant
No. 90104020 and China National Advanced Science & Technology (863) Plan under
Contract No. 2001AA113020.

References

1. Atkinson, M. P., Bailey, P. J., Chisholm, K. J., Cockshott, W. P. , Morrison, R. An Ap-
proach to Persistent Programming, Computer Journal 26, 4 (1983) pp 360-365

2. Persistent Object Service Specification, OMG
3. Petr Tuma. Persistence in CORBA. PhD. Thesis. Charles University, 1997
4. Jan Kleindienst, Frantisek Plasil and Petr Tuma, Lessons Learned from Implementing the

CORBA Persistent Object Service,OOPSLA’96
5. Persistent State Service Specification version 2.0,OMG,2001
6. CORBA 3.0 Specification , OMG,2001

 Implementing Component Persistence in CCM Based on StarPSS 233

7. Nanbor Wang, Douglas C Schmit, Carlos O’Ryan. Overview of CORBA Component
Model. 2000

8. CORBA Component Model, OMG
9. Enterprise JavaBeans Specification 2.0 Final Release 2,Sun Microsystems

10. Keiron McCammon, Heiko Bobzin,Sameer Tyagi,Michael Vorburger, “Core JDO”, Pren-
tice Hall,2002

11. The Java Community Process, Java Data Objects Specification
12. StarCCM Project, http://starccm.sourceforge.net

J. Cao, W. Nejdl, and M. Xu (Eds.): APPT 2005, LNCS 3756, pp. 234 – 243, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Load Balancing Design Issues
on Prefetch-Based DSM Systems

Hsiao-Hsi Wang, Kuan-Ching Li, Kuo-Jen Wang, Ssu-Hsuan Lu,
and Chun-Chieh Yang

Parallel and Distributed Processing Center (PDPC),
Dept. of Computer Science and Information Management,

Providence University, Shalu, Taichung 43301, Taiwan
{hhwang, kuancli, g9134014, g9234024, g9234025}@pu.edu.tw

Abstract. In recent years, the cluster computing technology has become a cost-
effective computing infrastructure, because it aggregates resources of
computational power, communication and storage. It is also considered a very
attractive platform for low-cost supercomputing. Software distributed shared
memory (DSM) provides a convenient and effective solution for programming
parallel applications. However, both page faults and communication are major
sources of overheads in DSM systems. Prefetching strategy can overlap data
transporting time with computation time, as also reducing page faults.
Unfortunately, it conducts load imbalance during barrier synchronization. For
solving such inconveniences, this research paper discusses the load balancing
for barrier synchronization in DSM systems. We discuss that, leaving the loop
when half of hosts have finished prefetching is the best method, and therefore,
we modify the threshold of leaving loop. Experiments show that, by
incorporating load balancing into DSM systems, the barrier synchronization has
been improved.

Keywords: DSM system, prefetching strategy, home-based.

1 Introduction

In recent years, the cluster computing technology has become a cost-effective
computing infrastructure because it aggregates resources of computational power,
communication and storage. It is also considered a very attractive platform for low-
cost supercomputing. Cluster of workstations are easy to build, cost effective and
highly scalable. It consists of several workstations that are interconnected through a
high-speed network (Gigabit Ethernet, SCI, Myrinet or Infiniband) for information
exchange and coordination among them. With the advances in networking
technology, connecting PCs and workstations is not a problem anymore. Despite of
this fact, there is still much to do in the software domain.

People cannot solve many problems in a short time. People are finding a faster way
to solve the problem when they are seeking the answer of the problem. The fastest
way to solve the problem is through promoting the speed of computer hardware.

 Load Balancing Design Issues on Prefetch-Based DSM Systems 235

However, computers progress so fast. Therefore, people start to find other methods to
solve the problem. The most charming point of cluster computers is that can solve
problems in a finite time as supercomputers by connecting many computers through
network and using parallel technology. In addition, cluster systems also have
advantages such as low price, high flexibility, and wide usage.

The way to make cluster computers to execute the same work is through message
passing to transfer data between each other. Software distributed shared memory
(DSM) provides a convenient and effective solution for programming parallel
applications on cluster systems [2, 15, 16]. It does not need to change hardware
architecture, and only needs to use software to achieve data consistency. DSM system
provides the abstraction of shared address space among computers connected by a
network. However, the performance of a DSM depends on the consistency scheme.
Alleviating communication overhead that is induced by maintaining consistency is an
important topic of investigation, because this overhead degrades program execution
performance. Both page faults and communication increase overheads of DSM
systems [11, 13]. Page faults increase communication overhead and affect other hosts
when they execute on barrier synchronization. Prefetching strategy can overlap data
transporting time with computation time, as also reducing page faults [8].

Liu and Hu [7] proposed two types of prefetch strategy. The former one is history-
prefetching strategy. This strategy can be described as: when a host needs to get
remote pages, remote hosts will record requester and requested page. The host will
modify pages before barrier, because when all hosts update pages and send recent
data to hosts that received invalid page at the barrier. The latter strategy is aggregate
prefetching strategy. Essentially, the host takes remote pages from other hosts in
occurrence of page faults. The aggregate prefetching strategy utilizes SIGSEGV to
take pages for page faults and other related pages. Previous prefetching strategies
have two drawbacks on latency issue. The first one is accumulated waiting
phenomenon. When many hosts need to get remote pages of the same host n, host n
needs to send several pages to requesters. Thus, host n spends much time to send data
that increases prefetch time. The second drawback is waiting synchronization
phenomenon.

The proposed Effective Prefetching Strategy solves shortcomings of previously
proposed prefetching strategies, because previous developed strategies are affected by
accumulated waiting phenomenon and waiting synchronization phenomenon, which
cause system performance degradation or none-prefetching strategies system showing
better performance than prefetching strategy. In previous experiments, the proposed
Effective Prefetching Strategy shows the best performance when comparing with
other existing prefetching strategies. Effective Prefetching Strategy adds three parts to
software DSM. It uses Filter Unnecessary Prefetches to reduce misprefetch and Load
Balance for Barrier Synchronization to improve accumulated waiting phenomenon
and waiting synchronization phenomenon.

This research paper mainly discusses the implementation process of Load Balance
for Barrier Synchronization. When executing a parallel application, the execution
time of each node is different. In the process of prefetching, some nodes need to

236 H.-H. Wang et al.

transfer many of prefetching data, but other nodes do not. Therefore, the time for
processing prefetching of each node will be different. We use threshold to decrease
differences between each other. We reduce idle time of nodes in the loop by threshold
and try to find out the best threshold to promote performance of Effective Prefetching
Strategy, as in [12]. We still discuss in this paper that, if leaving the loop when half of
hosts have finished prefetching is the best method. Therefore, we modify the
threshold of leaving loop. We compare it with other two types of threshold.

The remaining of this research paper is organized as follows. In section 2, we
introduce Effective Prefetching Strategy. In section 3, we specify DSM system and
system architecture. In section 4, the proposed strategy is evaluated with the
execution of LU, IS and 3DFFT applications in a DSM system. Finally, a brief
conclusion is presented in section 5.

2 Load Balance and Prefetching Strategy

We bring up the Effective Prefetching Strategy, by focusing on threshold in Load
Balance with Barrier Synchronization of DSM systems. Effective Prefetching
Strategy has three improving approaches that include Filter Unnecessary Prefetches,
Distribute Prefetching Overhead and Load Balance with Barrier Synchronization. We
discuss different values of threshold and the amount of Effective Prefetching Strategy
performance they affect.

2.1 Load Balancing Interface in JIAJIA

Load balancing plays an important role in parallel and distributed systems in order to
achieve good performance. In order to maximize performance based on available
resources, the parallel system must not only optimally distribute the work according
to the inherent computation and communication demands of the application, but also
according to the available computation resources dynamically. In many scientific
applications, loops are the richest source of parallelism, therefore, change the number
of the loop iterations performed by each processor can balance the load [9, 10].

The basic idea of this scheme is keeping the processor affinity as close as possible.
It provides auxiliary system calls named jia_lbarrier (&begin, &end) in JIAJIA
system to support load balancing, where begin and end represent the upper and lower
bound of the loop iterations of the calling processor. A pseudo code of load balancing
interface is shown in Fig. 1.

After STEP iterations, we decide whether to redistribute the load according to the
computing power of each participating processors. Here, STEP is an important
parameter in our scheduling algorithm. Generally, the data locality will be changed
after load redistribution. In comparison with other task queue based algorithms, this
interface is simple and adds less programming burden to user since multiple threads
must be used to represent the task in task queue based algorithm, which is difficult to
use for application programmers [9, 10].

 Load Balancing Design Issues on Prefetch-Based DSM Systems 237

Fig. 1. Pseudo-Code of Load Balancing Interface

Fig. 2. Stages of History Prefetching Strategy in JIAJIA DSM System

2.2 History Prefetching Strategy

As in Fig. 2, we show procedures of history prefetching strategy in JIAJIA DSM
system.

History prefetching strategy is built of two parts in a DSM system. The first part is
to add part of it in I/O and page fault data structure. When receiving Invalid (INV)
signals, nodes will record the invalidated addresses, if nodes have invalidation data.
The second part to be added in is barriers. After all hosts at executing barrier step,
they will send all memory addresses that had been recorded to page owners. Then
home nodes will return data to nodes that have requested data.

2.3 Effective Prefetching Strategy

Effective Prefetching Strategy has three improving approaches that include Filter
Unnecessary Prefetches, Distribute Prefetching Overhead and Load Balance with
Barrier Synchronization. Effective Prefetching Strategy adds three parts into DSM
software system.

238 H.-H. Wang et al.

The first part is Filter Unnecessary Prefetches. JIAJIA [3, 4, 5, 6, 14] manages cache
pages by using the Read-Write (RW), Read-Only (RO), INV and UNMAP. We add
new PREF status in cache pages. When each one of hosts receives prefetching pages
from other hosts, we set the prefetching pages for PREF status and memory address
status of none write and none read. When host accesses prefetching pages, it will induce
local page faults. The prefetching page will change PREF status to RO status or RW
status. We can know that prefetching page is reused page when PREF status changes to
RO status or RW status. When hosts receive INV signal, all hosts will check status of
invalid page. If page is RO status or RW status, host will record address of invalid page
into the prefetching table. If the page is PREF status, host will ignore.

In Distribute Prefetching Overhead, we will develop Effective Prefetching
Strategy based on history prefetching. History prefetching strategy has several
overheads in executing prefetching, so we distribute some prefetching overheads to
the requester. Each one of hosts will record memory address of invalid pages in
barrier or lock. Each one of hosts collects requests of pages that be requested. Each
one of hosts will send address of invalid pages to hosts of each home page before
barrier or lock. Therefore, hosts of each home page just send prefetching data to
remote request. The hosts of home pages are not managing GETP string and INV
string, and other system overheads.

We will discuss Load Balance with Barrier Synchronization and ways to reduce
accumulated waiting phenomenon and waiting synchronization phenomenon. When
hosts were requested sending prefetching data, the receiving request hosts will
execute conditional loop with threshold. When half of hosts finishing sending
prefetching data, all senders will be forced to leave the conditional loop. When all
hosts into the barrier, all hosts leave barrier synchronization in the same time.

2.4 The Selection of Threshold

In this research paper, we evaluate performance with three different thresholds.
Values of threshold not only limit the leaving from loop, but also affecting nodes
processing prefetching. Different thresholds will affect idle time of nodes finishing
prefetching in the loop, as also affect the max time of node processing prefetching.
We want to find out the best threshold for Effective Prefetching Strategy to balance
between idle time and prefetching time.

3 Implementation

We use the JIAJIA DSM software to implement our DSM platform. The JIAJIA is a
home-based DSM system. It records page status with invalid, read and write, and uses
scope consistency [1, 5, 11] as memory consistency model. The JIAJIA provides
instructions for barrier and lock to achieve data consistency.

3.1 Building DSM System

First, we execute JIAJIA as initial system. The initial system makes the environment
for DSM, while the second step declares sharing memory in all of the hosts. The third

 Load Balancing Design Issues on Prefetch-Based DSM Systems 239

step is to execute DSM application, and JIAJIA maintains data consistency in the I/O
signal event or page fault. The barrier and lock are provided to achieve consistency in
JIAJIA. The barrier stops all hosts on executing point and updates all data. The lock
just stops the same locking number in all of hosts, and updates data of the same
locking number.

3.2 Prefetching Strategy in JIAJIA System

Prefetching Strategy in JIAJIA is achieved by adding two parts into it. In the part of
the I/O signal event or page fault, it is added first part to record all invalid addresses
in SIGIO signal, and all recorded addresses will perform prefetching strategy. In
barrier, it is added the second part for executing prefetching strategy. Executing
prefetching strategy will send updating page to remote invalid page by each page
owner. When all records for invalid page already send to remote requester, all hosts
will continue executing program.

3.3 Effective Prefetching Strategy in JIAJIA DSM System

The Effective Prefetching Strategy has five additional models compared to JIAJIA
DSM system, as shown in Fig. 3. In the part of I/O signal event or page fault it is
added part of Filter Unnecessary Prefetches.

Filter Unnecessary Prefetches includes two conditions. When page status is PREF,
it will not record addresses of page to prefetching table. Since that page is not used,
we eliminate this to produce misprefetching. When page status is RO or RW, it will
record address of page into prefetching table.

In the part of barrier, we add four parts of Load Balance with Barrier
Synchronization. The first part, we add to count hosts that will send prefetching data
to requester. Host 0 is the coordinator of all hosts. All hosts that sending prefetching
page will inform host 0, and host 0 will count number of hosts for sending prefetching
page. Host 0 sends message for number of hosts for sending prefetching page to other
hosts. The second part, if host needs to send prefetching pages, it will be into the
unlimited loop and sending prefetching pages. Because each one of hosts can send
max prefetching pages for three pages of data, each one of hosts sends prefetching
pages for the max number three pages in each loop. If host does not send prefetching
pages, it will wait in barrier synchronization. The third part is when half of hosts that
are in conditional loop finish sending prefetch pages, the hosts that are in loop will be
forced to leave loop, which goal is to find out that if leaving loop when half of hosts
finishing prefetching will has better performance. The fourth part is that the hosts that
leave unlimited loop will clear the remained addresses of prefetching pages in
prefetching table, and all hosts leave barrier synchronization synchronously. Then it
will go back to execute application in DSM platform.

In next section, we will explore the performance of threshold in performing
experiments with parallel applications LU, IS, and 3DFFT. The experimental results
are compared when using one-eighth, one-fourth, and half of all computing hosts
involved in the computation.

240 H.-H. Wang et al.

Fig. 3. Procedures of Effective Prefetching Strategy in JIAJIA System

4 Performance Analysis

The cluster-computing platform we used for our investigations is formed by 8 PCs,
where each is AMD Athlon 2400+, 1GB DDR memory, interconnected via Gigabit
Ethernet. We evaluated performance of Effective Prefetching Strategy with three
thresholds when running three parallel applications, IS, LU, and 3DFFT. Table 1 is
the data of execution time.
 Fig. 4(a) shows the execution time of three different thresholds of IS parallel
application. It is shown that, using half of prefetching nodes, as threshold of leaving
loop is quicker than other two thresholds of about 23%. Fig. 4(b) is the execution time
of LU parallel applications, while Fig. 4(c) is the execution time of 3DFFT on three

 Load Balancing Design Issues on Prefetch-Based DSM Systems 241

thresholds. In these last two applications, using half of prefetching nodes as threshold
of leaving loop is quicker than others are about 9%.

From above experiments, we can see that using half of prefetching nodes as
threshold is more suitable, while other two thresholds are not suitable because they
leave loop too fast that induces prefetching pages that has not been sent entirely.
These two threshold values can let all nodes leave barrier quickly, but they also
increase chance of occurring page faults. Since they add chance of occurring page
faults, they also induce performance of Effective Prefetching Strategy can not be
expressed.

Table 1. Execution Time of Each Application (sec.)

 1/2 (4 nodes) 1/4 (2 nodes) 1/8 (1 nodes)
IS 5.751 6.99 7.095
LU 25.75 27.71 28.01

3DFFT 30.12 32.04 32.77

 (a) IS application (b) LU application

(c) 3DFFT

Fig. 4. Execution Time of Parallel Applications

242 H.-H. Wang et al.

5 Conclusion

Effective Prefetching Strategy uses Load Balance with Barrier Synchronization to
balance prefetching system overload. Load Balance with Barrier Synchronization
reduces waiting time among hosts. We use thresholds to achieve balance. From
experimental results, we can see that we use half of prefetching nodes finishing
prefetching as our threshold is ideal, while other two thresholds are slower than
previous one, since it is too early to let prefetching nodes leave loop and that reduces
effect of prefetching.

We find that we let all prefetching nodes leaving loop when half of prefetching
nodes have finished prefetching indeed can reduce waiting time of prefetching nodes
in loop and let most prefetching nodes finishing prefetching.

Acknowledgements

This research is partially supported by National Science Council, Taiwan, under
grants no. NSC 93-2213-E-126-007 and NSC 93-2213-E-126-010.

References

[1] Benny Wang-Leung Cheung, Cho-Li Wang, and Francis Chi-Moon LAU, “Migrating-
Home Protocol for Software Distributed Shared Memory,” Journal of Information
Science and Engineering 18, pp. 929-957, 2002.

[2] Jason A. Crawford and Clark M. Mobarry, “Hrunting: A Distributed Shared Memory
System for the BEOWULF Parallel Workstation,” in the Proceedings of Aerospace
Conference, Vol. 4, 1998.

[3] M. Rasit Eskicioglu, T. Anthony Marsland, Weiwu Hu, and Weisong Shi, “Evaluation of
the JIAJIA Software DSM System on High Performance Computer Architectures,” in the
Proceedings of the Hawaii’s International Conference On System Sciences, January 5–8,
1999.

[4] Weiwu Hu, Weisong Shi, and Zhimin Tang, “Optimizing Home-Based Software DSM
Protocols,” Journal of Networks, Software Tools and Applications, Baltzer Science
Publishers, Vol. 4, No 3, pp. 235-242, Jul 2001.

[5] Weiwu Hu, Fuxin Zhang, Li Ren, Weisong Shi, and Zhimin Tang, “Running Real
Applications on Software DSMs,” in the Proceedings of High Performance Computing in
the Asia-Pacific Region, Vol. 1, pp. 148-153, May 14-17, 2000.

[6] Weiwu Hu, Weisong Shi, and Zhimin Tang, “Reducing System Overheads in Home-
Based Software DSMs,” in the Proceedings of 13th International and 10th Symposium on
Parallel and Distributed Processing, pp. 167-173, April 12-16, 1999.

[7] Haiming Liu and Weiwu Hu, “A Comparison of Two Strategies Dynamic Data
Prefetching in software DSM,” in the Proceedings of 15th International Parallel and
Distributed Processing Symposium, p. 62, April 23-27, 2001.

[8] Y. Roh, B. H. Seong, and D. Park, “Hiding Latency Through Bulk Transfer and
Prefetching in Distributed Shared Memory Multiprocessors,” in the Proceedings of The
Fourth International High Performance Computing in the Asia-Pacific Region, Vol. 1,
pp. 164-166, 2000.

 Load Balancing Design Issues on Prefetch-Based DSM Systems 243

[9] Weisong Shi and Zhimin Tang, “Dynamic Computation Scheduling for Load Balancing
in Home-based Software DSMs,” in Proceedings of the 1999 International Symposium on
Parallel Architectures, Algorithms and Networks (I-SPAN 99), IEEE CS Press, Perth,
Australia, pp.248-253, June, 1999.

[10] Weisong Shi and Zhimin Tang, “Load Balancing in Home-based Software DSMs,”
Special Issue of International Journal of Foundations of Computer Science, World
Scientic Publishing Co. Inc., Vol. 12, No. 3, pp. 307-324, USA, June, 2001.

[11] Andrew S. Tanenbaum, Distributed Operating System, PRENTICE HALL
INTERNATIONAL EDITIONS, 1995.

[12] K. J. Wang, H. H. Wang, and K. C. Li, “On Design of a Prefetching Strategy for DSM
System”, in the Proceedings of PDPTA'2004 International Conference on Parallel and
Distributed Processing Techniques and Applications, Las Vegas, USA, 2004.

[13] Barry Wilkinson, and Michael Allen, Parallel Programming Techniques and Applications
Using Networked Workstations and Parallel Computers, PRENTICE HALL, Upper
Saddle River, 1999.

[14] B. Yu, Z. Huang, S. Cranefield, and M. Purvis, “Homeless and home-based Lazy Release
Consistency protocols on Distributed Shared Memory,” in the Proceedings of the 27th
conference on Australasian computer science, Vol. 26, pp. 117–123, January 2004.

[15] http://www.ict.ac.cn/chpc/dsm/index.html
[16] http://www.ics.uci.edu/~javid/dsm.html

J. Cao, W. Nejdl, and M. Xu (Eds.): APPT 2005, LNCS 3756, pp. 244 – 252, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Task Assignment
for Network Processor Pipelines Using GA

Shoumeng Yan, Xingshe Zhou, Lingmin Wang, Fan Zhang,
and Haipeng Wang

School of Computer Science, Northwestern Polytechnic University, Xi’an, China
yansm@mail.nwpu.edu.cn

Abstract. In several commercial network processors programming environments,
programmer must manually assign many processing tasks to the processor
pipelines which consist of many processing engines. Due to the large exploration
space, this manual procedure is usually very tedious and inefficient and the
optimal or even near-optimal assignment scheme may be difficult to obtain. This
paper proposes an automated task-to-PE assignment algorithm based on genetic
algorithm. Experimental results show that this method can quickly obtain near-
optimal solutions from the large solution space and the algorithm execution time
is decoupled with pipeline stages. These two features make this method very
suitable to be used in a NP application development environment and provide a
more efficient development experience for developers.

1 Introduction

Network Processor (NP), designed to take place of GPP and ASIC in networking
applications, can combine the programming flexibility of GPP and high performance
of ASIC through introduction of programmable processing engine (PE) and
multiprocessor architecture. A popular NP-based application model is to group
multiple PEs into a processing pipeline and assign the packet processing tasks to each
stage of the pipeline. In this model, the system performance is determined by whether
the assignment scheme is optimal. Due to the large exploration space, it will be a very
tedious and inefficient procedure if the assignment is made manually; and the optimal
or even near-optimal assignment scheme may be difficult to obtain. Thus, this paper
proposes an automated task-to-stage assignment method for processing pipelines.
Given partitioned task set and the number of processing stages, this method can
rapidly get a near-optimal assignment solution.

There are some similar researches in traditional parallel computing domain.
Compared with them, our work has a unique problem domain in that we consider
multiple processing pipelines in NP. And instead of shortening program execution
time, our goal is to maximize system throughput and improve developing efficiency
through allocating the task set properly and automatically. Seema Datar etc. [2] have
studied the same problem with ours and adopt a greedy algorithm called GreedyPipe,
but they did not take into account the communications among tasks which make
problem much more complicated. And their algorithm cannot be extended easily to

 Task Assignment for Network Processor Pipelines Using GA 245

add communication consideration because the algorithm requires the total execution
time of a path is static. However, in fact the time varies with different assignment
schemes when communication cost is considered. Even if without communication
consideration, the time complexity of their method is greatly affected by the number
of stages because they attack the problem in a stage-by-stage style. In ref. 7, our
preliminary work, we have proposed a GA-based algorithm for this problem, but for
simplicity we did not consider communication cost either. In this paper, we will
investigate the problem further with communication cost consideration.

The remainder of this paper is organized as follows: Section 2 gives a formal
description about the automated task assignment problem model. Section 3 proposes a
solution to the problem with two steps, generic algorithm for a single path and greedy
algorithm for the multiple paths. In this section, we illustrate how GA can be used in
solving the problem, and provide details about encoding mechanism, generic
operations, etc. Besides, it also presents the method to combine the assignment
scheme for each path together. Section 4 discusses algorithm performance and section
5 summarizes the paper.

2 Problem Model

Packets from network can be classified into various flows based on their packet
header. These flows may not necessarily processed by same sequential task set. For
clearness, we define the packets that will be processed by the same ordered task set as
a path which is a different concept from flow and is determined only by its task set.
Packets from different flows may be processed by the same task set and thus we can
say they belong to the same path. In a networking application system, there usually
exist a number of paths and these paths may be multiplexed to the same processing
pipeline. Evidently, the pipeline throughput is decided by its slowest stage. In this
common scenario, we must map tasks for theses paths to each PE of the pipeline with
a goal to maximize the system throughput.

Task partitioning problem is not considered here. We assume that networking
application algorithms have been in advance converted to a pipelined implementation,
i.e., a set of ordered tasks. ([5, 6] are efforts towards automatically pipelining the
application).

We assume that every input path has a constant packet arrival rate and an unlimited
temporal domain. For a processing pipeline, the data packets from network are
classified into N different input paths, which can be expressed as a set:

{ }1 2, , , NPT PT PT PT= L (1)

where PTj means path j.
The corresponding processing task set Tj consists of Mj tasks:

{ } ()1 2, , , , 1
jj j j M jT T T T j N= ≤ ≤L (2)

where Tij means task i of path j.

246 S. Yan et al.

There are L identical PEs in a processing pipeline P:

{ }1 2, , LP P P P= L (3)

where L<Mj is tenable in general situation.
Based upon the above symbols, one task assignment scheme can be defined by a

three-dimensional binary assignment matrix:

{ }
0,

1,
,ijk ijk

T not assigned to Pij k

T assigned to Pij k
A a a

= =

 (4)

Each task associated with a PE has an execution time:

() ()1 2, , , , 1
jj j j M jt t t t j N= ≤ ≤L (5)

Besides, task also has a communication time with its adjacent task and this time cij
usually has different value (caij and cbij in the following equations) determined by
whether the two tasks are allocated to the same PE. It can be expressed as follows:

() ()

() ()
1 2 1 (1)

1 2 1 (1)

, , , 2 1

, , , 1 1

j

j

j j M j ijk i jk

j

j j M j ijk i jk

ca ca ca if a a j N
c

cb cb cb if a a j N

− +

− +

 + = ≤ ≤
=

 + = ≤ ≤

L

L
 (6)

Thus, the number of tasks assigned to processor k is denoted by:

1 1

jMN

k ijk
j i

N a
= =

= (7)

And the total execution time for path j on processor k is given by:

1

()
jM

jk ijk ij ij
i

e a t c
=

= + (8)

The processing latency for path j is defined as maximum execution time on all PEs
and denoted by:

{ }
1 1

1

max max ()
jML L

j jk ijk ij ij
k k

i

D e a t c
= = =

= = + (9)

 The processing latency for the pipeline is considered as the maximum delay time
of all flows:

1 1 1
1

max max max ()
jMN N L

j ijk ij ij
j j k

i

D D a t c
= = = =

= = + (10)

 Task Assignment for Network Processor Pipelines Using GA 247

Therefore, the overall throughput is Th = 1/D. Up to now, the automated task
assignment problem becomes one problem about how to find a rational assignment
matrix to maximizes the throughput Th. Such problem has been proven to be NP-
Complete [3], which means it is difficult to find an optimal efficient solution by
enumerating all possible assignments. And, heuristic methods like GA [1, 4] are very
suitable to this kind of problem.

3 Design of GA-Based Assignment Method

To apply GA, solutions for task-to-stage assignment problem need to be encoded into
a binary structure. Since it is difficult to directly encode the three-dimension
assignment matrix, we solve the problem in two steps. In the first step, we aim at a
single path, of which near-optimal assignments should be achieved after genetic
operations on the initial population generated with Monte Carlo Method. Secondly,
some of the near-optimal assignments of all the paths will be put together to constitute
a candidate library. Then, greedy idea will be applied to the library through
combination of library elements and the final assignment scheme will be obtained.

3.1 Encoding a Single Path Assignment Matrix

As far as a single path is considered, the assignment matrix is reduced to two
dimensions. The formulation to decide this matrix is presented as the following.

{ }
0

1
,ij ij

T not assigned to Pi j

T assigned to Pi j
A a a

= =

 (11)

It can be noticed that not all the binary planar matrixes are viable and the following
constraints must apply:

Constraint 1: A task may only be assigned to a single PE, which indicates there is
one “1” in every column of the matrix.

Constraint 2: The assignment must maintain the original order of tasks, which means
“1” in the matrix is arrayed right-downwards.

Constraint 3: One of the reasonable assignments is to allocate the first task to the
first PE.

The above three constraints are reflected in Fig. 1. In the figure, each candidate
assignment matrix satisfying above constraints corresponds to a ladder in right-
downwards and downwards direction.

If we directly encode the assignment matrix into binary string, we will get a very
long chromosome. And we must check the validity of each chromosome after any
genetic operation to ensure each chromosome represents a feasible assignment.
Evidently, there exist lots of unreasonable assignments for this direct encoding
mechanism, which means we may spend lots of time checking and repairing them.

248 S. Yan et al.

Fig. 1. A reasonable assignment matrix of a single path can be reduced to a ladder in rightwards
and downwards direction. In this figure, row and column indicates PE and task individually.

The big length and this additional checking imposed on such long chromosomes will
increase algorithm execution time greatly because GA involves large amount of
genetic operations. Also, too many validity checking and repairing operations may
make the solution space cannot be covered fully and thus good solutions may be not
able to be obtained. Thus, we decide to pursue other ways to encode the matrix.

Considering the ladder distribution of “1” in Fig.1, it is easily to notice that a ladder
corresponds to an assignment scheme meeting the three constraints, so one ladder can
be considered as one possible solution to our problem. Since each ladder moves right-
downwards and rightwards from the top left corner with n-1 steps if there are n tasks in
the path, we can encode the ladder into a binary string following the rule: moving
rightwards represents “1”, moving right-downwards represents “0”. Obviously, the
length of the binary string is only n-1. However, the ladder in right-downwards and
downwards direction still may not necessarily correspond a reasonable assignment
scheme. In occasions where task number is greater than PE number, the times that a
ladder move right-downwards should not be greater than PE number (we called this
constraint 4.) because each move in right-downwards direction means assignment for a
new PE stage. Thus, the encoding still needs some checking and repairing after genetic
operations to ensure the number of “0”in the binary string should be no more than that
of PE. Fortunately, due to the much smaller unfeasible solution space compared with
direct matrix encoding, this encoding mechanism still can greatly shorten algorithm
execution time and the repairing process is just a simple heuristics to convert excessive
“0” to “1”. The advantage of this encoding mechanism is twofold: firstly, the length of
each chromosome is shortened greatly; secondly, it makes a much smaller probability to
do the repairing process.

Here, we give an example to illustrate the encoding process. Suppose there is an
assignment matrix for a pipeline with 5 stages and a path with 10 processing tasks.
The matrix is:

1 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0
0 0 0 0 0 0 1 1 1 0
0 0 0 0 0 0 0 0 0 1

.

 Task Assignment for Network Processor Pipelines Using GA 249

According to the encoding mechanism, this assignment matrix can be encoded into a
binary string as follows:

[1 0 0 1 1 0 1 1 0] .

The length of this string is 9 (i.e., 10 - 1). As we can see, this encoding mechanism
is very easy and convenient to apply.

We assume the number of processing pipeline stages is L, each stage is identical and
the path contains M tasks. The initial generation can be randomly generated with number
of “0” less than L. In our problem, the population size is determined by the number of
processing tasks: the larger the task set, the larger the number of the individuals.

3.2 Fitness Calculation

When the target function D is applied to two-dimensional condition where a single
path containing M tasks is considered, the maximum processing time becomes:

{ }
1 1

1

max max ()
ML L

j ij i i
j j

i

P e a t c
= = =

= = + (12)

Therefore, what we should do is to find aij, which minimize P. Thus, we define the
fitness function as follows:

1
1

1

max ()

1
ML

ij i i
j

i

F
P

a t c
= =

=
+

=
(13)

3.3 Genetic Operations

The genetic algorithm creates a population of chromosome then applies crossover and
mutation to the individuals in the population to generate new individuals. It uses
various selection criteria so that it can pick the best individuals for mating.

The individuals that have chance to pass down their genes should be those of big
fitness. We use roulette sampling to select individuals. The basic idea is in the
whirling of the roulette, i.e., the selection probability of big-fitness individuals is
larger than the others since they occupy more area in the roulette. In detail, we first
sum up fitness of all the individuals in present generation, then generate a Pseudo
Random Number r evenly distributed between zero and the sum value, and then
individual k is selected meeting the following condition:

1

0 0

k k

i i
i i

f r f
−

= =
< ≤ (14)

where fi is the fitness of individual i.
The primary purpose of the crossover operator is to get genetic material from the

previous generation to the subsequent generation. In our implementation, a pseudo
random number determines the crossover sites, which can be a single point or

250 S. Yan et al.

multiple points. In our problem, we choose multi-point crossover if the binary string
is long, otherwise we choose single-point crossover. The mutation operator is used to
introduce a certain amount of randomness to the search. It can help to find solutions
that might not be encountered using crossover alone. To speed up the convergence of
the algorithm and improve its performance, we introduce self-study feature into
mutation. This feature helps to identify and keep good results of individual mutation
operations by comparing the fitness of newly generated individuals with that before
mutation. After crossover and mutation, a heuristics is applied to do some repairing as
noted section 3.1.

3.4 Greedy Idea for Multiple Paths

The analysis above gives a good solution to single-path task assignment problem. It is
difficult to extend this solution directly to multi-path problem in that the assignment
matrix for multi-path has three dimensions. Due to the rapidly increasing complexity,
it is hard to find a clear and viable encoding mechanism. Therefore, we need to look
for other approaches to further study multi-path problem. Here, we adopt the greedy
idea. Simply speaking, we first solve the task assignment problem for each single path
using GA, then choose some good assignments per path, and finally combine them to
get the best solution to the total system. Ref. 2 presents detailed description about
greedy idea, which is utilized to process the task assignment problem stage by stage.
Unlike its approach, we use greedy idea to process in a path-by-path manner here.

We take four good assignments per path. Then, we have 4N different path
combinations if there are N input path. Since in real applications N usually has a small
value, the execution time in this step makes a relatively minor contribution to the total
algorithm execution time. For each combination, we calculate the maximum
execution time among all PE stages. Then, by comparing these values, we will find
the combination minimizing maximum execution time among all PE stages (i.e., the
combination maximizing the overall throughput). If there is more than one such
combination, we choose the one that makes the standard deviation minimum. In
summary, we use genetic algorithm to get near-optimal assignments for every path,
and greedy idea to get the solution to the task assignment problem for multiple paths.

4 Performance Evaluation

We have implemented the algorithm and test it on a 2.6GHZ x86 PC. We have also
implemented GreedyPipe in Ref.2 to make performance comparison and a time-
consuming exhaustive search algorithm to get the optimal solutions. Since
GreedyPipe can not be easily extended to include communication cost, the
comparison with it is based on results of GA without communication consideration.
Results show that it has a very small influence on our algorithm performance whether
we consider communication cost or not. This implies that our GA-based assignment
algorithm possess a good scalability in contrast to GreedyPipe.

The performance can be evaluated from two perspectives. The first aspect concerns
how closely our results match the true optimal results, and the second is the algorithm
execution time.

 Task Assignment for Network Processor Pipelines Using GA 251

Extensive experiments have been done to evaluate how well this genetic algorithm
approach is than other allocating techniques. And, we have got a lot of experiment
data. Through the statistical analysis of the data, we have obtained the following
overall results. When the number of input paths is no more than five, if the task
number per path ranges between 10 and 15 and the number of PE ranges between 3
and 8, 90% of the time the result got by GA was within 20% of the optimal solution;
if the number of task is more than 16 and PE number ranges between 3 and 15, 98%
of the time the result was within 10% of the optimal. With the task number increase,
our results approach the optimal solution closer and closer. We infer that the reason
lies in the fact that longer chromosome strings (In our method, length of chromosome
is determined by the number of tasks.) make a larger candidate space for GA
operations.

In our experiments with systems containing no more than 5 input paths, 15 to 20
tasks per path, exhaustive searches took on the order of hours versus on the order of
seconds with GA. This difference increases exponentially as the complexity of the
system increases further. Experiments also show that the variance of pipeline stage
number leads to little effect on our algorithm execution time (see Fig. 2), which is
different from the method in ref. 2. We think the reason is that in our method, the
length of chromosome has no relation with number of pipeline stage. On the other
hand, GreedyPipe applies its algorithm in a stage by stage style, thus its execution
time is linear with the number of pipeline stages.

Fig. 2. In this figure, the execution time (Y axis) does not increase abruptly with the number of
pipeline stages (X axis)

In summary, we find that we can obtain very near-optimal assignment schemes
using GA. And unlike method in Ref.2, execution time of our method does not
linearly increase with number of pipeline stages. These two features (near optimal

252 S. Yan et al.

assignment and short execution time) make this method very suitable to be used in NP
application development environment and hence provide a better development
experience for developers.

5 Conclusions

This paper proposes an automated task-to-PE assignment method to improve the
development efficiency of NP based system. Given partitioned ordered task set and
the number of available processing pipeline stages, this method can obtain a near-
optimal assignment quickly. Our work features in combining the genetic algorithm
and greedy idea and the interesting encoding mechanism applied in GA.

Currently, we are making efforts to further test this approach targeting the
architecture of Intel’s IXP2400, extend and improve it by considering program
storage constraints of PEs, and other factors. Also, we want to integrate this algorithm
into our system software platform for network processor [8]. Using the platform,
programmer can develop applications and make efficient performance explorations
with the underlying support from our automated assignment method.

Acknowledgements

This work is supported by the 863 project of China under contract no.
2003AA1Z2100. We gratefully acknowledge the financial and technical support from
the committee of the 863 project. We also wish to thank the anonymous reviewers for
their constructive comments.

References

1. Wang Xiaoping, and Cao liming, Genetic Algorithm: Theory, Application and Software
Implementation, Xi’An, Press of Jiaotong University

2. Mark A. Franklin and Seema Datar, Pipeline Task Scheduling on Network Processors, in
Workshop on Network Processors & Applications - NP3(Madrid, Spain), Feb. 2004

3. B. A. Malloy, E. L. Lloyd, and M. L. Souffa, Scheduling DAG’s for asynchronous
multiprocessor execution, IEEE Transactions on Parallel and Distributed Systems,
5(5):498–508, May 1994

4. David E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning
(Hardcover), Addison-Wesley Professional, Jan. 1989

5. Ning Weng and Tilman Wolf, Pipelining vs. Multiprocessors – Choosing the Right Network
Processor System Topology, In Proceedings of ANCHOR 2004, June 2004

6. Jianquan Dai, Bo Huang etc., Automatically Partitioning Packet Processing Applications for
Pipelined Architectures, In Proceedings of ACM SIGPLAN PLDI 2005, June. 2005

7. Y. Shoumeng, and Z. Xingshe and W. Lingmin, GA-Based Automated Task Assignment on
Network Processors, In Proceedings of ICPADS 2005, July 2005

8. Zhang Fan, and Zhou Xingshe and Yan Shoumeng, Design and Implementation of Network
Processor Programming Model Based on Software Component, to appear in Computer
Engineering and Applications (in Chinese)

J. Cao, W. Nejdl, and M. Xu (Eds.): APPT 2005, LNCS 3756, pp. 253 – 262, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Test-Suite Reduction Using Genetic Algorithm

Xue-ying Ma1,2, Bin-kui Sheng2, and Cheng-qing Ye1

1 College of Computer Science and Technology, Zhejiang University,
Hangzhou 310027, P. R. China

hzmaxueying@hotmail.com, ycq@zjip.com
2 Dept. of Information Management,

Zhejiang University of Finance & Economics,
Wenhua Road 269#, Hangzhou, 310012, P. R. China

sbkmxy@yahoo.com.cn

Abstract. As the software is modified and new test cases are added to the test-
suite, the size of the test-suite grows and the cost of regression testing increases.
In order to decrease the cost of regression testing, researchers have researched
on the use of test-suite reduction techniques, which identify a subset of test
cases that provides the same coverage of the software, according to some crite-
rion, as the original test-suite. This paper investigates the use of an evolutionary
approach, called genetic algorithms, for test-suite reduction. The algorithm
builds the initial population based on test history, calculates the fitness value us-
ing coverage and cost information, and then selectively breeds the successive
generations using genetic operations. This generational process is repeated until
a minimized test-suite is founded. The results of studies show that, genetic algo-
rithms can significantly reduce the size of the test-suite and the cost of regres-
sion testing, and achieves good cost-effectiveness.

Keywords: Test-suite reduction, Regression testing, Genetic algorithm, Gene
modeling, Cost-effectiveness.

1 Introduction

Regression testing is frequently executed maintenance process used to revalidate
modified software. As the software is modified and new test cases are added to the test-
suite to test new or changed requirements or to maintain test-suite adequacy, the size
of the test-suite grows and the cost regression testing increases. Improvements in the
regression testing process would help reduce the cost of software.

Researchers have investigated two approaches for addressing the test-suite size
problem: test-suite reduction and test selection. Test-suite reduction (also known as
test set minimization) algorithms (e.g., [1][3][7][8][10][12]) identify minimized test-
suite that provides the same coverage of the software as the original test-suite. Test
selection algorithms (e.g., [2][9][11]) selects a subset of the test-suite that will execute
code or entity changes; this test-subset, however, may not provide the same coverage
as the original test-suite.

254 X.-y. Ma, B.-k. Sheng, and C.-q. Ye

Test-suite reduction problem can be stated as follows:
Given a test set TS ={t1,t2…tn} consisting of the test cases and a positive cost, cj as-

signed to each test case measuring the amount of resources its execution needs, iden-
tify a minimal subset of test-suite that provides the same coverage of the software,
according to some criterion, as the original test-suite.

This problem is NP-complete. The adaptive search technique has been used to find
solutions to many NP-complete optimization problems and could often find a very
good solution in a limited amount of time (Goldberg 1989[14]). As an adaptive search
algorithm, genetic algorithm has been widely used in software testing, especially in
test-case generation for software structural testing ([4][5][19][20][22][16]) or for
functional testing ([13][21]). But there is few application of genetic algorithm to re-
duce test-suite. One of the important motivating factors for using genetic algorithm to
reduce test-suite is to promote the effectiveness of test-suite reduction technique.

This paper investigates the use genetic algorithms for test-suite reduction. The main
contributions of this paper are:

♦ Present a detailed description of the genetic algorithm used to reduce the test-suite
for regression testing.

♦ Implement a prototype of this genetic algorithm using C++ language and perform a
set of empirical studies to evaluate the performance and effectiveness of the reduc-
tion algorithm. The results of the studies show that our algorithm can find a minimal
(or an approximate minimal) set of test cases, which maintains the same coverage of
the software as the original test-suite, and achieves good cost-effectiveness.

The remainder of this paper is organized as follows: Section 2 describes some re-
lated work. Section 3 presents a genetic algorithm for test-suite reduction. In section
4, we present some studies’ results that evaluate the reduction algorithm. Finally,
Section 5 summarizes our results and discusses some future work.

2 Related Work

2.1 Test-Suite Reduction

In order to perform test-suite reduction, we should do something includes:

• Maintaining a testing pool where contains all the test cases used in previous test
activities.

• Keeping the test coverage information which denotes how many and which parts
of the program tested by each test cases during the previous tests.

• Recording the test-execution cost information that measures the amount of re-
sources each test-case’s execution needs.

A test-suite reduction technique should possess several qualifications listed in the
following.

Adequacy, which means that the reduced test-suite must provide the same test cov-
erage of the software, according to some criterion, as the original test-suite.

Precision, which means that the test-suite algorithm must be able to reduce the re-
dundant test cases from the original test-suite, that is, be able to find a minimal or an
approximate minimal subset of test cases.

 Test-Suite Reduction Using Genetic Algorithm 255

Cost-effectiveness, which means that it is worth doing test-suite reduction only if
the cost of the analysis necessary to do test-suite reduction is less than the savings
realized by reducing the test-suite.

Generality, which means the technique must be general, that is, it must be applica-
ble to a wide class of program and modification.

In order to analyze test-suite reduction techniques, we assume equivalent test cov-
erage and test execution costs under regression test reduction and retest all.

2.2 Algorithms for Test-Suite Reduction

Test-suite reduction techniques have been extensively studied. Harrold, Gupta, and
Soffa (1993, [7]) proposed a methodology for controlling the size of a test suite. Jones
and Harrold (2003,[3]) presented an algorithm for test-suite reduction that can be
tailored effectively for use with Modified Condition/Decision Coverage (MC/DC).
TIBÖR CSONDES and BALÁZS KOTNYEK (2002, [6]) presented two greedy algo-
rithms for the test-suite reduction problem in protocol conformance testing, namely
ADD-DELTA and DROP-DELTA. The ADD-DELTA algorithm can be stated as
follows:

Step1: Let T=φ;
Step2: For each ti ∈TS-T, calculate the increase in coverage and cost if it is added

to T: ΔCov(ti)= Cov(T { ti })- Cov(T),

ΔCost(ti)= Cost(T { ti })- Cost(T)

Step3: Find a test cast ti in TS-T for which ΔCov(ti)/ ΔCost(ti) is minimal. If there
are more, then choose the one with the lowest index. Let T=T∪{ ti };

Step4: If Cov(T)≥K, then STOP, otherwise go to Step 2.

All of these algorithms repeat the process that select test case which has most
contributions to coverage from the remaining test-suite into the minimized test-suite
until the minimized test-suite can provide the same coverage as the original test-set.

2.3 Test History

In earlier work [17], we developed computer-aided software testing tools for Visual
Basic, Delphi, and C++ etc. Our software-testing tools presented a new block division
mechanism and then extended some block-based test adequacy criteria [18]. Accord-
ing to the block division mechanism, there is only one kind of component: block in
the program. Formally, a block is such a sequence of statements that if any one state-
ment of the block is executed, all statements thereof are executed. we also extended
some block-based test adequacy criteria: SC0, SC1, SC1+, J-Coverage[18].

Test history includes static analysis information and dynamic analysis information.
The static analysis information includes all the structure information of the program
to be tested. The dynamic analysis information includes the coverage information, the
test execution costs that are associated with running a test case and so on. All the test
histories are recorded in the test database of the testing tools. The logical view of the
block coverage information can be derived, as shown in table 1:

256 X.-y. Ma, B.-k. Sheng, and C.-q. Ye

Table 1. Block coverage information of a test

 Block1 Block2 ... Blockj … Blockk
Case1 1 0 … 1 … 0
Case2 0 0 … 1 … 1

… … … …
Casei 0 1 … 0 … 1
…. … … … … … …

Casen 1 1 … 0 … 0

In the table, block1, block2, …, blockj ,..., and blockk are the blocks sequence of the
program, and Case1, Case2, ... , Casei ,..., and Casen are the test cases that have been
executed. The information in the table is all the digits of ‘0’ or ‘1’ which denote the
blocks-coverage information; here ‘1’ in the row i and the column j means casei

tested blockj, and ‘0’ means casei did not test blockj. The number of ‘1’ in row i
means how many blocks tested by casei; and the number of ‘1’ in column j means
how many times the blockj executed in a test.

3 Genetic Algorithms for Test-Suite Reduction

3.1 Genetic Algorithms

Genetic algorithms (GAs) [14] have been first developed by John Holland [15], and
are rooted in the mechanisms of evolution and natural genetics and manipulate a
population of potential solutions to an optimization or search problem. A genetic
algorithm computed following the process described Figure 1.

Fig. 1. The process of a genetic algorithm

•Build an initial population
•Calculate the fitness value for each individual of the population

•Generate next population (reproduction) allowing greater chance of
more fit population members to survive.
•Crossover a percentage of population members
•Mutate a percentage of genes in the population

The number of generations
reached, or some bound satisfied?

Stop

No

Yes

 Test-Suite Reduction Using Genetic Algorithm 257

3.2 Genetic Algorithm for Test-Suite Reduction

Gene modeling for test-suite reduction. For our problem of test-suite reduction, gene
of an individual is modeled as a ‘0’-‘1’ string which is represented as a column in
table 1. As we have mentioned above, each column in table1 denotes the information
of which test cases tested the associated block of this column, and these test cases
construct a subset of test-suite. Although in its primitive form each test-subset can’t
satisfy the test coverage bound, it is believed that after evolution of numbers of gen-
erations it can evolve to be a feasible solution to this problem. So, each test-subset is
naturally to be considered as a potential solution or an ancestor of the solution to our
reduction problem. The initial population consists of all the test-subsets denoted by
the columns in table 1. That is to say if there are k test cases in the original test-suite
and the program has n blocks, the size of population is k, and the length of gene code
is n. So the gene code of an individual can be represented as follows:

Gj=[gj1,gj2,…,gjn], gji {0,1}, 1 j k and 1 i n, here if gji =1, it means test case ti
has tested blockj, and if gji=0 means case ti has not tested blockj according to the origi-
nal test histories shown in Table 1. So, the gene of each individual denotes a subset of
test cases that have tested blockj and this subset is named as Tj.

Fitness function. The fitness value for an individual is the combination value of its
associated coverage and its cost. The fitness function for individual Gj can be com-
puted as follows:

Fitness(Gj) = Cov(Gj) / Cost(Gj), 1 i n, here Cov(Gj)= i is the cov-
erage of the test case ti according to some criteria, C(ti) is the test execution cost of ti.

Let Xi=[xi1,xi2,…,xik] be a ‘0’-‘1’string code that denotes the information of row i
in Table 1. Consider the information in table, we conclude that if only there are one
‘1’ in the column j, we could say the associated blockj is tested by test cases Tj. The
function Cov() is shown in Figure 2 and the function Fitness() in Figure 3.

Double Population::Cov(int j)
{ int *covnum; double Cov;

 Cov=0;
covnum=new int[sizePop];
for(int j=0;j<sizePop;j++) covnum[j]=0
for(int i=0;i<sizeCase;i++)
{ if G[j]. code[i]>0 /* G[j] is the individual Gj*/

 for (j=0;j<sizePop;j++)
{covnum[j]+=X[i][j]; /*X[i] is the vector Xi*/}

}
for (j=0;j<sizePop;j++)
{if (covnum[j] >0)
 Cov+=w[j]; /* w[j]is the weight of blockj*/ }
Cov=Cov*100/sizePop;
delete []covnum;
return Cov;
}//endCov

Fig. 2. The function Cov() for calculating coverage of test set Tj

258 X.-y. Ma, B.-k. Sheng, and C.-q. Ye

Consider the function Fitness(Gj), the bigger the function Fitness(Gj) value is, the
more possible the individual can be selected, because the bigger value of F denotes
that the subset of test cases Tj have tested more blocks with less cost. Now we should
define the genetic operators for the particular problem of test case reduction.

Reproduction. This operator copies the individuals that are going to participate in
crossover: they are chosen according to their fitness value. The choice can be seen as
spinning a roulette wheel where each individual has a slot proportional to its fitness
value. We spin the wheel as many times as the number of the individuals, and so we
have a new population that is going to participate to crossover. This new population is
made of individuals of the old one, and the number of each type of individual is pro-
portional to its fitness.

Crossover. Let m be the size of individuals in a population, and let’s select an integer
i at random between 1 and m-1, then from two individuals ind1 and ind2, we can cre-
ate two new individuals ind3 and ind4; one made of the i first genes of ind1 and the m-i
last genes of ind2, and the other made of the i first genes of ind2 and m-i last genes of
ind1, as shown in the following figure.

ind1={G11,…, G1i, G1i+1,…G1m} ind2={G21,…, G2i, G2i+1,…G2m}

ind3={G11,…, G1i, G2i+1,…G2m} ind4={G21,…, G2i, G1i+1,…G1m}

Mutation. Based on the gene model, the mutation operator consists in changing a ‘1’
in to ‘0’ and vice versa. The mutation operator chooses a gene at random in an indi-
vidual as illustrated in the following figure: Gj=[g1,…, gi,…, gk] Gmut = [g1,…,
gi,…, gk], here, if gi=1 , gi=0; otherwise if gi=0, gi=1.

4 Empirical Studies

To investigate the quality of our algorithm presented in Section 3, we implemented
prototype of the genetic algorithm for test-suite reduction, and the prototype is written
in C++, named GeA. In our genetic algorithm, the ratio of crossover is 0.8, the ratio of

void Population::Fitness()
{ double cost,cov;

for(int i=0;i<sizePop;i++)
{ cost = P->Cost(kids[i].code);
 cov = P->Cov(kids[i].code);
 if(req<miniReq)
 kids[i].fitness= 0;
 else
 kids[i].fitness = cov*kids[i]/cost;}
//endfor

}//endFitness

Fig. 3. The function Fitness() for calculating fitness value of our genetic algorithm

 Test-Suite Reduction Using Genetic Algorithm 259

mutation is 0.01, and the number of generations is 150. In order to evaluate the rela-
tive improvement of our reduction algorithm, we also implement the prototype of
greedy algorithm ADD-DELTA [6].

We used two real VB subjects for our study: one is a ‘CALCULATOR’ program,
and the other is a ‘LITTLE-TV’ program. CALCULATOR consists of 85 blocks and
LITTLE-TV consists of 241 blocks. For CALCULATOR, we have a test pool of 174
test cases, and, for LITTLE-TV, we have a test pool of 238 test cases. From these test
pools, 400 randomly sized, randomly generated test suites, for each subject program,
were extracted. The test-suites for CALCULATOR ranged in size from 5 to 80 test
cases, ranged in coverage from 65% to 95% (The average coverage is 90%). The test-
suites for LITTLE-TV ranged in size from 5 to 85 test cases, ranged in coverage from
60% to 98% (The average coverage is 89%.).

We evaluated three characteristics of the reduction algorithm: size reduction of
test-suites, cost reduction of test-suites, and time to perform the reduction.

To evaluate the reduction technique’s ability to reduce test-suites, we plotted the
size of the reduced test-suites as a function of the original test-suites size. Because
there are several test-suites of each size, we calculated the average size of the reduced
test-suites of each size. The study results are shown in Fig. 4 and Fig. 5. The horizon-
tal axis represents the original test-suite size and the vertical axis represents the re-
duced test-suite size. The results show that the sizes of reduced test-suites achieved by
GeA are slightly smaller than those reduced by ADD-DELTA. The average size of
test suites reduced by GeA for CALCULATOR is 6.5, and the average size of test
suites reduced by ADD-DELTA is 7.8. For LITTLE-TV, the average size of reduced
test suites is 6.4 and 7.9, for GeA and ADD-DELTA, respectively.

To evaluate the technique’s effectiveness to reduce test-suites, we plotted the per-
centage of cost-reduction as a function of the original test-suite size. Fig. 6~ Fig. 7
show the percentage reduction in cost of the reduced test-suite compared to the origi-
nal test-suite for CALCULATOR and LITTLE-TV, respectively. The percentages of
cost-reduction achieved by GeA are higher than those achieved by ADD-DELTA For
CALCULATOR, the average cost-reduction is 81.19% and 71.00%, the maximum
cost-reduction is 95.35% and 83.84%, and the minimum cost-reduction is 15.29% and

Fig. 5. Size reduction for LITTLE-TV

Size of original test-suite

S
iz

e
of

 r
ed

uc
ed

 te
st

-s
ui

te

GeA

ADD-DELTA

Fig. 4. Size reduction for CALCULATOR

size of origial test-suite

si
ze

 o
f

re
du

ce
d

te
st

-s
ui

te

GeA

ADD-DELTA

260 X.-y. Ma, B.-k. Sheng, and C.-q. Ye

0
10
20
30
40
50
60
70
80
90

100

11 18 25 32 39 46 53 60 67 74
Size of original t est -suit e

Pe
ce

nt
ag

e
re

du
ct

io
n

in
 c

os
t

GeA
A DD -DE L T A

0
10
20
30
40
50
60
70
80
90

100

11 18 25 32 39 46 53 60 67 74 81

Siz e of original t est -suit e

Pe
ce

nt
ag

e
re

du
ct

io
n

in
 c

os
t

G eA
A D D -D ELT A

Fig. 6. Percentage reduction in cost for
CALCULATOR

Fig. 7. Percentage reduction in cost for
LITTLE-TV

0
100

200
300

400

500
600

5 14 23 32 41 50 59 68 77size of original test set

tim
e

to
m

in
im

iz
e(

m
ill

is
ec

on
ds

)

0
100

200
300

400

500

600

5 16 27 38 49 60 71 82

si ze of or i gi nal t est set

tim
e

to
m

in
im

iz
e(

m
ill

is
ec

on
ds

)

Fig. 8. Time to reduce test-suite for
CALCULATOR

Fig. 9. Time to reduce test-suite for
LITTLE-TV

10.50%, for GeA and ADD-DELTA, respectively. For LITTLE-TV, the average cost-
reduction is 85.38% and 71.59%, the maximum cost-reduction is 94.85% and 80.91%,
and the minimum cost-reduction is 29.52% and 22.92%, for GeA and ADD-DELTA,
respectively.

To evaluate performance in reducing test-suites, we plotted the average time to re-
duce test-suites of each size as a function of the original test-suite size. Fig.8 and
Fig.9 show the average time to reduce test-suite needed by GeA and ADD-DELTA
algorithms, for CALCULATOR and LITTLE-TV, respectively. The vertical axis for
both figures represents milliseconds. For CALCULATOR, the time to reduce test-
suite needed is ranged form 150 to 401 milliseconds (the average time needed is
286.03 milliseconds), and for LITTLE-TV, the time to reduce test-suite needed is
ranged from 140 to 521 milliseconds (the average time needed is 336.98 millisec-
onds). For CALCULATOR, the savings in test-execution cost achieved by GeA is
ranged from 16 to 2262 seconds; for LITTLE-TV, the savings in test-execution cost is
ranged from 16 to 1857 seconds. So, the costs in analysis for test reduction are sig-
nificantly less than the cost-savings, and therefore our algorithm GeA is very cost
effective. The time needed for reduction by GeA is much more than those needed by
ADD-DELTA(339 milliseconds more in average), however the reduction in cost
achieved by GeA is more than those achieved by ADD-DELTA (range 15 to 245

 Test-Suite Reduction Using Genetic Algorithm 261

senconds more for CALCULATOR and 12 to 274 seconds more for LITTLE-TV).
So, GeA achieves a higher cost-effectiveness than ADD-DELTA does.

5 Conclusion

This paper has presented a genetic algorithm for test reduction based on block-based
test history. By modifying the function Cov(), which is used to calculate the coverage
of test-suites, the presented reduction algorithms, can be conveniently modified to
account for different coverage criteria. Furthermore, because our testing tool saves the
test histories of all tested program of different languages in a uniform structure of the
media database, our reduction algorithm can be applicable to a wide class of program
and modification.

The paper presents the results of empirical studies that evaluate the reduction algo-
rithm. We can conclude from the initial experimental results that our test-suite reduc-
tion technique has cost-effectiveness and generality. The results of studies also show
that our genetic algorithm GeA is more effective than ADD-DELTA both in size and
cost reduction.

Although our initial studies are encouraging, much more experimentation must be
conducted to verify the effectiveness of our techniques in general and in practice.
Another experiments we should do to further investigate the fault-detection capabili-
ties of a block-based test adequate test-suite on software. These studies will also let us
evaluate our algorithms and help us provide guidelines for test-suite reduction in
practice.

Acknowledgments

This work was supported in part by project ‘Study on Object-Oriented Software Testing
Automation’ (60073027) from National Natural Science Foundation of China, by pro-
ject ‘Study on Automated Structure Testing of Object-Oriented Software’ ()
from Scientific Research Fund of Zhejiang Provincial Education Department.

References

1. Y. Chen and M. F. Lau, Dividing Strategies for the Optimization of a Test Suite. Informa-
tion Processing Letters, Vol. 60, no. 3, pp.135-141, Mar, 1996.

2. Y. Chen, D. Rosenblum, and K. Vo, TestTube: A System for Selective Regression Test-
ing. Proc. 16th Int’l Conf. Software Eng., pp. 211-222, May 1994.

3. James A. Jones and Mary Jean Harrold, Test-Suite Reduction and Prioritization for Modi-
fied Condition/Decesion Coverage. IEEE Trans. On Software Engineering, Vol. 29, no. 3,
pp. 195-209, Mar. 2003.

4. Borgelt, K., Software Test Data Generation From a Genetic Algorithm, Industrial Applica-
tions of Genetic Algorithms, CRC Press 1998.

5. JC.Lin and PU. Yeh, Automatic Test Data. Generation for Path Testing using GAs,
Information Sciences, 131: 47-64, 2001.

262 X.-y. Ma, B.-k. Sheng, and C.-q. Ye

6. TIBÖR CSONDES,BALÁZS KOTNYEK, Greedy Algorithm For The Test Selection
Problem In Protocol Conformance Testing, Journal of Circuit, System and Computers,
Vol. 11, No. 3(2002),273-281, World Scientific Publishing Company.

7. M. J. Harrold, R. Gupta, andM.L. Soffa, A Methodlogy for Controlling the Size of a Test
Suite. ACM Trans. Software Eng. And Methods, vol. 2, no. 3, pp. 270-285, July 1993.

8. J. Offutt, J. Pan, and J. M. Voas, Procedures for Reducing the size of Coverage-Based Test
Sets. Proc. 12th int’l Conf. Testing Computer Software. PP. 111-123, June 1995.

9. G. Rothermel and M.J. Harrold, A Safe, Efficient Regression Test Selection Techinique.
ACM Trans. Software Eng. And Methods, vol. 6, no. 2, pp. 173-210, Apr. 1997.

10. G. Rothermel, M.J. Harrold, J. Ostria, and C. Hong, An Empirical Study of the Effects of
Minimization on the Fault Detection Capabilities of Test Suites. Proc. Int’l Conf. Software
Maintenance, PP. 34-43, Nov. 1998.

11. Gregg Rothermel, Mary Jean Harrol, Selecting Tests and Identifying Test Coverage Re-
quirement for Modified Software. Proceedings of the 1994 international symposium on
Software testing and analysis, Seattle, Washington, United States, Pages: 169-184, 1994 .

12. W. E. Wong, J. R. Horgan, S. London, and A. P. Mathur, Effect of Test Set Minimization
on Fault Detection Effectiveness. Software Practice and Experience, vol. 28, no. 4, pp.
347-369, Apr. 1998.

13. D. Berndt, J. Fisher, L. Johnson, J. Pinglikar, and A. Watkins, Breeding Software Test
Cases with Genetic Algorithms, Proceedings of the 36th Hawaii International Conference
on System Sciences (HICSS 36), Track 9, p. 338a, January 6-9, 2003.

14. D.E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Addi-
son-Wesley, 1989.

15. Holland, J. H. Adaptation in Natural and Artificial Systems. Ann Arbor, MI: University of
Michigan Press, 1975

16. A. Watkins, The Automatic Generation of Software. Test Data using Genetic Algorithms,
Proceedings of the Fourth Software Quality Conference, 2: 300-309, Dundee,. Scotland,
July, 1995.

17. YANG Jian-Jun, CHEN Wei-Dong, YE Cheng-Qing, and PAN Yun-He, Design and Im-
plementation of Testing Tools for Context-Free Languages, Journal of Computer Research
& Development, vol. 37(11): p1375-1382, Nov. 2000.

18. Xueying MA, Weidong CHEN, Jianjun YANG, Chengqing YE, Block-based Test Data
Adequacy Measurement Criteria and Test Complexity Metrics, Journal Of Computer Sci-
ence, Vol. 29, No. 5(141-143), May 2002.

19. M. Roper, CAST with GAs (Genetic Algorithms) - Automatic Test Data Generation via.
Evolutionary Computation, IEE Colloquium on Computer Aided Software Testing Tools,
digest no. 96/096, April, 1996

20. Pargas, R., Harrold, M., Peck, R., Test data generation using genetic algorithms. Software
Testing Verification & Reliability, vol. 9, no. 4, pp. 263-282,1999.

21. Michael, C., McGraw, G., Schatz, M., Generating Software Test Data by Evolution, IEEE
Transactions On Software Engineering, 27(12),pp. 1085-1110, December 2001.

22. Wegener, J.; Baresel, A. and Sthamer, H., Evolutionary Test Environment for Automatic
Structural Testing. Information and Software Technology, Special Issue devoted to the
Application of Metaheuristic Algorithms to Problems in Software Engineering, vol. 43, pp.
841 - 854 (2001).

J. Cao, W. Nejdl, and M. Xu (Eds.): APPT 2005, LNCS 3756, pp. 263 – 272, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Constellation Model for Grid Resource Management

Yinfeng Wang, Xiaoshe Dong, Xiuqiang He, Hua Guo, Fang Zheng,
and Zhongsheng Qin

School of Electronics and Information Engineering, Xi'an Jiaotong,
University, Xi'an, 710049,China

{wangyf, hexqiang, guohua}@mailst.xjtu.edu.cn
xsdong@mail.xjtu.edu.cn

Abstract. By analyzing the demand of the Grid resource management, this pa-
per proposes a constellation model for dynamically organizing and managing
Grid resources according to the integrated service capabilities of each node. The
logical layer of the constellation model matches with the underlying physical
organization. Some evaluation criterions for the integrated service capabilities
are proposed in this paper, which can also be used as the criterion in selection
of the standby fixed star node in resource management. By defining the mini-
mum resource management unit, the model is more suitable to manage the re-
sources dynamically and easier to realize uniform resource management. The
services in the constellation model can be developed according to WSRF and
the model conforms to OGSA.

1 Introduction

In essence, the Grid resources are heterogeneous, dynamic and distributed. So it is
difficult for distributed and heterogeneous systems to organize and manage the grid
resources dynamically. The complexity of managing distributed, heterogeneous large-
scale systems increases the administration cost and the risk of human errors.

Therefore, this paper considers Grid resource management from the following two
aspects: (1) To reduce the complexity of management and usage, the heterogeneous
resources have to be encapsulated and standardized into the uniform logical and ab-
stract service for management; (2) To improve the efficiency of management and
usage, the distributed physical resources have to be extracted and standardized into
uniform form to match the reality of underlying physical structure. In order to resolve
the above problems, Grid resource management can focus on organizing and manag-
ing the resources dynamically. The dynamic coordinated sharing of resources is a
fundamental capability of Grid. The basic requirement of dynamically organizing and
managing resources includes scalability, security and QoS assurance.

As a widely accepted open standard, Open Grid Services Architecture (OGSA) [1]
uses service to represent all the Grid resources, which wraps the complexity of man-
agement in the service interoperation.

The Web Service technology, uniform resource abstract and common configuration
principles make the system homogeneous. As an influential tool for OGSA, GLOBUS
makes the local management policy compatible with the Grid Resource Allocation &

264 Y. Wang et al.

Mgmt (GRAM)[2]; warps the heterogeneity of local resources. However, providing
GRAM implementation with each local resource management tool restricts the scal-
ability of the resource model, which not only leads to some resources managed by the
other resource tools failing to be used in Grid environment, but also weakens the
general organization and management.

Condor [3] can be considered as a computational Grid that has multiple Condor
pools with a flat organization. Condor uses an extensible schema with a hybrid name-
space and has no QoS support. Resource discovery is centralized and queried with
periodic push dissemination; the scheduler is centralized, too. Both of them tend to
become the bottleneck and do harm to the scalability.

SpiderNet [4] can achieve load balance efficiently and select peers based on QoS
requirement, but fails to offer an effective method to guarantee QoS once critical path
or resource confliction occurs.

All the resource models mentioned above cannot resolve the mismatch problem ex-
isting between the distributed abstract layer and the underlying physical structure.
Therefore, they can't satisfy the requirements for scalability, QoS assurance and so on
simultaneously

We consider there are reliable nodes in Grid, which can provide long-term, reliable
and stable services for users. These high available systems can be used as the building
blocks to realize stable, highly reliable execution environments in OGSA.

With the publishing of the OGSA/OGSI, and later the WS-Resource Framework
(WSRF), service becomes a more and more important concept in grid. The service-
oriented solutions to the grid problems have been the common realization in the field
of grid. In the constellation model, each resource is encapsulated as a standard WSRF
service, with the assistance of the Globus Toolkit 4(GT4). The services can be ac-
cessed through uniform and standard interfaces, which make the heterogeneous re-
sources easy to integrate. The grid nodes are classified into different categories, such
as planet node, fixed star node, according to their ISC properties. The constellation
model proposed in this paper can guarantee that the logical topology matches the
underlying physical organizations.

2 Components of Constellation Model

Definition 1. Planet is the node that resides in a steady physical location, encapsu-
lates self-resources and can provide service.

Definition 2. Meteor is the node that lies on the instable physical location, can pro-
vide service, and may be mobile computing objects.

Definition 3. Integrated Service Capabilities (ISC) value is the overall evaluation
criterion of a node's service capabilities, including the node's computation re-
sources, the network bandwidth and the availability (Mean Time To Failure,
MTTF). The ISC value metric Φ can be defined as the weighed average for these
values as in the equation 1.

1

1
0

m
i MTTF

i m m
i i

r b t
w w w

rs bs ts

−

+
=

Φ = × + × + (1)

 A Constellation Model for Grid Resource Management 265

ri: the available node's computing resources, such as a single CPU speed, number
of CPUs, memory, disk capability and so on, ;
b: network bandwidth;
t MTTF: node's Mean Time To Failure;
rsi: benchmark for different computation resources, the units adopt Gflops, Gbit
and so forth;
bs: benchmark network bandwidth, the unit adopts Mbps or Gbps;
ts: benchmark MTTF, unit is hour;

wi: weight factor;
1

0

1
m

i
i

w
+

=

= , administrator can define each object's weight factor

according to its relative significance.

Definition 4. Fixed star is the node that has the maximum ISC value in Solar system,
or a fixed star can be designated by selecting one from the nodes whose ISC value
exceed the criterion. Fixed star manages the planets, meteors around. The manage-
ment includes registering, scheduling, monitoring, discovery, controlling, and ac-
counting, etc.

Definition 5. Solar system owns one fixed star at most, the numbers of Planets and Me-
teor is x and y respectively, and then x, y 0. The system obeys the same sharing and
management rules such as policy of security and etc. It can be represented as a fourtuple:

Solar system={Fixed star, Planet [x], Meteor [y], Rule}.

3 Construction of Solar System

3.1 Solar System Construction Strategy

Organization Strategy: Solar system can be organized according to geographical
dispersal or service types. When it comes to the nodes that fail to find suitable spe-
cialty organizations, based on the geographic dispersal strategy, they are allowed to
join the local solar system

Restriction 1. Each planet node belongs to one solar system at most.

As the management and sharing rules given as follows, if some planets were con-
trolled by more than one fixed star nodes, once Rule of the solar systems changed,
mutual conflict of management and sharing rules would occur, which would make the
planet at loose ends. Hence, in order to decrease management complexity and uniform
designing and management, it should be restricted that each planet belongs to only
one solar system at most.

In figure 1, Rule 1 and 3 represent the rule sets of planet nodes, and Rule2 repre-
sents the rule sets of fixed-star node. The rule sets of solar system Rule = Rule1

Rule2 Rule3, which reflects the relaxation degree of the solar system management.
Based on the management and sharing rules, Service Level Managers (SLMs)[1]

perform the negotiation with Service level agreement (SLA) in solar system. If the
intersection of Rule1 and Rule3 is relatively great, the fact accounts for that the two
rule sets have much in common; the two planets are tightly coupled, and they can
collaborate to perform some jobs.

0 i m-1

266 Y. Wang et al.

Fig. 1. Solar system Management and sharing rules

Community Authorization Service (CAS) [5] or PKI, Certification Authority (CA)
can be used to in the security of solar system. Solar system owns Self-Management
service, including self-configuring, self-healing and self-optimizing. Self-
Management Services can reduce the cost and complexity of managing the system.
Such as Simple Network Management Protocol and etc. enable the interoperability
among the solar system node.

To avoid single points of failure and improve scalability, in the nodes, we should
appoint a node whose ISC value exceeds the criterion as the standby of the fixed star,
and the standby fixed star should keep updating to make sure of consistency.

3.2 Update Solar System Node

Employing WS-ResourceProperties and WS-ResourceLifetime of WSRF, we can
regard nodes as a kind of service to manage. To improve stability, once the solar sys-
tem comes into being, any fresh node can be taken as a standby fixed star at most.

The Solar-system Update Algorithm can be described as bellows:

Step1) Check the identity of incoming nodes; if ISC value the evaluation crite-
rion of fixed star, then go to Step3); else go to Step4).

Step2) If quitting node's identity is fixed star, then go to Step5),else is standby
fixed star go to Step6); Otherwise go to Step7).

Step3) In terms of the evaluation criterion, if the incoming node accords with the
appointment requirement or its ISC value the standby fixed star, then the
newcomer upgrades to the standby fixed star, backups and keeps updating
managing data which is consistent with the fixed star. Meanwhile the for-
mer descends to planet. Else go to Step4).

Step4) If newcomer lies on the steady physical location, then node joins the solar
system as a planet, else as meteor ; managed by the fixed star.

Step5) Fixed star quits, if there is standby fixed star, management Agent moves to
evaluation criterion of fixed star; a planet is appointed as a backup fixed
star; else, i.e. there is no standby fixed star, the solar system fails. Its me-
teors remain to join the neighbor solar system following the geographic
dispersal strategy.

Step6) Standby fixed star quits, if there are planets satisfying the evaluation crite-
rion of fixed star, upgrade one of them as the standby fixed star; else, the
in-service fixed star updates the managing data.

Step7) A planet or meteor quits; the fixed star update managing data.

 A Constellation Model for Grid Resource Management 267

4 Construction of Constellation Model

4.1 The Constellation Model

Definition 6: one or more (x 1) Solar systems constitute a Constellation, which can
be denoted by a fourtuple:

Constellation= {Solar system [x], Configuration-policy, Network, QoS-Radius}.

Configuration-Policy: The constellation can be organized according to the geo-
graphic dispersal or the service types. The policies used in each Solar system can be
composed for the constellation, either may be the main one. A Solar system could
belong to multiple constellations. The constellations organized according to the geo-
graphic dispersal are similar to the TeraGrid[6], and those which are organized ac-
cording to the service types of the Solar system are similar to the DataGrid[7].

Fig. 2. The structure of constellation model

Network: Solar systems in the constellation could be interconnected together using
the P2P-like overlay network. [4] shows that the performance of the P2P system is
very sensitive to the topology variation, even with a small number of peer arri-
vals/departures(2% of the total peers). Virtual links are built to provide multiple
backup connections between the Solar systems. Hence the frequency of that the Solar
systems join/leave the grid system resulted by the unsteady network can be decreased
greatly, and therefore the performance of the constellation can be improved. When the
constellation scale is relatively small, the full-interconnection can be used among
Solar systems. Figure 1 shows the structure of constellation model.

QoS-Radius: QoS assurance in the constellation includes but is not limited to the
following aspects: availability, security, and performance. QoS announced by the
constellation could be ranged by the expression < min, max>. The range is relative to
the status of nodes and the policies of the constellation. For example, if the allowed

268 Y. Wang et al.

maximum response time is Tmax, while the maximum delay is not allowed to exceed
50 percents, then the corresponding QoS range < min, max> could be expressed as
<0, 1.5×(estimated response time)>. Through monitoring, scheduling, and tuning the
running services, The SLMs[1] deployed on the fixed star negotiate a SLA within the
QoS range to realize the Service level attainment.

4.2 Inter-constellation Connections

In the constellation model, each constellation is self-managed and thus independent of
the others. Routers, links and end systems may fail and their performance may fluctu-
ate over time. The network transience occurred between solar systems are also inde-
pendent. In dynamic grid environment, overlay network is required to be built to
organize the redundant network links in the physical layers, thus the availability and
scalability of the constellation will be improved, while the number of transience oc-
currence could be decreased.

In the overlay network of P2P systems, a node maintains an overlay routing table
containing the IDs of a small set of other overlay nodes. Each such entry can be
thought of as a virtual, direct link between the current node and the table entry. They
are neighbors to each other. The P2P-overlay network is loosely coupled and dy-
namic, and easily to be constructed. But the overhead of the structured overlay net-
work is relatively too high while organizing the dynamic resources.

In P2P, the inefficient overlay topology and the blind flooding is unnecessary,
which makes the unstructured P2P systems far from scalable [8]. Topology mismatch
between the P2P logical network and physical underlying network results in that the
messages may be relayed multiple times between the same physical links incurring a
large volume of unnecessary traffic.

The Location-aware Topology Matching (LTM) algorithm proposed in [9] can be
used to disconnect the redundant slow connection between solar systems in constella-
tion and construct the P2P overlay network, which matches the underlying physical
network. The solar systems can be organized together through the overlay network
reliably and efficiently. The resources in grid are dynamic and distributed, which
requires the solar systems be able to collaborate. The performance can be improved
and the provided peers are able to actively collaborate through the powerful overlay
network.

4.3 Dynamic Resource Organization Based on Solar Systems

The VOs in the constellation model could be existed inner the solar systems or con-
stellation, or inter the constellations. The minimum unit of the grid resources is a
service, and the solar system is the minimum unit of grid resources to be managed.
The reasons are the followings:

1. In Grid, all the resources are encapsulated as services. Users or VOs invoke the
services through uniform interfaces. Only the services are visible to the outside.
So the service is the minimum unit of grid resources.

2. If the dynamic resources are managed by direct managing the services, when the
resources changes, the services must be modified and reconfigured to adapt to

 A Constellation Model for Grid Resource Management 269

the changes. This may makes the services unable to be shared if the modifica-
tion information cannot be notified to all the users timely.

3. The dynamic resources are managed in the unit of solar system. The fixed stars
are responsible for managing the resources securely and efficiently without
changing the organization rules of the solar system.

4. The VOs in the solar system are only managed by the solar system.
5. According to Restriction 1, a planet is managed by only one solar system.

So the solar system is the minimum unit of grid resources managed in the constella-
tion model.

The solar system, as the minimum management unit of grid resources, contributes
to the formation of a uniform global name space. The WS-Addressing of a service can
be extended to point out the fixed star node to which it belongs. It can be guaranteed
that the name of a service is unique by referring the address of endpoint of the node
where the service is deployed.

In VOs, sharing relationship among participants is peer-to-peer in nature [10].
In the forming of the VOs, peer members need to be found through the Metadata
service while the VOs are cross-organization. Compared to the existing resource
management models, the constellation model treats the solar system as the mini-
mum unit of the resource management. The peer members could be found more
easily, which could benefits the aggregation of the Metadata service, resolves
some security problems existing in site autonomy, such as security Policy Ex-
change [1], and benefits the global uniform management and the formation of a
single system image as well.

4.4 QoS Assurance in Dynamic Organization of Resources

In the dynamic organization of resources, the QoS assurance requirements include
Service level agreement, Service level attainment, and Migration [1]. The QoS-Radius
in the constellation model is negotiated by the SLMs in all the solar systems.

Take the QoS migration problem as an example, when a certain service in a planet
or fixed star is being used by one user or VO, at the same time, another VO with a
higher priority issues a request to occupy the service, then the fixed star will make the
running tasks migrate to satisfy the higher-priority VOs. In the constellation model,
the solar systems may share some common service rules and services. When the high-
priority VO issues a request to the fixed star, the SLM of the fixed star will be respon-
sible for the migration of the running tasks inner the solar systems or between differ-
ent solar systems. If the migration cannot be performed, then the checkpoint of the
running task will be retained.

Once the high-priority VO releases service, the SLM will decide whether the task
should be retrieved back to the original fixed star if the task has not been finished, or
continue the task from the checkpoint. Utilizing resource across organization intro-
duces stricter accounting requirements. Mechanisms for collecting and exchanging
necessary information for accounting are required [1]. In constellation model, the
accounting is also managed by the SLM.

270 Y. Wang et al.

5 Relationships with OGSA

In constellation model, the basic web services (encapsulated resources) are deployed
inside the solar systems. The fixed star, planet, and meteor nodes are the resident host
of the basic services that support the base resources of OGSA.

The solar systems map to the infrastructure level of OGSA, shown in figure 3. The
agent that is running in the fixed star monitors, accesses, and terminates the resources
inside the solar systems, and performs the capabilities required by the base manage-
ability model, such as discovering. The service instances can be created, monitored
and destroyed through the generic manageability interface that the agents provide.

Data
services

OGSA
functions
level

Domain-specific capabilities

OGSA capabilities

Security
services

Infrastructure
level

Resource
level

Execution
mgmt

services

Resources

Infrastructure services

Constellation

Solar system

Fixed star
Planet
Meteor

Fig. 3. Relationship between Constellation model and OGSA

The constellations correspond to the function level of OGSA. By composing the
relatively simple self-management functions of lower-level solar systems, the com-
plex self-management function of the constellation can be realized. The scalability of
the constellation model can be improved by providing standard functional interfaces
and manageability interface to the public services of OGSA. For example, the inter-
face to create and destroy the tasks should enable to be invoked by the service that
manages the operation process of services.

The solar systems in the constellation model can provide metadata services for the
cross-organization behaviors, such as identity authentication/authorization, policy
transaction or negotiation, which is necessary in OGSA. The self-management func-
tion of the constellation can provide standard mechanisms to collect or exchange the
information between organizations.

6 Application Experiences

The National High Performance Computing Center (NHPCC) of Xi'an Jiaotong Uni-
versity (XJTU) is one of the eight nodes in the China National Grid. Based on the
Xi'an node, a prototype system has been developed for dynamically sharing the Com-
putational Fluid Dynamics (CFD) Fluent software licenses, and in this system the
constellation resource management model is used. The purpose of the system is to
integrate the Fluent software licenses [11] in Xi'an and Shanghai areas, and realize
dynamic sharing of the licenses according to the demands of the users.

 A Constellation Model for Grid Resource Management 271

Each university in Xi'an area that has the Fluid Computing Environment (FCE) can
join in as a solar system. All the FCE of universities in Xi'an area constitute the Xi'an
CFD constellation, while the Shanghai constellation is composed of the FCEs in
Shanghai area, such as Shanghai Jiaotong University (SJTU), Supercomputer Center
(SSC) etc. The NHPCC can be designated as the fixed star, while other computing
centers or clusters in XJTU can join in the solar system as planet or meteor nodes.
Totally there are four licenses for Fluent software in XJTU solar system. Figure 4
shows the structure of the CFD system based on the Constellation model.

Once a certain task is submitted to system, the solar system will firstly choose a
suitable resource for it according to the scale of task.

The solar system manages the software registry, scheduling of requests from users,
the collection of resource information, the software resource search engine and the
task execution. The fixed star monitors the loads of the planet nodes, and schedules
the tasks according to the information. If the current Solar System is heavily loaded,
new tasks will be migrated to another Solar System with light load in the same con-
stellation.

China Edu.& Research
Network

Shanghai CFD
Constellation

Xi'an CFD
Constellation

Fig. 4. The illustration of the Constellation model for CFD

When the Fluent licenses in Xi'an area are not enough in use, the Xi'an CFD Con-
stellation will negotiate with Shanghai CFD Constellation to share the Fluent licenses
resource, where more eight Fluent licenses can be shared. The licenses from Shanghai
constellation will be transmitted through China Education and Research Network
(CERNET) to active the Fluent software.

7 Summaries and Future Work

This paper proposes a resource model named Constellation for dynamically organiz-
ing the grid resources. By analyzing each component of the constellation model, the
metrics for measuring the capabilities of the grid nodes are proposed. The demands of
the overlay network used to connect the solar systems or constellations are also ana-
lyzed, and a P2P-like overlay network combined the LTM technology is proposed in
this paper to make up the gaps between the logical network and the underlying physi-
cal network. The introduction of solar system, the minimum resource management

272 Y. Wang et al.

unit, can contribute to better organizing the dynamic resources across multiple admin-
istrative domains and easily implement the global and uniform resource management.

There are several aspects in which constellation model could be advanced. Security
functionality should be strengthened at all layers, the model should be more scalable
and the QoS guarantees need to be improved. We will do some research in these is-
sues in the future.

WSDM-WS has published the specification of MUWS (Management Using Web
Service) and MOWS (Management Of Web Service) in March 2005. The related
future works will accord with the two specifications.

Acknowledgments

This research is supported by China Education and Research Grid (Grant
No.CG2003-CG008) and 863 projects of China (Grant No.2002AA104550)

References

1. I. Foster, Argonne & U.Chicago (Editor): Open Grid Services Architecture GWD-I (draft-
ggf-ogsa-spec-019). http://forge.gridforum.org/projects/ogsa-wg.

2. http://www-unix.globus.org/toolkit/docs/development/4.0-drafts/GT4Facts/index.html.
3. http://www.cs.wisc.edu/condor/.
4. Xiaohui Gu, Klara Nahrstedt: QoS-Aware service composition for large-scale P2Psystem.

Chapter 24.Grid Resource Management, Kluwer Publishing, Fall 2003.
5. L. Pearlman, et al.: A Community Authorization Service for Group Collaboration. IEEE

3rd International Workshop on Policies for Distributed Systems and Networks, 2002.
6. Charlie Catlett: The TeraGrid: Progress and Applications. February 2004.
7. http://lcg.web.cern.ch/LCG/.
8. J. Ritter: Why Gnutella Can't Scale. No, Really. http://www.tch.org/gnutella.html, 2001.
9. Yunhao Liu, Li Xiao, Xiaomei Liu, Lionel M. Ni, Xiaodong Zhang: Location Awareness

in Unstructured Peer-to-Peer Systems. IEEE Transactions on Parallel and Distributed Sys-
tems, VOL. 16, NO. 2, February 2005, pp. 163-174.

10. J. Joseph, M. Ernest, C. Fellenstein: Evolution of grid computing architecture and grid
adoption models, IBM SYSTEMS JOURNAL, VOL 43, NO. 4, 2004, pp.624-645.

11. Fluent RLicense Service Description. http://www.fluent.com/software/rlicense/descr.htm.

J. Cao, W. Nejdl, and M. Xu (Eds.): APPT 2005, LNCS 3756, pp. 273 – 281, 2005.
© Springer-Verlag Berlin Heidelberg 2005

An Effective Information Service Architecture
in Grid Environment

Huashan Yu, Yin Luo, Xingguo Zhu, and Xiaoming Li

School of Electronics Engineering and Computer Science, Peking University,
100871 Beijing, P.R. China

yuhs, lxm@pku.edu.cn, luoyin@ailab.pku.edu.cn
zxg@db.pku.edu.cn

Abstract. The information service is a vital part of any Grid software platform,
providing the fundamental mechanism for discovering and monitoring services
and resources in a Grid. This paper presents an effective information service
architecture developed for ChinaGrid Support Platform (CGSP). The
architecture is based on domains in CGSP, which are autonomous grid systems.
The key issues are to collect information of diverse resources within a domain
dynamically, and to share these collected data across domains effectively and
securely by providing a unique interface based on a delegation method and an
index aggregation mechanism.

1 Introduction

Grid technologies [3] have emerged as an attractive distributed computing paradigm
over wide-area network, focusing on large-scale resource sharing and coordinated
problem solving in a dynamic, efficient and secure way. The term “resource” refers to
hardware, software and data, such as computers, networks, sensors, programs and
databases. These resources usually are heterogeneous and contributed by different
organizations. To realize the goal of Grid computing, mechanisms for describing,
discovering and monitoring the diverse resources are required. Let’s consider a BLAT
problem for example. Among the numerous computers, only a few can provide the gene
data required by the problem, and the executable version required by each candidate
computer is platform-dependent. Some candidates are currently too busy to be
appropriate for the problem. Moreover, these candidates are owned by different
organizations, therefore it’s important to provide a consistent way for problem
submitters to monitoring job statuses on remote computers. To address the above
challenges, we have designed and implemented an information-service architecture in
ChinaGrid Support Platform (CGSP) [2], which is a service-oriented Grid middle-ware
for the development of ChinaGrid [1] and its applications.

ChinaGrid aims to utilize resources distributed in Chinese education and research
network with Grid technologies to provide high-quality services for scientific research.
CGSP consists of five modules: Grid Portal, Grid Development Toolkits, Information
Service, Grid Management and Grid Security. The Grid Management includes: Service
Container, Data Manager, Job Manager, and Domain Manager [1]. CGSP has been

274 H. Yu et al.

successfully applied in the development of ChinaGrid’s campus Grid in more than 20
universities. Every campus grid is a domain of ChinaGrid, and it has its own resource
sharing policies and provides a mechanism to handle delegated request from other
domains.

Information Service of CGSP (CGSP-IS) is a service-oriented architecture
conforming to OGSA [4] and WSRF [17]. First, CGSP-IS takes the form of services,
which means it is in fact a group of services providing several kinds of information
about resources in the Grid; Secondly, CGSP-IS only takes care of services, which
means we view all the resources in the grid as services and we describe, discover and
monitor a resource via a service which represents it. To facilitate the development of
CGSP-IS, we propose an architecture, named Global Information Service Architecture
(GISA), which addresses the issues encountered in building information services for
diverse, dynamic and distributed resources. The key issues are how to collect diverse
resources within a domain dynamically and effectively, and then how to share these
collected data across domains effectively and securely by providing a unique interface
based on delegation method and index aggregation mechanism, and hence providing a
global view of resources to users in any domain.

The rest of this paper is organized as follows: Section 2 presents GISA’s architecture
and related mechanisms. Section 3 gives a brief description of GISA’s implementation
in CGSP. Section 4 overviews some related works, and a conclusion about this paper is
presented in section 5.

2 Information Service Architecture

In this section, we present the functional and architectural design of CGSP’s
information service in detail. All resources in CGSP are presented as Grid services
conforming to WSRF. However, developing and running Grid applications directly on
this abstract level is very complex, since the number of Grid services is very large and
statuses of their hosting environments are dynamic. Information service in CGSP plays
an intermediary among resource providers, Grid application developers and job
submitters.

2.1 Overview

As the infrastructure of the information services in CGSP, GISA is built on the concept
of domain. The term “domain” refers to an independent and autonomous grid
environment, which provides services to the users and modules within the domain.
People establish domain for many reasons. For example, a bio-informatics Grid is a
domain established according to application domain; the campus grid of Peking
University is also a domain. Although domain has autonomy in nature, this concept is
introduced to integrate grid systems into a larger one, which provides larger scale of
and multi-level policies for resource sharing. The integrating process occurs when a
domain joins another as its child, and thus a recursive integration can lead to the
integrated domains have tree-like structure. It is important to notice that for
transparency and flexibility considerations, each domain knows nothing about the
whole topology except its father and children.

 An Effective Information Service Architecture in Grid Environment 275

Information Center (IC) is another important concept for GISA. It is an abstract
information-serving module with the following three interfaces: 1) to collect
information from all kinds of resources in a domain; 2) to provide information to the
users and other modules in a domain; and 3) to provide information to ICs in other
domain. We introduce this concept for two reasons: one is that although a grid system
usually has multiple information services for diversity, scalability and fault-tolerance
considerations, a logic single access point for these services will help to design a
general framework; the other reason is that to address the challenge of integrating
heterogeneous grid system, an abstraction of various information serving modules in
different systems is necessary.

Fig. 1. GISA based on integrated domains

Based on these tow concepts, GISA has the same tree-like structure as the integrated
domains, as illustrated in Fig. 1. Each domain has an Information Center to collect data,
and the collected data can be shared with its parents and children. Correspondingly,
GISA is separated into two parts: one is for monitoring and discovering resources
within a domain, named Resource Discovery and Monitoring Architecture (RDMA);
another is for sharing resource information by providing a global view of resources in
multiple domains, named Global Resource Sharing Mechanism (GRSM).

2.2 Resource Discovery and Monitoring Architecture

Due to the diversity of Grid resources, it is difficult to develop a general resource
monitoring and discovering system. The key issues are: 1) describing the state of every
resource in a generic way; and 2) discovering appropriate resources among a large
number of distributed resources.

Because of the considerable diversity and openness of resources in a grid
environment, it is obvious that the language used to describe the state of a particular
kind of resource should be customized. Therefore, mechanisms are required to keep the
consistency of vocabulary, syntax and semantic between the resource provider and

276 H. Yu et al.

consumers. In fact, RDMA uses XML [21] to describe resource state, and utilizes
resource template to assure the agreement between the providers and consumers. A
resource template defines the content, format and other properties of the information
used to describe a kind of resource. The definition should represent nature of the
resource and satisfy the need of resource discovery. Generally, resource templates are
defined by application experts. Every resource must be associated with a resource
template for its discovery and monitoring. In RDMA, every resource template contains
a XML schema to define the state of resource.

For the second issue, we prefer to aggregate the information of all the resources into
one central place and make query upon the aggregated information. Thus, at conceptual
level, RDMA has a classic tree-like structure, which comprises three levels of modules:

Information Provider (IP) is an agent who takes charge of feeding raw data to
RDMA. The data’s syntax and semantics are arbitrary, ranging from a single item about
a workstation, such as the current load of CPU or the available storage capability, to a
complex information model about a cluster with hundreds of nodes at which a rare
operating system and other valuable software are installed. The way that an IP retrieves
data is also arbitrary: it can query the machine’s state by invoking some system APIs,
or just copy data from a file output by other programs. An IP can be any program that is
customized and provided by the contributor of the resource, using some predefined
interface to communicate with the Resource Monitor with which it associated.

Resource Monitor (RM) is a service that represents a resource by monitoring and
publishing its state. As mentioned above, each resource has a resource template to
specify what pieces of information should be collected by RM. According to the
associated template, RM starts monitoring via some appropriate IPs and publishing to
IC and other users. The way a RM gets its associated resource template can be arbitrary.

Fig. 2. The structure of RDMA in a domain

 An Effective Information Service Architecture in Grid Environment 277

Information Center (IC) is a group of services that are responsible for aggregating
information from RMs and providing user interfaces for discovering and monitoring
resources. Each service is associated with one or more resource template, and every
resource template represents a kind of resources that the service is responsible for. The
contributor of a resource should register it to the corresponding service in IC, according
to its resource template, with the address of its RM, and then the service communicates
with RM to retrieve the state of resource. The way to retrieve data can be arbitrary.

As shown in Fig. 2, Resource Monitors, who has the resource template for the
resource, know what data item should be collected, so it starts some providers
according to a configure file, and starts reporting the state of the resource to IC.

2.3 Global Resource Sharing Mechanism

GRSM is based on the concept of domain. As mentioned in chapter 2.1, a domain refers
to an independent and autonomous grid system. The grid system provides services to
the users and modules within the domain, has its own necessary runtime modules such
as portal, execution management, data Management and information service. Although
domain has autonomy in nature, it is introduced to integrate grid systems into a larger
one that provides larger scale of and multi-level policies for resource sharing. As far as
information services is concerned, domain has the following features:

− Autonomy: The process of integration should not conflict with the autonomy of the
involved domains. A user of a domain cannot log in other domain and utilize the
services provided in the domain unless it has a legal mapping identity. To
information service, this feature means that the information of a resource should not
be exposed outside the domain except the resource sharing policies allow that.

− Heterogeneity: Since domains are autonomous grid systems, they could be
heterogeneous. To build an information service based on heterogeneous domains,
we must consider the ICs in different domains have different methods to express
information and the query language is also different.

− Uniformity: The integrated grid system with multiple domains should provide a
global view to the users of all the domains. Though, according to different local
resource sharing policies in different domains, a user cannot get a complete view of
resources in a remote domain, he/she should find all resources as possible as the
resource sharing policies allow via a unique interface.

− Flexibility: Reconstructing the integrating relationship of domains is easy. Due to a
recursive integrating process, the structure of all involved domains can be tree-like,
and thus a domain can join the family at any level, except the root, and can quit at
any time. To information service, this flexibility leads to a dynamic view of
resources.

These features of domain make an information service, providing unique interface
based on multiple autonomous and heterogeneous domains, hard to be a reality.
However, we are willing to contribute our efforts on this problem.

Due to the feature of autonomy of a domain, a user cannot issue a query request to
the IC in a remote domain, because the remote domain cannot accept the request
according to its resource sharing policies that usually require a user identity within the
system. To handle this problem, GRSM requires that each IC should be equipped with a

278 H. Yu et al.

mechanism to map a remote user identity to a local one and provide an interface to
accept remote request from the ICs in other domain. The policy used in the identity
mapping mechanism depends on each domain. Hence, when a user issues a query
request to a specific domain, the local IC should delegate the query request to the
remote IC and retrieves the result from it. For example, a user in domain A wants to
issue a query to domain B. First, he/she issues a request to local IC, and the IC in
domain A delegates the user’s request to the IC in domain B with the user’s identity in
domain A; and then the IC in domain B maps the user’s identity into a local one and
makes a local query, and then returns the result of the query back to the IC in domain A
which returns the result to the user.

However, because of absence of the whole topology, as shown in Fig. 3, a remote
request can just delegate to the parent domain and child domains. A global query can be
done by flood the query request to all integrated ICs by a recursive delegation process.
In this case, the request will cost a lot.

To accelerate the query process based on a global view of resources in all domains,
the only way is to expose the information in an IC to other IC directly. GRSM provides
an interface to administrator to configure what part of information in an IC can be
exposed directly and a mechanism to use these exposed information. In the mechanism,
we utilize the following things to facilitate the global query process.

− Index is a mapping from the information that an IC has, which can be completely
exposed to other ICs. In general case, an index is just a part of the whole piece of
information and, in more sophisticated case, an index could be some data derived
from the original information.

− Query Operator is an agent who can query upon the index. Due to the
heterogeneity feature of domains, how to express information and how to do a query
upon the information can be various. When the administrator of an IC exposes some
index, he must provide its associated Query Operator. In practical sense, Query
Operator can be Java class.

Once a domain is established, it is a trivial root node without any children. When this
domain is integrating into another one for larger-scale resource sharing, the IC of this
domain is also integrating into the counterpart of the parent domain. In GRSM, As
shown in Fig. 3, once the parent-child relationship is set up, the index and its Query
Operator in the child domain starts aggregating into the parent domain. In this way, an
upper IC will have all the indices and Query Operators that its descendants have.

When a user issues a global query for a resource meets his needs, the IC in local
domain first makes a local query on the information of its own and the indices
aggregated from its descendants, and if no resource can meet the needs, it delegates the
query to its parent and children who will do the same process.

In this pattern, the upper IC will have more load because of the aggregated indices,
and the consistence between original data and its index can be a problem. However, we
suppose that the index exposed should be relatively static and limited when the network
does not have a good performance.

 An Effective Information Service Architecture in Grid Environment 279

Fig. 3. Relationship between ICs in different domains

3 Implementation

GISA has been implemented in CGSP-IS (see Sect. 1). Based on RDMA and GRSM,
CGSP-IS provides information services for three kinds of resources, namely,
grid-service, hyper-service, and physical resource. A grid-service is a web-service or a
WS-Resource. A hyper-service is an abstract grid-service defined by its port-type and can
be dynamically bind to a physical grid-service, according to some QoS requirement. And
a physical resource is a platform on which grid-services run. Based on these information
services, CGSP supports execution management across domains, which makes the
resource sharing and dynamic problem solving over multiple campus a reality.

In CGSP, RDMA is based on WSRF, where a RM is implemented as a
WS-Resource [17]. For example, a RM for a computer can be WS-Resource providing
resource properties such as disk capacity, CPU load and so on. The state of resources is
aggregated into IC using the standard method GetResourceProperty as the pull
approach and the mechanism provided by WS-Notification [17] as the push approach.
And the definition of resource template is just consistent with the definition of
ResourceProperties, but we do not remove resource template because we extend the
template to specify the approach to update the state of resource for RMs.

For GRSM, the domains in CGSP 1.0 are actually all homogeneous, and the
structure of integrated domains is a two-layer tree with a root domain and about 20
child domains. And each IC aggregates all information as index to the root IC due to the

280 H. Yu et al.

limited number of domains and the good stability and high band-width of the
underlying network, CERNET.

4 Related Work

The Aggregator Framework of WS MDS [15] provides a general mechanism to collect
data from distributed WS-Resource, which is similar to RDMA’s implementation in
CGSP 1.0, but it do not focus on the resource sharing across domains.

MDS-2 [6] is based on a configurable gateway Grid Resource Information Service
(GRIS) and an aggregating component Grid Index Information Service (GIIS) in a
service-oriented architecture [4]. It has a hierarchical structure based on VO, but it is
not for domains either.

Relational Grid Monitoring Architecture (R-GMA) [18], as an implementation of
GMA [14], is based on relational data model and provides a centralized architecture in
which Producers feed data to a central registry and Consumers query the registry for
locating a Producer.

Compared with these existing approaches, GISA focus on providing a unique
interface for a global query of resources in domains that are autonomous and
independent grid systems.

5 Conclusions and Future Work

In this paper, we propose an information service architecture GISA, serving for CGSP,
which is based on the concept of domain and the way in which domains integrate, and
provides a mechanism to provide resource monitoring and discovery services over
domains. GISA consists of two parts: RDMA and GRSM, which are responsible for
discovery and monitoring resources within a domain and resource information sharing
across domains respectively.

RDMA utilizes resource template to define the format and other properties of state
of resource. A resource template must be carefully designed to achieve the agreement
between information provider and information consumer.

GRSM requires a user identity mapping and delegation mechanism and use index to
accelerate a global query process.

In the future, we will focus on how to improve the performance of GISA. The key
point is to remove the recursive delegation process for a global query, which requires
the global view of domains. And we are going to provide a mechanism to generate
resource template by inheriting from an existing one.

Acknowledgement

This paper is supported by ChinaGrid project from Ministry of Education of China
(CG2003-CG/GP001), and National Science Foundation of China (NO. 60303001,
90412010). We would also like to give special thanks to LU Fakai, GAO Aiqiang at
Peking University for their contributions to the initial design and implementation of
our work.

 An Effective Information Service Architecture in Grid Environment 281

References

1. H. Jin, “ChinaGrid: Making Grid Computing a Reality,” Proc. Of The 7th International
Conference of Asian Digital Libraries, Shanghai, P.R.China, Dec. 2004, pp.13-24.

2. ChinaGrid Support Platform, http://www.chinagrid.edu.cn/CGSP.
3. I. Foster, et al., “The Anatomy of the Grid: Enabling Scalable Virtual Organizations,”

International Journal of High Performance Computing Applications, vol. 15, 2001.
4. I. Foster, C. Kesselman, “The Physiology of the Grid: An Open Grid Services

Architecture for Distributed Systems Integration”, J. Nick, S. Tuecke, (2002).
5. I. Foster, C. Kesselman, “Globus: A Metacomputing Infrastructure Toolkit”, International J.

Supercomputer Application, (1997), 11(2), 115-128.
6. K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman, "Grid Information Services for

Distributed Resource Sharing," in proceedings of the 10th IEEE International Symposium
on High-Performance Distributed Computing (HPDC-10), 2001.

7. X. Zhang, J. L. Freshl, and J. M. Schopf, "A Performance Study of Monitoring and
Information Services for Distributed Systems," in proceedings of the 12th IEEE
International Symposium on High Performance Distributed Computing (HPDC-12), 2003.

8. I. Foster and C. Kesselman, The Grid 2: Blueprint for a New Computing Infrastructure:
Morgan Kaufmann Publishers,2003.

9. J. Frey and T. Tannenbaum, "Condor-G: A computation Management Agent for
multi-Institutional Grids," Journalof Cluster Computing, vol. 5, pp. 237, 2002.

10. N. Furmento, W. Lee, A. Mayer, S. Newhouse, and J. Darlington, "ICENI: An Open Grid
Service Architecture Implemented with Jini," in Parallel Computing, vol. 28, 2002, pp.
1753-1772.

11. M. Litzkow, M. Livny, and M. Mutka, "Condor – A Hunter of Idle Workstations," in
proceedings of the 8th International Conference of Distributed Computing Systems,
California, 1988.

12. A. Medina, A. Lakhina, I. Matta, and J. Byers, "BRITE: An Approach to Universal
Topology Generation," in proceedings of the International Workshop on Modeling,
Analysis and Simulation of Computer and Telecommunications Systems (MASCOTS),
2001.

13. W. Smith, A. Waheed, D. Meyers, and J. Yan, "An Evaluation of Alternative Designs for a
Grid Information Service," in proceedings of the 9th IEEE International Symposium on
High Performance Distributed Computing (HPDC-9), 2000.

14. B. Tierney, R. Aydt, D. Gunter, W. Smith, V. Taylor, R. Wolski, and M. Swany, "A Grid
Monitoring Architecture," The Global Grid Forum GWD-GP-16-2.

15. WS MDS, http://www.globus.org/toolkit/docs/4.0/info/.
16. Globous Toolkits, http://www.globus.org/.
17. The Web Services Resource Framework, http://www.globus.org/wsrf/.
18. "DataGrid Information and Monitoring Services Architecture: Design, Requirements and

Evaluation Criteria, Technical Report.," DataGrid.
19. China Education and Research Network, http://www.edu.cn/
20. B. Tierney, B. Crowley, D. Gunter, M. Holding, J. Lee, and M. Thompson. A monitoring

sensor management system for grid environments. In Proc. 9th IEEE Symp. on High
Performance Distributed Computing, pages 97–104, 2000.

21. XML, http://www.w3c.org/xml/

J. Cao, W. Nejdl, and M. Xu (Eds.): APPT 2005, LNCS 3756, pp. 282 – 291, 2005.
© Springer-Verlag Berlin Heidelberg 2005

An Efficient Data Management System with
High Scalability for ChinaGrid Support Platform*

Hai Jin, Wenjun Gong, Song Wu, Muzhou Xiong, Li Qi,
and Chengwei Wang

Cluster and Grid Computing Lab.,
Huazhong University of Science and Technology,

Wuhan, 430074, China
hjin@hust.edu.cn

Abstract. There are a great number of data intensive applications in ChinaGrid.
They require an efficient and high performance data management. The data
management in ChinaGrid Support Platform (CGSP) supplies a data access
mechanism with location transparency, name transparency, and protocol trans-
parency as while as ensuring the transfer efficiency. The data management sys-
tem consists of five parts: the storage data server based on Global Distributed
Storage System to guarantee the reliability and performance of data transfer; the
storage resource agent to discover, publish and catalog the storage resources;
the data logical domain management to enable applications to select specific
storage resources; the metadata management to publish, query and access meta-
data; and the uniform data access entry to organize grid users’ data space. We
present the design philosophy of the efficient data management system with
high scalability for CGSP and also give preliminary performance results.

1 Introduction

Nowadays, a great number of data-intensive applications are emerging. These appli-
cations need many researchers to work together in one or more domains to analyze
and process the shared data. We see collaborations of hundreds of scientists in areas
such as gravitational-wave physics [1], high-energy physics [2], astronomy [3], and
many others coming together and sharing a variety of resources with common goals.
These applications require the efficient management and transfer of terabytes or
petabytes of information in wide-area, distributed computing environments. The users
should be able to move large datasets to local sites or other remote resources for proc-
essing. They may want to put their datasets only on several specified storage re-
sources or share their data to others. The storage resources may be heterogeneous.
They may just want to find a space to store their datasets. Grid technologies [4] en-
able efficient resource sharing in collaborative distributed environments.

ChinaGrid [5, 7] project integrates all kinds of resources in Chinese universities to
make use of heterogeneous grid resources cooperatively. It provides transparent grid

* This paper is supported by ChinaGrid project of Ministry of Education of China, National

Science Foundation of China under grant 60125208 and 90412010, Hubei Science Founda-
tion under grant 2004ABA053.

 An Efficient Data Management System with High Scalability for CGSP 283

services with high performance, high reliability for all kinds of scientific computing
and research. ChinaGrid Support Platform (CGSP) [8] is the core middleware of
ChinaGrid, which also provides development environment for grid application. CGSP
contains five building blocks [9]: Grid Portal, Grid Development Toolkits, Informa-
tion Service, Grid Management, and Grid Security. Grid Management contains four
parts: Service Container, Data Manager, Job Manager, and Domain Manager [5, 9].

Data management is the core service in CGSP, which manages heterogeneous stor-
age resources and data in grid environment. It includes four key functionalities: 1)
reliable and efficient transfer mechanism based on Global Distributed Storage System
(GDSS) [6]; 2) Data Logical Domains based on physical storage resources which
provide great flexibility for user to reorganize the resources; 3) transparent file ac-
cessing mechanism shielding the heterogeneous storage resources and transfer proto-
col; 4) and the storage resource management organizing the heterogeneous resources.
Therefore, we design data management system five parts: 1) data storage server based
on GDSS to guarantee the reliability and performance of data transfer; 2) storage
resource agent to discover, publish and catalog the storage resources; 3) the Data
Logical Domain management to enable applications to select specific storage re-
sources to share their data; 4) the metadata [10] management to publish, query and
access metadata; 5) and the Uniform Data Access Entry to organize grid users’ data
space and provide a series of data access API for users.

This paper is organized as follows. Section 2 presents the functionalities of data
management system in details. Section 3 describes the design philosophy of data
management in CGSP. Then we give two use cases studies in the context of data
management in section 4. Section 5 evaluates the performance of the system. Section
6 gives some related works. And section 7 concludes this paper.

2 Functionalities of Data Management

Data management is one of the core services in grid system. Its main responsibili-
ties are to manage the storage resources and user’s data in the grid and to provide
data service for users. Data management is divided to three levels: data service
access, metadata management, and storage resources. Data management of CGSP
can shield the heterogeneous storage resources and transfer protocols for users. It
provides a uniform data assess entry. The data service provided by metadata man-
agement can shield the physical storage path of data by logical file path and or-
ganize the data space for every user to get a transparent data access. According to
the requirements of the applications in ChinaGrid, data management provides four
functions as follows:

2.1 Reliable and Efficient Data Transfer Mechanism

The data server based on GDSS processes the data transfer. It improves efficiency
by parallel transmission using multiple file slices. For reliability it can restart the
transfer tasks from the break point. The data server includes two kinds of resum-
ing mechanism. One is that it continues the previous data transfer until the link of
network recovered from failure. The other is that it automatic switches to another

284 H. Jin et al.

backup storage to resume data transfer when the original storage server fails to
provide service.

2.2 Data Logical Domain Based on Physical Storage Resources

Physical storage resources consist of collections of resources in different geographical
locations or owners. All the collections register to the data center. This hierarchy
greatly enhances the scalability of storage resources in data management. Meanwhile,
these storage collections should be able to be re-organized under different conditions
such as the network latency, the storage capability. For example, three organizations
want to share their data that only can be accessed by the users from these three or-
ganizations. They want the data to be stored in the specific storage resources owned
only by them three. To achieve this, the concept of Data Logical Domain (DLD) is
introduced. DLD is a logical storage resource sets created based on physical data
collections for a specific application.

In the former example, the storage resource set shared by the three organizations is
called a DLD. A DLD contains storage resources in multiple storage resources even
multiple data management systems (Fig. 1). The data task executed in a DLD can
only be run within the group of storage resources specified in the DLD. In this way, it
guarantees that data will not be stored outside the DLD, and satisfies the requirements
of data store security, efficiency, and so on.

Fig. 1. Data Logical Domains

Users in ChinaGrid can join in one or more DLDs. There is a shared space in a
DLD, which can be accessed by every user that participates in the DLD with definite
privilege control. There is personal data space belonging to each individual user in the
DLD controlled only by the relevant user.

2.3 Transparent File Access Mechanism

The users in ChinaGrid do not care which storage resource their data stored in. The
transparent file access mechanism lets the users to access their data just by using the
logical path in his user space. This mechanism requires the system be able to map and

 An Efficient Data Management System with High Scalability for CGSP 285

transform logical file name to physical file name. Every data file has a unique global
identifier. If more than one user has the privilege to access this file, every user can
name the file as a different logical name in his way. Meanwhile there may be several
replicas for a file, each of which is stored in a different storage resource with a differ-
ent physical path to access the file.

There are three file name spaces: logical file name, unique global identifier, and
physical file name. The data management in CGSP provides a mechanism to map and
transform these three names. A user gives the logical file name when he wants to
access the file in his own space, which will then be transformed to the global identi-
fier by the system. Then the system chooses one of the best replicas according to the
global identifier, and returns the physical file path to user to access the data by the
data transfer API provided by data management system.

2.4 Management of Storage Resources

The management of storage resources receives the registration of storage resources
and monitors the running status of them. According to the status information, the
system will choose a nearest resource to store the data. The management of storage
resources provides a function of error resource detection. The storage resources report
their running status to data center periodically. If the status recorded in the data center
is not updated for a given time, the storage is then considered to be no longer avail-
able until it is recovered.

3 Design Philosophy

To achieve the functionalities above, the design of the data management system con-
sists of five parts: Data Storage Server; Storage Resource Agent (SRA); DLD Man-
agement; Metadata Management; and Uniform Data Access Entry, shown in Fig. 2.

3.1 Data Storage Server

The storage resource here is not a single hard disk or a disk array. It is used as a file
access server as well as a storage status collection sensor. The file access sever is a
GDSS server, which supports parallel transfer, data channel reuse, partial file transfer,
and failure task restarting. After a storage resource has registered to the SRA, the
status collection sensor will report its status to the SRA periodically including avail-
able space, CPU load, available memory, status of network, and so on. The SRA allo-
cates storage resources for data transfer according to the information collected from
storage status collection sensor. The storage resources also have the responsibility to
execute file deleting tasks.

3.2 Storage Resource Agent

All the storage resources wanting to join a CGSP domain must register to the SRA
and report its status periodically. The SRA maintains the available storage list within
its CGSP domain, records the size of available space and the performance of each

286 H. Jin et al.

storage resource. All the information is used to allocate a proper storage resource for a
transfer task by the SRA. The SRA receives registration from the resources and col-
lects their status information for allocating resources of a transfer task, which is im-
plemented to be a Web Services Resource Framework (WSRF) [11] service.

Storage Resource

GDSS Server Storage Status Sensor

Storage Resource Agent

Resource Allocation Resource Mgr

Logical Domain Mgr

User Management

Data Management

Metadata Search

Metadata Mgr

Data Client Metadata Cache
Uniform Data Access Entry

Data Logical Domain Mgr Metadata Management

Fig. 2. Implementation of Data Management in CGSP

3.3 Data Logical Domain Management

Data Logical Domain (DLD) is a logical storage resources set created based on
physical data collections for a specific application. The resource set in a DLD has a
common characteristic such as network latency, storage capacity. DLD management
obtains the physical storage resources information from SRA. The administrator cre-
ates, deletes and modifies the DLD through Data Logical Domain Agent (DLDA).
Each user has a default DLD which can not be modified. The default DLD has no
fixed storage resource but with limited capacity. When the user uploads data to his
default DLD, the system will randomly choose him a proper resource for the task to
satisfy the capacity demand.

Meanwhile, DLD management maintains user lists for each DLD. If a user joins in
a DLD, he can store his data in the storage resources within DLD. He can also share
his data with other users that join in the same DLD. One user can join one or more
DLDs. The administrator can add or delete users for a DLD through DLDA. DLD
management has also been implemented as a WSRF service for the administrator.

3.4 Metadata Management

The metadata refers to the data used to describe the physical data [12] including file
length, file type, access privilege, logical file name, global identifier, and so on. The
physical data is given as a URL which specifies the location of the file. While the
attributes of the metadata, organized as a tree-structured directory, provide a uniform
logical view of heterogeneous storage files. When a user uploads his file, he will
publish his metadata after data transferring. He can list his data by directory name in
his data space as well as move, copy, delete files and create directories. The user can
search his data by the logical file path. The metadata is currently implemented as
Lightweighted Directory Access Protocol (LDAP) directory.

 An Efficient Data Management System with High Scalability for CGSP 287

3.5 Uniform Data Access Entry

To make the heterogeneous storage resources and transfer protocols transparent to
users, a Uniform Data Access Entry (UDAE) is designed to organize the user’s data
space view in different DLDs, helping the user access the logical files in the DLDs.
The user can upload, download, delete, move, and copy data by only giving the
source logical file name and destination logical file name. UDAE also has a cache to
keep the hot metadata recently be read or written. We choose the Least Recently Used
(LRU) as the cache replace algorithm to greatly improve the efficiency of metadata
access. We have implemented the UDAE as a WSRF service. A GUI data client has
been implemented to help users communicate with the UDAE.

4 Use Cases Study

There are two types of users in data management, administrator and common user.
The administrator manages the storage resources, DLDs and users. The common user
accesses and modifies the data in his user space. The followings are two typical use
cases in the data management of CGSP.

Fig. 3. The Working Flow of Administrator Creating a DLD

The working flow of an administrator creates a DLD is (see Fig.3):

1) An administrator requests for creating a DLD through portal;
2) The request is forwarded to DLDA;
3) DLDA queries usable storage resources from SRA;
4) SRA returns information of the storage resources list to DLDA;
5) DLDA registers the information of the new DLD to DLD manager;
6) DLD manager returns the result (true or false) of the operation to DLDA;

288 H. Jin et al.

Fig. 4. The Working Flow of Common User Uploading Data

7) DLDA forwards the operation result to Portal;
8) The administrator gets the operation result from Portal.

The working flow of a common user downloading files is (see Fig.4):

1) The user commits the data request with data logical path through Portal or
data client;

2) Portal or data client forwards the request to UDAE;
3) UDAE gets the metadata and gives it to DLD manager to find DLD;
4) DLD manager forwards DLD name to SRA;
5) SRA gets the physical location information of the requested data and returns

it to DLD manager;
6) DLD manager return the result to UDAE;
7) UDAE forwards the result to Portal or data client;
8) Data client or Portal will connect to the storage resource returned by the re-

sult and download data.

Besides the administrator and common user, there is another special type of user:
storage resource provider. This user provides storage resources for data manager to
satisfy the storage requirement of common users. The working flow of this kind of
users is very simple. They first deploy the data storage server on the storage device.
Then they properly configure the storage resource and register the resource to SRA.
After that the common users can use the storage resources.

5 Performance Evaluation

The testing experiments here tries to address two issues: 1) the performance of data
transfer in DLD and default DLD; and 2) the response time of metadata writing with
and without cache.

 An Efficient Data Management System with High Scalability for CGSP 289

Fig.5 shows the file transfer performance in DLD and default DLD. We register 10
storage resources into the data management system distributed in 3 universities: 5 in
Huazhong University of Science and Technology, 3 in Tsinghua University, and 2 in
Peking University. The default DLD can select any of them to finish data transfer
tasks. The DLD we select is consisted of 5 storage resources with similar network
latency. We get data in DLD and default DLD with the size from 50 to 1000 MB,
respectively. It is easy to draw the conclusion that the performance of data transfer
speed in DLD is averagely 60% higher than that in default DLD. The data transfer
speed in DLD is steadier because all the storage resources have similar network la-
tency. For data in default DLD, data transfer speed may be high, but for the most
circumstances, we just get poor performance. Because the system selects storage
resources for data transfer tasks randomly in default DLD.

Fig. 6 shows the response time of uploading data with and without cache through
UDAE. The cache is set to 4MB. UDAE replaces the metadata in cache by LRU algo-
rithm. We have processed five groups of tests separately on UDAE with and without
cache. Each group has 50 times data uploading with the same file length. We record
the average respond time for each group. From the result, we find that setting a cache
for UDAE can greatly reduce the response time of uploading data and improve the
performance.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 200 400 600 800 1000
Data Size (MB)

T
ra

ns
fe

r
S

pe
ed

 (
M

bp
s)

Default DLD

DLD

Fig. 5. The Performance of Data Transfer in DLD and Default DLD

0

100

200

300

400

500

600

1 2 3 4 5
Group Number

R
es

po
nd

 T
im

e
(m

s)

with cache
no cache

Fig. 6. The Response Time of Uploading Data with and without Cache through UDAE

290 H. Jin et al.

6 Related Works

Storage Resource Broker (SRB) [13] is a middleware infrastructure to provide a uni-
form, UNIX-style file I/O interface for accessing heterogeneous storage resources
distributed over the wide area network. Using its Metadata Catalog (MCAT) [14],
SRB provides collection-based access to data based on high-level attributes rather
than on physical filenames. SRB also supports automatic replication of files on stor-
age systems. SRB uses an integrated architecture to access data via the SRB interface
and MCAT and with SRB control over replication and replica selection. Data man-
agement in CGSP uses a layered architecture to supply different services for grid
users. It can also be re-organized the storage resources for some special demand.

The Globus Toolkit [15] from Globus Alliance [16] provides a number of compo-
nents for data management. GridFTP [17] and the Globus Reliable File Transfer
(RFT) [18] service take care for data movement. The Replica Location Service (RLS)
[19] is a tool to provide the ability keeping track of one or more copies, or replicas, of
files in a grid environment. They do not provide metadata service in the Grid Toolkit
and they have not integrated all the components to a single system to server as a data
management system.

7 Conclusions and Future Work

In this paper we have presented the four key functionalities of data management for
CGSP. The reliable and efficient transfer mechanism and the storage resource man-
agement guarantee the basic transfer demand for data management. The data logical
domains based on physical storage resources give users great flexibility to reorganize
the resources. The transparent file accessing mechanism shields the heterogeneous
storage resources and transfer protocols for user. We also discuss our implementation
and use cases. The performance of data transfer in DLD and with cache in UDAE is
presented. In the future, we plan to implement a replica service to improve the effi-
ciency and reliability of data transfer. We will implement security mechanism to guar-
antee the secure transfer.

References

1. B. C. Barish and R. Weiss, “LIGO and the Detection of Gravitational Waves”, Physics
Today, Vol.52, pp.44, 1999.

2. C.-E. Wulz, “CMS – Concept and Physics Potential”, Proceedings II-SILAFAE, San Juan,
Puerto Rico,1998.

3. NVO, http://www.us-vo.org/.
4. Foster, C. Kesselman, and S. Tuecke, “The Anatomy of the Grid: Enabling Scalable Vir-

tual Organizations”, International Journal of High Performance Computing Applications,
Vol.15, 2001.

5. H. Jin, “ChinaGrid: Making Grid Computing a Reality”, Digital Libraries: International
Collaboration and Cross-Fertilization - Lecture Notes in Computer Science, Vol.3334,
Springer-Verlag, December 2004, pp.13-24.

 An Efficient Data Management System with High Scalability for CGSP 291

6. H. Jin, L. Ran, Z. Wang, C. Huang, Y. Chen, R. Zhou, and Y. Jia, “Architecture Design of
Global Distributed Storage System for Data Grid”, High Technology Letters, Vol.9, No.4,
December 2003, pp.1-4

7. ChinaGrid, http://www.chinagrid.edu.cn.
8. ChinaGrid Support Platform, http://www.chinagrid.edu.cn/CGSP.
9. CGSP Work Group, Design Specification of ChinaGrid Support Platform, Tsinghua Uni-

versity Press, Beijing, China, 2004
10. G. Singh, S. Bharathi, A. Chervenak, E. Deelman, C. Kesselman, M. Mahohar, S. Pail,

and L. Pearlman, “A Metadata Catalog Service for Data Intensive Applications”, Proceed-
ings of Supercomputing (SC’03), November 2003.

11. The Web Services Resource Framework, http://www.globus.org/wsrf/.
12. E. Deelman, G. Singh, M. P. Atkinson, A. Chervenak, N. P. C. Hong, C. Kesselman, S.

Patil, L. Pearlman, and M. Su, “Grid-Based Metadata Services”, Proceedings of 16th In-
ternational Conference on Scientific and Statistical Database Management (SSDBM’04),
p.393, June 2004.

13. C. Baru, R. Moore, A. Rajasekar, and M. Wan, “The SDSC Storage Resource Broker”,
Proc. CASCON'98 Conference, 1998.

14. MCAT, MCAT – A Meta Information Catalog (Version 1.1), http://www.npaci.edu/
DICE/SRB/mcat.html.

15. Globus Tookit, http://www.globus.org/toolkit/.
16. Globus Alliance, http://www.globus.org/alliance/.
17. B. Allcock, J. Bester, J. Bresnahan, A. Chervenak, I. Foster, C. Kesselman, S. Meder, V.

Nefedova, D. Quesnel, and S. Tuecke, “Secure, Efficient Data Transport and Replica
Management for High-Performance Data-Intensive Computing”, Proceedings of IEEE
Mass Storage Conference, 2001.

18. W. E. Allcock, I. Foster, and R. Madduri, “Reliable Data Transport: A Critical Service for
the Grid”, Building Service Based Grids Workshop, Global Grid Forum 11, June 2004.

19. M. Ripeanu and I. Foster, “A Decentralized, Adaptive, Replica Location Service”, Pro-
ceedings of 11th IEEE International Symposium on High Performance Distributed Com-
puting (HPDC-11), Edinburgh, Scotland, July 24-16, 2002.

CGSP: An Extensible and Reconfigurable
Grid Framework�

Yongwei Wu1, Song Wu2, Huashan Yu3, and Chunming Hu4

1 Department of Computer Science and Technology,
Tsinghua University, Beijing, 100084, China

2 Cluster and Grid Computing Lab, School of Computer,
Huazhong University of Science and Technology, Wuhan, 430074, China

3 School of Electronics Engineering and Computer Science,
Peking University, Beijing, 100871, China

4 School of Computer Science, Beihang University, Beijing, 100083, China

Abstract. ChinaGrid Support Platform (CGSP) is proposed to pro-
vide grid toolkit for ChinaGrid application developers and specific grid
constructors, in order to reduce their development cost as greatly as pos-
sible. CGSP extensible and reconfigurable framework, which satisfies the
expansion and autonomy requirement of ChinaGrid, is mainly discussed
in the paper. In the framework, domain is presented to denote one unit
which could provide grid service for end users by itself. Layered struc-
ture of domains and corresponding interactive relationship are paid much
more attention. CGSP design motivation and simple execution manage-
ment mechanism are also described in this paper.

1 Introduction

Grid computing [5,6,7] has emerged as an important new field by its focus on
large-scale computing resource sharing and coordinated use of resources at multi-
ple sites. It provides approaches to integrate widespread heterogeneous resources
into one multi-institutional virtual organization and uniform application inter-
face. It is important to recognize that the resources in this context include com-
putational systems and data storage and specialized experimental facilities.

Based on existing network infrastructure, many grid computing projects have
been launched, such as UK e-Science Program [12], Information Power Grid
(IPG) [13], TeraGrid [14], China National Grid (CNGrid) [15]. As on national
wide grid, China Education and Research Grid (ChinaGrid) [1,2] aims at con-
structing a public service system for Chinese education and research. Without
exception, all of these grid projects paid much more attention on the middleware-
the software that enables grid computing/services.

� This Work is supported by ChinaGrid project of Ministry of Education of
China, Natural Science Foundation of China under Grant 60373004, 60373005,
90412006, 90412011, and National Key Basic Research Project of China under Grant
2004CB318000.

J. Cao, W. Nejdl, and M. Xu (Eds.): APPT 2005, LNCS 3756, pp. 292–300, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

CGSP: An Extensible and Reconfigurable Grid Framework 293

Grid middleware is the kernel of constructing grid effectively. Great efforts
have been made to develop scalable, secure, and highly available grid platforms,
which transparently shield the heterogeneities and dynamic behaviors of partic-
ipants, on top of local operating systems. As one grid middleware, ChinaGrid
Support Platform (CGSP) [3,4]aims to provide grid toolkits for ChinaGrid ap-
plication development and specific grid construction, in order to make them
completed more easily and quickly.

Based on Open Grid Service Architecture (OGSA) [9], CGSP is developed
according to the Web Service Resource Framework (WSRF) [10] specification for
the construction of ChinaGrid from April, 2004. In Jan. 2005, CGSP version 1.0
(CGSP1.0) was released. CGSP1.0 is developed by 5 top universities including
Tsinghua University, Huazhong University of Science and Technology, Peking
University, Beihang University, and Shanghai Jiao Tong University. It aims to
integrate all sorts of heterogeneous resources, especially education and research
resources, distributed over China Education and Research Network (CERNET),
to provide transparent, high performance, reliable, secure and convenient grid
services for scientific researchers and college students.

In this paper, we begin with the design principles of CGSP. Then, CGSP
function modules are described simply. In the fourth and fifth parts, CGSP
extensible and reconfigurable framework, and execution management across do-
mains are put forward respectively in detail. These provide a whole vision for
CGSP framework. Future work and conclusion are discussed at last.

2 Design Principles

CGSP is a grid middleware developed for the construction and evolution of Chi-
naGrid. The design goal is to reduce the cost of grid construction and application
development greatly. In addition to supplying the grid runtime environment of
ChinaGrid, CGSP offers a whole set of tools for building portal, deploying grid
services and developing various grid applications.

Based on CGSP, ChinaGrid can be constructed into one tree/layered
structure. Each node of the tree is a domain. Each domain has the same logic
structure and consists of same function modules. They interact through CGSP
information center.

In moving forword, CGSP has been guided by a set of key design principles
as follows.

– Support localized requirement of ChinaGrid. In fact, it still needs a long way
to implement intensive message passing computation over Internet. It makes
more proportional local users to use local resources in the grid in order to
avoid the reduced performance caused by limitation of network bandwidth
and latency over the Internet, and improves the service efficiency of the grid
as well.

– Meet the autonomy requirement of ChinaGrid. Each grid application, such
as bioinformatics grid [20], image processing grid [22], or computing fluent
dynamics grid [21], has its own user and resource management mechanism.

294 Y. Wu et al.

CGSP makes it easier to construct various independent ChinaGrid applica-
tions with their own management protocols and mechanisms. Each applica-
tion grid of ChinaGrid could be a solely domain which could provide specific
service for its users by itself. At the same time, they could interact with each
other through CGSP high level interactive regulation.

– Scalability of CGSP satisfies the demand of expansion of ChinaGrid. The
tree or layered structure of CGSP ensures that ChinaGrid can link more
and more universities. Actually our goal is to link up to 100 universities in
China in the near future.

– Flexibility of CGSP makes it easier to rebuild the ChinaGrid. Layered struc-
ture of CGSP could be easily reconfigurable and rooted by any domain
through converting its original parent domain to its child domain.

– Reconfiguration of the tree structure guarantees the integrity and uniformity
of a grid system through constructing a global monitoring engine started
from any node of the ChinaGrid tree.

– Different from normal grid middleware efforts (GT series [11,8], OMII [16],
TinghuaGrid [17] et. al.), CGSP is a platform. Not only does it include the
grid running components, such as portal, service container, service monitor-
ing and discovery, file delivery and transformation, but it also provides the
grid developing tools, such as programming API, portal constructing tool,
service deploying and packaging tools and so on.

3 CGSP Function Modules

CGSP is a collection of cooperative software components. It contains several soft-
ware modules which can run independently to support each step of development
process, execution process, system installation process, and system management.
In addition to supplying the components for building grid platform to reduce
development cost of ChinaGrid applications, CGSP also offers a whole set of
tools for developing and deploying various grid applications.

CGSP logically consists of 6 components showed in Fig. 1.

Portal

Information Center

Uniform Management

Computing Nodes

Security M
odule

Grid Developing
Environment

Fig. 1. Logic Diagram of CGSP

CGSP: An Extensible and Reconfigurable Grid Framework 295

– Portal: Portal is a web based user interface for defining, submitting,
monitoring jobs, and managing personal data, viewing resource information
as well.

– Grid Developing Environment/Toolkit (GDE): GDE provides a set of
toolkits for grid application’s construction and development. They are portal
developing tool, service packaging tool, grid-enabled parallel programming
tool [19], job definition tool etc.

– Information Center (IC): Information Center, or Service Manager, man-
ages the relatively static information of resources and services in the grid. It
provides real-time grid information service for other CGSP function modules
under a global uniform information framework. Dynamic information, such
as status of grid job, is obtained from uniform management module.

– Uniform Management(UM): UM aims to make heterogeneous resources,
computing tools over grid, grid users, grid jobs and job operations managed
in a uniform view. It consists of following four items.
• Service Container (SC) is deployed to act as a runtime environment

for the installing, deploying, running and monitoring of grid service in
the specific node. It also provides support for real-time grid resource
monitoring.

• Data Management (DM) mainly provides data delivery and trans-
formation for CGSP. It also implements one global file view and makes
all sorts of grid data accessible transparently by grid end-users.

• Job Management (JM) is responsible for the scheduling and moni-
toring of grid jobs. JM plays a key role in the execution management
of grid job. It deploys and submits jobs to the service container of real
computing node and starts up them through general running service of
CGSP.

• Domain Management ensures the autonomy of each domain of China-
Grid with focus on user management, log and accounting, and interactive
call with other domains for the user identity mapping.

• Grid Monitoring It gathers status data from all the CGSP compo-
nents and reports the results in structured and standardized documents
through WSRF service to correlative modules or users. At the same time,
it could notify the ChinaGrid system modules, administrators or users
in time when the status is changed.

– Grid Security (GS): GS is in charge of user identity authentication, iden-
tity mapping between different domains, service and resource authorization,
and secure message passing.

– Computing Nodes (CNs): CN provides real computing power for grid
services. It could be a cluster, or PC server or workstation.

4 CGSP Framework Architecture

CGSP consists of a set of well-assorted software packages. Base on it, ChinaGrid
can be constructed into a layered tree showed in Fig. 2 (left). Each node of the

296 Y. Wu et al.

Root Domain
(Domain 1)

Domain 1
(Root Domain)

Sub Domain
(Domain 2)

Domain 2
(Sub Domain 1)

Domain 3
(Sub Domain 2)

Root Domain

Domain 1 Domain 2

Sub Domain 1 Sub Domain 2

Fig. 2. Tree Structure of ChinaGrid Based on CGSP

tree is a domain. Each domain, maybe root domain, domain or sub-domain, has
its own Portal, GDE, IC, UM, GS and CNs. It could provide independent grid
service for end users by itself. Each domain can be a specific application grid
(bioinformatics grid, image processing grid). It can also be a region grid (Shang-
hai Grid, Tsinghua Grid). All domains could share one certificate authorization
(CA) center, and can also have their own CAs.

In Fig. 2, Root Domain, Domain and Sub-Domain are only used to note their
parent-child relationship. The tree Fig. 2 (left) can be reconfigurable easily into
another tree as Fig. 2 (right). Each domain could become the root domain of
the CGSP if its original parent domain is converted to its child domain same as
showed in Fig. 2. Root Domain in the left becomes the Domain 1 in the right.
It is clear that the cost of such a reconfiguration is very low with a little effort.

Each domain has the same internal logic architecture and consists of 6 same
function modules showed in Fig. 1. At the same time, the module interactive
relationships in one domain can also be gotten from Fig. 1. Same as Portal, GDE
must get the support from UM and IC, but no direct interaction with CNs. As
the grid middleware kernel, UM and IC are called each other and interactive
with the real CNs. GS always is closed to all components of CGSP.

QueryQuery

Domain

Information Center

Sub Domain

Information Center

Sub Domain

Information Center

Fig. 3. Relationship between ICs in different domains

CGSP: An Extensible and Reconfigurable Grid Framework 297

Query &

Submit

Domain 3

Uniform Management

Domain 1

Uniform Management

Domain 2

Uniform Management

Fig. 4. Relationship between UMs in different domains

Different domains could access each other. But the interactive calls only
happen between UMs and ICs of different domains. Fig. 3 shows the IC module
relationship of CGSP. In order to see clearly and easily portrayed, Portal, GPE,
Gs, and CNs are ignored in the figure. First, we can find that IC in domain
has a bidirectional call relationship with the IC in sub domain. But, there is
no direct relationship between ICs of different sub domains. That is to say, one
IC only has a bidirectional relationship with its parent ICs or its child ICs and
has no any relationship with its brother, grandson or grandfather ICs. From
each IC, all resource and service information of the whole grid can be gotten
through querying the whole tree. In fact, the tree structure of CGSP is held and
determined totally by the IC module.

Different from the relationship between ICs, we can find that each UM could
call UMs of any other domains directly from the Fig. 4. But which UM will be
called by the UM? This is determined by the IC. That is to say, one UM wants to
get the support from another UM in other domains, but it does not know which
domain could supply such support. So, it must ask help from its own IC. Its IC
will search one domain which could provide this requirement through querying
its parent IC or child IC. We know that the ICs in a grid are constructed into
a tree structure. So, if there is one domain that could provide such support, it
can be found through querying the tree at least. But any UM could only call its
own IC (in the same domain) and has no interactive relationship with other ICs
(in other domains). Fig. 4 shows such relationship.

5 Execution Management Across Domains

Let’s see the execution management of job which needs to be submitted from
one domain to another one. That is to say that such job can not be completed
by its own domain. It will be submitted to another domain to execute.

Fig. 5 shows such a job execution flow step by step. Before submitting job
to the job manager, user must upload the input data required by the job to
the personal data space in the data manager. Then, job manager will query
the available computing nodes from the IC when it gets a computing job from

298 Y. Wu et al.

5. Get Info

4. Query Info

7. Submit Job

10. Status

Domain 1

2. Submit Job

12. Get
 Result

Domain 2

9. Status

8. Submit

6. Get Info

Job

Manager

Computing

Node

Information

Center
Data

Manager

Information

Center

Service Container

Computing Node

Job

Manager

CMD

Legacy
Program

Remote
Program

1. Input Data
3. Query Info

11. Put Result

Portal

Fig. 5. Job Execution Flow across Domains

Portal. If its own domain can not complete the job, the IC will query other ICs
of the grid. And then the job manager will submit the job to the job manager
of another domain, which could complete the job. At last, the job will be sent
to the service container of one real computing node and begins to execute it.

After the job is started up, the service container will report job status to
the original job manager through local job manager in time. When the job is
completed, the service container will put the computing results to the personal
data area of the data manager of the original domain, which in turn sends the
results to user through Portal at last.

There is a problem about user identity mapping during accessing and execut-
ing across domains in CGSP. Each domain has its own user management, so user
identity should be converted when one job manager submits jobs or report job
status to another job manager (such step 7 and 10 in the Fig. 5). The domain
manager is in charge of the user identity mapping between different domains in
CGSP. But for the interaction of ICs between different domains, it is another
story. ICs complete the interaction through system user, who can only access its
parent of child domain ICs

6 Conclusion and Future Work

Deferent from the other grid middleware efforts, CGSP supplies a grid platform
to satisfy all kinds of requirements of grid constructors and grid application
developers. The cost of grid application is reduced greatly based on the CGSP.
Besides runtime environment, it also provides developing tools, such as portal
constructing tool, programming environment, service packaging tools and so on.

Furthermore, CGSP extensible and reconfigurable framework makes nation-
wide grid reality. Especially in China, there are many universities and research
institutes. How to guarantee their respective autonomy is the key design prin-
ciples. At the same time, the integrity of grid is also involved into the CGSP
extensible framework.

CGSP: An Extensible and Reconfigurable Grid Framework 299

At present, four ChinaGrid applications, Bioinformatics Grid, Image Grid,
Computational Fluid Dynamics Grid and Mass Information Grid have completed
the initial building over the CGSP and almost 30 most famous universities in
China, as the members of ChinaGrid program, are building their campus grid
on the basis of CGSP.

In the future, WS core 4.0 from Globus Toolkit will be replanted into CGSP.
Job Submission Description language (JSDL) will be used to replace current
Grid Job Description Language (GJDL). At the same time, open source Ac-
tiveBPEL [24] Engine will be used to implement the workflow component of job
manager in CGSP. OGSA-DAI [23] based integration of heterogeneous database
is one of the most important new functions which will be implemented in CGSP
version 2. Media service, grid monitoring, accounting and management will be
also strengthened in the near future.

Acknowledgement

We wish to express our sincere appreciation to the Prof. Hai Jin, Prof. Weimin
Zheng, Prof. Xiaomin Li, Dr. Xiaowu Chen and other ChinaGrid experts for
extending their generous support for the successful conduct of the CGSP. Special
thanks to CGSP working group members for the CGSP success.

References

1. ChinaGrid, http://www.chinagrid.edu.cn.
2. H. Jin, ChinaGrid: Making Grid Computing a Reality, Proceedings of ICADL 2004,

Lecture Notes of Computer Science, (2004), 3334, 13-24
3. ChinaGrid Support Platform, http://www.chinagrid.edu.cn/CGSP.
4. CGSP Work Group, Design Specification of ChinaGrid Support Platform, Tsinghua

University Press, Beijing, China, 2004
5. I. Foster, C. Kesselman, S. Tuecke, The Anatomy of the Grid: Enabling Scalable

Virtual Organization, International J. Supercomputer Applications, 15(3), (2001)
6. I. Foster, C. Kesselman, The Physiology of the Grid: An Open Grid Services Ar-

chitecture for Distributed Systems Integration, J. Nick, S. Tuecke, (2002)
7. Baraglia, R., Laforenza, D., Lagana, A., A Web-based Metacomputing Problem-

Solving Environment for Complex Applications, Proceedings of Grid Computing
2000, (2000), 111-122

8. I. Foster, C. Kesselman, Globus: A Metacomputing Infrastructure Toolkit, Interna-
tional J. Supercomputer Application, (1997), 11(2), 115-128

9. Open Grid Services Architecture (OGSA), https://forge.gridforum.org/projects/
ogsa-wg, or http://www.globus.org/ogsa/

10. Web Service Resource Framework (WSRF), http://www.globus.org/wsrf/ and
http://www.ggf.org/documents/GFD.30.pdf

11. Globous Toolkits, http://www.globus.org.
12. UK e-Science Program, http://www.rcuk.ac.uk/escience/;
13. NASA Information Power Grid, http://www.ipg.nasa.gov/;
14. TeraGrid, http://www.teragrid.org/;
15. China National Grid, http://www.cngrid.cn;

300 Y. Wu et al.

16. Open Middleware Infraxtructure Institute, http://www.omii.ac.uk/
17. Dazheng Huang, Fei Xie, Guangwen Yang, T.G.: a Market-oriented Computing

System with Fine-grained Parallelism, 9th Workshop on Job Scheduling Strategies
for Parallel Processing Seattle, Washington, (2002)

18. Tuecke, S., Czajkowski, K., Foster, I. , et.al.: Open Grid Services Infrastructure
(OGSI) Version 1.0, Global Grid Forum Draft Recommendation. (2003).

19. Yongwei Wu, Guangwen Yang, Qing Wang, Weiming Zheng, Coarse-grained Dis-
tributed Parallel Programming Interface for Grid Computing, Lecture Notes in
Computer Science, (2004), 3032, 255-258; Expanded Version is accepted by In-
ternational Journal of Grid and Utility Computing;

20. ChinaGrid Bioinformatics Grid, http://166.111.68.168/bioinfo/tools/index.jsp
21. ChinaGrid Computational Fluid Dynamics (CFD) Grid, http://grid.sjtu.edu.

cn:7080/grid/
22. ChinaGrid Image Processing Grid, http://grid.hust.edu.cn/ImageGrid/
23. http://www.ogsadai.org.uk/
24. The Open Source BPEL Enging, http://www.activebpel.org/

J. Cao, W. Nejdl, and M. Xu (Eds.): APPT 2005, LNCS 3756, pp. 301 – 312, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Early Experience of Remote and Hot Service Deployment
with Trustworthiness in CROWN Grid*

Hailong Sun1, Yanmin Zhu2, Chunming Hu1, Jinpeng Huai1,
Yunhao Liu2, and Jianxin Li1

1 School of Computer Science, Beihang University, Beijing, China
{sunhl, hucm, huaijp, lijx}@act.buaa.edu.cn130

2 Department of Computer Science,
Hong Kong University of Science & Technology, Hong Kong

{zhuym, liu}@cs.ust.hk

Abstract. CROWN Grid aims to empower in-depth integration of resources and
cooperation of researchers nationwide and worldwide. In such a distributed en-
vironment, to facilitate adoption of services, remote and hot service deployment
is highly desirable. Furthermore, when the deployer and the target container are
from different domains, great security challenges arise when a service is de-
ployed to the remote container. In this paper, we present ROST, an original
scheme of Remote & hOt Service deployment with Trustworthiness. By
dynamically updating runtime environment configurations, ROST avoids
restarting the runtime system during deployment. Moreover, we adopt trust ne-
gotiation in ROST to assure the security of service deployment. We conduct
experiments in a real grid environment, and evaluate ROST comprehensively.

Keywords: Service grid, CROWN, Remote and hot deployment, ROST, Trust
Negotiation Agent (TNA).

1 Introduction

Grid computing promises to enable coordinated resource sharing and problem solving
in dynamic, multi-institutional virtual organizations [1]. In recent years, service-
oriented grid architecture is introduced, which is widely considered as the future of
grid computing [2]. Built on web services, OGSA [3] is the de facto standard for
building service grids, in which various resources are encapsulated as services with
uniform user interfaces.

The main goal of our key project, CROWN (China R&D Environment Over
Wide-area Network) Grid, is to empower in-depth integration of resources and coop-
eration of researchers nationwide and worldwide. CROWN project was started in late
2003. A number of universities and institutes, such as Tsinghua University, Peking

* This work is partially supported by the National Natural Science Foundation of China under

Grant 91412011, China Ministry of Education under grant CG2003-CG004 & GP004 &
GA004 and Microsoft Research Aisa.

302 H. Sun et al.

University, Chinese Academy of Sciences, and Beihang University, have joined
CROWN, with each contributing several computing nodes. More universities and
institutes will be invited to join CROWN Grid by mid 2005.

In the past years, many key issues in grid computing have been extensively stud-
ied. However, remote and hot service deployment has not been fully addressed. Be-
fore a service is ready for invocation, it must be deployed in a service container which
provides a runtime environment. A grid is a highly distributed environment, in which
numerous domains could be involved. The domains are usually geographically dis-
persed. It is highly desirable for a user to deploy its services into remote service con-
tainers for multiple purposes. For example, in CROWN Grid for bioinformatics appli-
cation, there are many computing intensive applications such as BLAST. A comput-
ing node could easily be over-loaded when multiple jobs arrive in a short period. The
heavy load can be balanced if the node is able to deploy one or more BLAST service
replica to remote nodes and then redirect some jobs. Similar requirements also exist in
many other grid applications.

Traditionally, remote service deployment is supported in a cold fashion, which
means, to deploy a new service, the runtime environment need to be restarted. This
results in many disadvantages because previously running services must be stopped,
and they may have to resume or even restart their jobs, causing significant overhead.
Therefore, hot service deployment has become increasingly important, which does not
need to restart the runtime environment while deploying services. With the availabil-
ity of remote and hot service deployment, many applications will benefit, such as load
balancing, job migration and so on.

Service deployment is actually not a new issue. Similar demands also exist in mo-
bile agents [4] and active networks [5]. To the best of our knowledge, however, there
is no successful solution to enabling remote and hot service deployment in grid sys-
tems. The most updated Globus Toolkit version 4 [6], the de facto standard for grid
middleware, does not provide the function of remote and hot service deployment yet.
This may be due to the great security challenges arising when a user deploys a service
to a remote container. Here we call a node deployer, which intends to deploy a ser-
vice, and the remote service runtime environment target container, which is responsi-
ble for running and managing services being deployed. Without proper security
mechanisms, a service provided by a deployer may be malicious, and the target con-
tainer may be rogue or fragile. Also, the security policies of the deployer and the
container could be incompatible. In an open grid environment, we can not expect any
deployer and the corresponding target container to set up required trust relationship in
advance. Moreover, it is too costly to build the trust across domains based on the
traditional PKI infrastructure every time during remote deployment.

In this paper, we present our original work, ROST (Remote and hOt Service de-
ployment with Trustworthiness), which achieves its goal by dynamically updating the
runtime environment configurations. ROST avoids restarting runtime systems during
remote deployment. Moreover, we include trust negotiation in ROST scheme, which
greatly increases flexibility and security of CROWN. Major contributions of this
work are as follows:

 Early Experience of ROST with Trustworthiness in CROWN Grid 303

• We identify the necessity of remote and hot service deployment in service grids,
and their challenges.

• We propose an effective approach, ROST, to enable remote and hot service de-
ployment. Also, we add trust negotiation into the scheme to meet general security
requirements for grid environments.

• We implement ROST in CROWN Grid and evaluate the performance of ROST by
comprehensive experiments.

The rest of this paper is organized as follows. We discuss related work in Section
2. In Section 3, we introduce the design and implementation experiences. We present
experimental methodology and performance evaluation of ROST in section 4. And in
section 5, we conclude this work.

2 Related Work

Globus Toolkit is the most famous grid middleware and it has begun to support ser-
vice-oriented grid computing based on OGSA since version 3. But even in the up-
dated release version 4, remote and hot service deployment is not supported. Grid
service is actually built on Web service, and extended to include functions such as
state and life cycle management. For Web services, several middleware, such as
Apache Axis [7], JBOSS [8] and Microsoft .NET [9], have partly implemented dy-
namic service deployment, i.e., deploying a local service without restarting service
containers. However, Web service is much simpler than grid service, e.g. web ser-
vices are normally stateless, so web service middleware can not apply to grid envi-
ronments. Also, most of them only consider local deployment.

Friese et al. [10] proposed a method for hot service deployment in an ad hoc grid
environment based on OGSI which is now replaced by WSRF. To ensure security,
they make use of sandbox which can restrict the service function. DistAnt [11] ex-
tends the Apache Ant build file environment to provide a flexible procedural deploy-
ment description, and provides a solution to remote and hot service deployment based
on Globus Toolkit 3. It does not provide any security mechanism for remote deploy-
ment. Baude et al. [12] proposed a solution for deployment and monitoring of applica-
tions written using ProActive, which is a Java-based library for concurrent, distributed
and mobile computing. It does not consider grid service deployment issues.

3 ROST Design and Implementation

CROWN consists of numerous organizations with each of them forming a domain, as
illustrated in Figure 1. Domains are usually connected by the Internet. CROWN, as a
service-oriented grid, encapsulates various resources as services. In CROWN, a com-
puter must be installed a Node Server (NS), a CROWN middleware. An NS contains
a service container which provides runtime environment for various services. Each
NS usually belongs to a security domain. Every domain has at least one RLDS (Re-
source Locating and Description Service) to provide information service. RLDS
maintains dynamic information of available services.

304 H. Sun et al.

Domain

Domain

Domain

Internet
RLDS

RLDS

RLDS

NS

NS NS

NS

NS

NS

NS
NS

NS

NS

NS

NS

Fig. 1. Resource organization in CROWN

Remote service deployment is needed when a deployer needs to deploy a service
on an NS in a different domain. In this paper, we refer to deploying a service to an NS
and deploying a service to a container interchangeably, which means the same. A
service is basically an entity that consists of an executable program, a description file,
and several configuration files. Before a deployer’s services can be ready for invoca-
tion in the remote NS, two key issues must be addressed. The first is security, namely,
how to guarantee the service provided by the deployer is not malicious and the envi-
ronment provided by the remote container is safe to the service. The second is how to
enable the service to be available without restarting the remote container.

In CROWN, services follow the WSRF specifications [13]. A complete service
consists of several files, as shown in the following.

• Executable programs. Such as Java classes, scripts, EJBs, etc.
• One or multiple WSDL files. Description of interfaces and access protocols of a

service.
• A WSDD file. Web Service Description Descriptor, description of service configu-

ration for the service container.
• BPEL files. Description of composed services which are described in BPEL4WS

(Business Process Execution Language for Web Services).
• A JNDI configuration file. Description of WSRF resources of a service.
• A security configuration file. Description of authorization approach and other secu-

rity related information.

To facilitate the transportation and protection of services, we compress a service
into one single file. By far, we have adopted Globus Toolkit’s GAR file format. In
addition, we have extended GAR so that it is able to contain multiple types of execu-
table programs and description files.

3.1 ROST Architecture

As shown in Figure 2, ROST is composed of several components while our discus-
sions will focus on the two major ones, i.e., TNA and RHD.

TNA is responsible for trust establishment between a pair of deployer and
container, and RHD is for remote and hot service deployment. The SCC (Service

 Early Experience of ROST with Trustworthiness in CROWN Grid 305

Container Configuration) is the abstract of various configurations of service contain-
ers. Indeed, each deployment operation results in an update to SCC.

The procedure of service deployment can be divided into two phases: trust nego-
tiation by TNA and deployment by RHD. To be more specific, the workflow of
ROST is depicted as follows:

Step 1: the deployer sends a deployment request to a remote NS;
Step 2: the remote NS checks locally whether it can afford the new service; if yes,

goes to Step 3;
Step 3: the remote NS checks whether the deployer has been trusted according to

the local domain controller or the history information. If yes, sends a trusted notifica-
tion; otherwise, initiates trust negotiation;

Sep 4: the deployer checks whether the remote NS has been trusted. If yes, sends a
trusted notification, and goes to Step 5; otherwise, initiates trust negotiation;

Step 5: if the negotiation successfully sets up the desired trust, the deployer initi-
ates service deployment by transferring the service to the remote NS;

Step 6: the remote NS performs hot deployment of the service.
Step 7: the remote NS acknowledge the success of the deployment.

Fig. 2. ROST components

3.2 TNA: Trust Negotiation Agent

3.2.1 ATN Technology
Several security infrastructures have been proposed for grid computing. For instance,
in Grid Security Infrastructure (GSI) [14], every user or computer is uniquely identi-
fied by a X.509 certificate, which is issued by a Certificate Authority (CA). This fash-
ion provides very limited capability of security control and it is rarely possible to
deploy such a global hierarchy of CAs in an open environment like CROWN.

306 H. Sun et al.

ATN (Automated Trust Negotiation) [15-19] is a new approach to access control in
an open environment, which, in particular, successfully protects sensitive information
while negotiating a trust relationship. With ATN, any individual can be fully autono-
mous. Two individuals try to set up a trust relationship by exchanging credentials
according to respective policies.

Based on the above observations, we solve the trustworthiness problem in ROST
by adding a Trust Negotiation Agent (TNA) , which is generally based on ATN tech-
nologies.

3.2.2 Trust Negotiation in ROST
As illustrated by Figure 3, TNA has mainly four components as follows.

• TrustTicket Manager: The Access Mediator is responsible for issuing new Trust-
Tickets for requesters and validating TrustTickets based on local Ticket Reposi-
tory.

• Strategy Engine: The negotiation strategy [20] is used to determine when and how
to disclose local credentials and policies. Also, it makes decisions to update the ne-
gotiation states, including success, failure or continuance.

• Compliance Checker: This component determines which local credentials satisfy
the requester’s policies or whether the requester’s credentials satisfy local policies.

• Credential Chain Discovery: For trust negotiation in open networks, access con-
trol decision often involves finding a credential chain that delegate authority from
the source to the requester, when the credentials are not stored locally. The main
function of this component is to discover and collect necessary credentials.

In ROST, TNA is deployed on both sides of deployers and target containers. If a
requestor has a valid TrustTicket, then the access mediator will call TrustTicket Man-
ager to make access decision. Otherwise, trust negotiation will be triggered. When the
requestor discloses its policies, the Strategy Engine decides whether the negotiation
should continue. If so, the Access Mediator will call Compliance Checker to make
corresponding verification to ensure which credentials should be provided, then re-
sponds with the necessary credentials and policies. In some cases, if the credentials
are not available in local Credential/Policy Repository, Credential Chain Discovery is
called to dynamically retrieve necessary credentials. Similarly, when the requester
submits its credentials, the Access Mediator will call Compliance Checker to make
corresponding verification to ensure whether the credentials satisfy local policies and
make access decisions.

In TNA, we adopt refined RTML (Role-based Trust Management Language
Markup Language) to represent both access control policy and attribute-based creden-
tials. When credential storage is distributed, the goal-directed algorithm [16] ensures
that all credentials available can be discovered and collected. In ROST design, the
TrustTicket takes the form of <subject, issuer, subject, valid date, expiration data,
signature>. It is an identity assertion represented with XML with short lifetime as-
signed by the issuer.

In addition, negotiation information exchange between participants must rely on a
secure communication protocol such as SSL/TLS to prevent eavesdropping, man-in-
the-middle attacks, replay attacks, etc. Our ROST implementation conforms to WS-
Security and WS-Conversation specifications for SOAP message protection.

 Early Experience of ROST with Trustworthiness in CROWN Grid 307

Fig. 3. TNA structure

3.3 RHD

After a negotiation successfully sets up desired trust, the container receives the ser-
vice from the deployer and begins to deploy it.

RHD enables remote hot deployment as well as providing a convenient way for lo-
cal hot deployment. RemoteDeployment and AutoDeployment, as shown in Figure 2,
are respectively responsible for remote and local service deployment.

3.3.1 RHD APIs
We design APIs for both remote and local deployment, through which users are able
to develop high level middleware and applications. There are basically three types of
deployment operations: deploy, update, and undeploy. We define nine APIs to sup-
port these deployment operations as follows.

(1) deploy (String garFilePath)
(2) deployByFTP (URL garFileURL, String user,

String password)
(3) deployBySOAPAttach(String garFilePath)
(4) update (String garFilePath)
(5) updateByFTP (URL garFileURL, String user,

String password)
(6) updateBySOAPAttach(String garFilePath)
(7) undeploy(String garFileName)
(8) undeploy(String serviceName)
(9) getAllDeployedServices()

308 H. Sun et al.

Note that (1)-(3) are three interfaces for deploying a service, while (1) is for de-
ploying a service locally; and (2)(3) provide two different interfaces for remote de-
ployment. The (4)-(6) defines three interfaces for updating deprecated services. The
(7) and (8) defines two interfaces for removing services from service containers. We
define (9) for querying all services deployed in a service container.

3.3.2 Remote Deployment
After mutual trust is successfully established, ServiceReceiver is called to receive the
GAR file and uncompress it by GARUnzipper. Then the underlying deployment func-
tions are called to perform corresponding operations.

A service container must include various configurations of the deployed services.
Indeed, the key to hot deployment is to update the configuration of SCC dynamically.
Relevant configurations include executable programs, WSDL description, WSDD,
and JNDI configuration. For example, when a new service implemented with JAVA
needs to be deployed, we have to let SCC load JAVA classes of the service.

For updating or un-deploying an existing service, it should be careful since other
services or users might be using it. Simply updating or undeploying a service without
adding special measures may lead to unexpected service interruption to users. To
solve this problem, we add a reference counter for each deployed service. The initial
value of a counter is zero, and the value increases/decreases by one each time when
the service is invoked/completed. When an update or undeployment request comes,
we first check the counter of the service. A service is ready to be updated or unde-
ployed only if the reference counter is equal to zero.

3.3.3 Auto Deployment
Besides remote and hot deployment, RHD component also provide a convenient
method to hot-deploy services to local containers.

A file folder is specified to receive GAR files and an EventListener keeps listening
to the events associated to the folder. The EventListener is interested in two types of
events: arrival of new files and deletion of existing files.

Suppose an event e caught by EventListener is passed to the EventAnalyer for
analysis and further process. Based on contents of an event, the EventAnalyzer will
call underlying different deployment functions. In the following, we provide the
pseudo code of this process.

if (e is arrival of a new file){
if (file type is GAR){

 if (the file already exists){
 while(reference number > 0){
 sleep(2000 milliseconds);

}
 update the corresponding service;

 }else{
 deploy the corresponding service;
 }
}else{

 remove the file;
}

}else if (e is file deletion){

 Early Experience of ROST with Trustworthiness in CROWN Grid 309

 while(reference number > 0){
 sleep(2000 milliseconds);

}
undeploy the corresponding service;
}

As a result, users may deploy/update/undeploy a local service by simply stor-
ing/replacing/removing its GAR file to/in/from a folder. They need not to care about under-
lying processes, and services are deployed/undeployed automatically and transparently.

4 Performance Evaluation

ROST is implemented as a core component of CROWN middleware. We evaluate the
performance of ROST by comprehensive experiments in real grid environments.

4.1 Experimental Environment

The experiments are conducted across two domains connected by the Internet. The
deployer resides in Tsinghua University, while the target NS’s (i.e., target containers)
are located in Beihang University. The deployer has a Pentium III 1.6Ghz CPU and
512M memory, with a 10M bps connection to the Internet. Remote NS’s reside in a
32-node cluster with each has two Intel Xeon 2.8GHz CPUs and 2G memory. The
cluster is connected to the Internet through a 100M bps connection. No other tasks are
running on each node except the necessary CROWN middleware.

4.2 Performance Metrics

We use the following metrics to evaluate ROST.

• Deployment response time. It is important that a remote service deployment intro-
duces shorter response time. When multiple concurrent deployment requests are
sent to a single NS, the deployment response time increases.

• Task execution time. A task here means a collection of independent jobs, while a
job means an invocation of a specific service. Given a task, we concern its total
execution time.

4.3 Experimental Results and Analysis

We execute the experiment 100 times and report the average.
In the first experiment, we evaluate the performance of ROST in terms of deploy-

ment response time. The deployer in Tsinghua University issues concurrent deployment
requests to a node server in Beihang University. We vary the ways of service GAR file
transfer, FTP and SOAP attachment. Each GAR file has a size of about 6K bytes.

Figure 4 shows the average deployment response time as a function of the number
of concurrent requests. When there is only one request each time, the response time of
ROST is as short as seven seconds. In contrast, the cold deployment needs as long as
30 seconds to merely stop and restart the service container so as to load a new service.
With increasing number of concurrent requests, the average response time increases

310 H. Sun et al.

roughly linearly. When the number of concurrent requests reaches 30, the average
response time is about 52 seconds. We also observe that SOAP transfer has similar
performance with FTP mechanism.

0 5 10 15 20 25 30
5

10

15

20

25

30

35

40

45

50

55

Number of Concurrent Requests

A
ve

ra
ge

 D
ep

lo
ym

en
t

R
es

po
ns

e
T

im
e

(s
) ROST with FTP

ROST with SOAP Attachment

Fig. 4. Average deployment response time v.s. Number of concurrent requests

We then study how well ROST can help to achieve load balancing. In the second
experiment, two schemes are compared, with and without ROST. There are 20 NS’s
available for processing jobs, while initially only a fraction of the nodes are deployed
with the required service.

0 2 4 6 8 10 12
100

200

300

400

500

600

700

800

900

1000

Number of Nodes Initially Deployed with Blast Service

T
as

k
E

xe
cu

tio
n

T
im

e
(s

)

FTP
SOAP Attachment

Fig. 5. Task execution time vs. number of nodes initially deployed with Blast service

 Early Experience of ROST with Trustworthiness in CROWN Grid 311

Figure 5 plots the task execution time with different number of nodes initially de-
ployed with the service. With ROST, the task execution time is significantly reduced,
as a node may easily deploy its service to other relatively idle nodes. In some specific
cases, the maximum improvement can be four times faster. When the fraction of
nodes initially deployed with the service increases, the effect of time reduction be-
comes less.

5 Conclusions and Future Work

CROWN Grid aims to integrate nationwide and worldwide valuable Internet re-
sources. In CROWN, remote and hot service deployment is highly demanded. In this
paper, we present early design and implementation experience of remote & hot ser-
vice deployment with trustworthiness (ROST). With ROST, services can be deployed
to a remote container in a different security domain in a hot and secure fashion, which
significantly improves service efficiency and quality. The experiments in real grid
environment demonstrate the effectiveness of ROST.

In future work, we will perform more experiments, explore more relevant trust
mechanisms, and further improve trust negotiation and deployment efficiency. Addi-
tionally, we will further integrate ROST with other CROWN middleware to handle
real application problems such as load balancing and job migration.

References

1. I. Foster, C. Kesselman, and S. Tuecke, "The Anatomy of the Grid: Enabling Scalable Vir-
tual Organization," The International Journal of High Performance Computing Applica-
tions, vol. 15, pp. 200-222, 2001.

2. I. Foster and C. Kesselman, The Grid 2: Blueprint for a New Computing Infrastructure.
San Francisco: Morgan Kaufmann, 2003.

3. I. Foster, C. Kesselman, J. M. Nick, and S. Tuecke, "Grid Services for Distributed System
Integration," IEEE Computer, vol. 35, pp. 37-46, 2002.

4. L. Bernardo and P. Pinto, "Scalable Service Deployment using Mobile Agents," presented
at the Second International Workshop on Mobile Agents, 1998.

5. M. Bossardt, A. Muhlemann, R. Zurcher, and B. Plattner, "Pattern Based Service Deploy-
ment for Active Networks," presented at the Second International Workshop on Active
Network Technologies and Applications, 2003.

6. "The Globus Toolkit: http://www.globus.org/toolkit/."
7. "Apache Axis: http://ws.apache.org/axis/."
8. M. Fleury and F. Reverbel, "The JBoss Extensible Server," presented at

ACM/IFIP/USENIX International Middleware Conference, 2003.
9. "Microsoft.NET: http://www.microsoft.com/net/."

10. T. Friese, M. Smith, and B. Freisleben, "Hot Service Deployment in an Ad Hoc Grid Envi-
ronment," presented at International Conference on Service Oriented Computing, 2004.

11. W. Goscinski and D. Abramson, "Distributed Ant: A System to Support Application De-
ployment in the Grid," presented at the Fifth IEEE/ACM International Workshop on Grid
Computing, 2004.

312 H. Sun et al.

12. F. Baude, D. Caromel, F. Huet, L. Mestre, and J. Vayssiere, "Interactive and Descriptor-
based Deployment of Object-Oriented Grid Applications," presented at the 11th IEEE In-
ternational Symposium on High Performance Distributed Computing, 2002.

13. WSRF Specifications, http://www.oasis-open.org/committees/tc_home.php.
14. I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke, "A Security Architecture for Computa-

tional Grids," presented at the 5th ACM Conference on Computer and Communications
Security, 1998.

15. W. H. Winsborough, K. E. Seamons, and V. E. Jones, "Automated Trust Negotiation,"
presented at DARPA Information Survivability Conference and Exposition, 2000.

16. N. Li, W. H. Winsborough, and J. C. Mitchell, "Distributed Credential Chain Discovery in
Trust Management," presented at the 8th ACM Conference on Computer and Communica-
tions Security, 2001.

17. W. H. Winsborough and N. Li, "Towards Practical Automated Trust Negotiation," pre-
sented at the 3rd International Worshop on Policies for Distributed Systems and Net-
works(POLICY 2002), 2002.

18. W. H. Winsborough and N. Li, "Safety in Automated Trust Negotiation," presented at
IEEE Symposium on Security and Privacy, 2004.

19. M. Winslett, T. Yu, K. E. Seamons, A. Hess, J. Jacobson, R. Jarvis, B. Smith, and L. Yu,
"Negotiating Trust on the Web," IEEE Internet Computing, vol. 6, 2002.

20. T. Yu and M. Winslett, "A Unified Scheme for Resouce Protection in Automated Trust
Negotiation," presented at IEEE Symposium on Security and Privacy, 2003.

J. Cao, W. Nejdl, and M. Xu (Eds.): APPT 2005, LNCS 3756, pp. 313 – 322, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Grid Developing Environment in CGSP System1

Weimin Zheng, Lisen Mu, Qing Wang, and Yongwei Wu

Department of Computer Science and Technology,
Tsinghua University, Beijing, 100084, China

zwm-dcs@tsinghua.edu.cn
{mulisen99, wangqing02}@mails.tsinghua.edu.cn

Abstract. Grid computing is becoming a mainstream technology for multi-
institutional distributed resources sharing and system integration. Normally, the
programmer's productivity in designing and implementing efficient parallel
applications over grid remains a very time-consuming task, especially for the
non-compute users. At the same time, the development of grid programming
environments, which would enable programmers to efficiently exploit grid tech-
nologies, becomes an important and hot research issue too. In this paper, grid
developing environment (GDE) based on ChinaGrid Support Platform (CGSP)
is discussed. GDE supplies the portal building, job defining, programming in-
terface, and administration tools for CGSP. The GDE motivations, architecture
and corresponding implementation over CGSP are presented respectively.

1 Background

Grid computing is emerging as a main stream for the large-scale distributed resource
sharing and system integration.

As one of the essential characteristics, a grid system aggregates all kinds of the
low-level resources and shields heterogeneities and dynamic behaviors of those re-
sources. Therefore, grid middlewares are developed to implement and generalize
those characteristic functionalities to ease the construction of the grid systems. Fur-
thermore, agreements and standards across the grid systems and the grid middlewares
are established to improve the interoperability between the grid systems. Correspond-
ing achievement includes OGSA [4], WSRF [5] and Globus Toolkits (GT) [3]. But
there is still a little achievement at the grid developing tools for the end users, espe-
cially for of non-computer developers.

In 2002, China Ministry of Education (MoE) launched the largest grid computing
project in China, called ChinaGrid project [1] , aiming to provide the nationwide grid
computing platform and services for research and education purpose among 100 key
universities in China.

The underlying common grid computing platform for ChinaGrid project is called
ChinaGrid Supporting Platform (CGSP).[1] CGSP integrates all kinds of resources in
education and research environments, makes the heterogeneous and dynamic nature

1 This Work is supported by ChinaGrid project of Ministry of Education of China, Natural

Science Foundation of China under Grant 60373004, 60373005, 90412006, 90412011, and
National Key Basic Research Project of China under Grant 2004CB318000.

314 W. Zheng et al.

of resource transparent to the users, and provides users various ways to access and
monitor resources within the grid system constructed with CGSP. GDE in CGSP
focuses on providing sufficient programming interfaces and rich developing and
monitoring tools to enable all levels of users, from expert grid developers to grid
administrators without programming background.

2 Design Considerations

The CGSP middleware system is designed to reduce the cost of constructing grid
systems for grid system developers. Application development and resource accessing
and monitoring are also important concerns for grid system deployers, application
developers and administrator users. Thus, the design goal of the grid developing envi-
ronment is to provide sufficient user interfaces and instruments to cover all function-
alities supported by CGSP and to satisfy different requirements from different roles.

Therefore, the key design considerations of Grid Developing Environment can be
summarized as follow:

1. GDE interfaces must provide sufficient functionalities. They must enable users to
access all necessary functionalities of the inner modules of CGSP.

2. GDE interfaces must meet the requirements of users of all levels. Grid system
developers may need low level API to write their own meta services. Application
developers may need both low level and high level API to develop applications.
Grid system deployers may need various tools to register resources and deploy ser-
vices. Administrator users may also need various client tools.

3. GDE must provide functionalities to simplify or auto-complete some complex
developing and deploying procedures during the whole lifetime of the grid devel-
opment and management. According to the design of CGSP, such procedures in-
clude software packaging, application deploying, workflow defining, etc.

3 Architecture

According those design considerations, the architecture of GDE can be described as
follow.

As shown in Fig.1, from the perspective of implementation, the GDE has a layered
structure. In this structure, upper layer is implemented based on the lower layer. The
lower layer has more precise operations in the API, while the upper layer provides
friendlier interface and more integrated functionalities. The main modules in the GDE
architecture are introduced as below:

3.1 Meta Service Access Layer

This layer provides a basic API which contains primitive operations provided by the
CGSP functional modules. These functional modules are Container, Information Cen-
ter, Job Manager, Storage Manager and Domain Manager. This interface has the most
complete functionality, and could be used by any kind of developers who are inter-
ested. MSA is the base layer of all other GDE modules.

 Grid Developing Environment in CGSP System 315

Fig. 1. Architecture of Grid Developing Environment in CGSP

3.2 Grid Parallel Programming Interface

From the user’s aspect, it is a MPI-like interface granting users the ability to develop
parallel applications. GridPPI [2] encapsulates the logics of operations in the MSA
layer, provides users interface to customize and execute grid jobs, and provides a
synchronization control mechanism on the job level. Other necessary functions like
resource query and data transfer are also supported by this interface. Application
developers can develop parallel programs via GridPPI interface.

3.3 Development Toolkit Set

It provides a set of tools which encapsulate some complex and frequently used
procedures during the development and deployment of the grid service. Cur-
rently such procedures include software packing and workflow defining, thus
the software packing tool and workflow defining tool are implemented in this
toolkit set.

3.4 Common Resource Presentation Layer

The concept of this interface mainly comes from the demand of the Portal and a
variety of monitoring client applications. In the most case, such applications aggre-
gate and integrate information from the grid system, provide a certain form of view
of the information to the user, and keep the view up to date by frequently retrieving
information from the grid system. To ease the development of applications and to
lower the performance cost of the query operations, Common Resource Presenta-
tion layer is presented on the purpose of providing a relatively uniformed query
interface.

3.5 Administration Tool Set

Administration functionalities, like resource registering, are provided by administra-
tion tool set.

316 W. Zheng et al.

4 Implementation

The implementation consideration and features are introduced in this section.

4.1 MSA Layer

The implementation design of CGSP follows the OGSA pattern, thus the interopera-
tion between different modules within CGSP is web service invocation. The goal of
MSA Layer is to encapsulate all the web service SOAP operations into java interface,
so MSA layer includes all the service client stubs and interfaces based on these stubs.
The main functions of MSA layer fall into the following category:

1. Container Functions:
Hot deploy, Remote deploy: deploy a grid service archive (.gar file) into a given

container.

2. Information Center Functions:
Resource query and management: Query computing resources registered in the In-

foCenter; register a new computing resource into the InfoCenter; remove a computing
resource record from the InfoCenter; update information of a computing resource in
the InfoCenter.

Service query and management: Similar to resource query and management. Pro-
vide query/add/remove/update operations on the grid service registrations.

Deploy configuration query and management: Query and update domain configu-
ration settings in the InfoCenter.

3. Data Storage Management Functions:
File management: provide copy/move/delete operations on file or directory in the

corresponding user’s file space.
File import and export: import a file from the client; export a file to the client.

4. Domain Manager Functions:
User management: provide add/remove/update operations on user and user group

information in the domain manager;
Authorization and authentication: send authorization and authentication request to

the domain manager and retrieve the result.

5. Job Manager Functions:
Job submition: submit grid jobs to the Job manager.
Job monitoring: query job states; send commands to a specified job.

4.2 GridPPI

The main design goal of GridPPI is to provide a parallel programming model to the
users. The interface of GridPPI should be easy to use and highly abstract from MSA
elayer. So the GridPPI would be relatively independent from the underlying grid

 Grid Developing Environment in CGSP System 317

Fig. 2. Architecture of GridPPI

system. GridPPI can be transplanted onto different grid middleware other than CGSP
without much work.

The inner structure of GridPPI is shown and described as follow:

1. GridPPI Runtime Environment
It is the kernel functional module of GridPPI. Runtime environment supports the

parallelism provided by GridPPI. It schedules the different paralleled processes, han-
dles synchronization between processes, invokes the underlying grid services accord-
ingly, and monitors the status of the services. It is implemented as a lightweighted
client-side runtime.

2. Target Grid Interface
It is the adaptor to the underlying grid system. Different OGSA-based gird systems

may have different architecture and invocation paradigm, yet some basic meta ser-
vices or functional modules can be abstracted in common, like data management,
resource registration management and job management etc. Target System Interface
makes the difference between different grid systems transparent and provides a stan-
dard interface to the GridPPI Runtime Environment.

3. GridPPI Library
It is the programming library providing API directly invoked by the developer’s

application code. There are 4 main aspects of interfaces included:

318 W. Zheng et al.

public class MyPPITask extends GridPPITask {
 public void main_task() {
 try {
 int id = getTaskId();
 if (id >= 3) return;
 String outFileName = "r" + id + ".out";
 ServiceDesc service = null;
 Vector parameters = null;
 switch (id) {
 case 0:
 //service query interface of GridPPI
 service = findService("service1");
 parameters = MyUtility.parseParams(file1);
 break;
 case 1:
 service = findService("service2");
 parameters = MyUtility.parseParams(file2);
 break;
 case 2:
 service = findService("service3");
 parameters = MyUtility.parseParams(file3);
 break;
 }
 //Job Submition interface of GridPPI
 GridJob gridJob =
 executeJob (service, parameters);
 //Job Synchronization interface of GridPPI
 waitJob(gridJob);
 String result = MyUtil-
ity.parseResultMsg(gridJob);
 if(id != 0) {
 sendSignal(0, "sig", result);
 } else { //id == 0
 String r1 = result;
 String r2 = (String) waitSignal(1, "sig");
 String r3 = (String) waitSignal(2, "sig");
 String sum = MyUtility.postProcess(r1, r2, r3);
 reportStatus("result=" + sum);
 }
 }catch(Exception e) {
 reportError(e.getMessage);
 }
 }
}

Fig. 3. Sample Code of GridPPI

 Grid Developing Environment in CGSP System 319

Job Synchronization: GridPPI supports task-level synchronization between processes.
The invocation pattern of synchronization API is similar to the MPI interface, as
shown in the {sample code}.

Job Submition: Submits a job to the underlying grid system.

Data Transfer: Specifies data transfer operations. In this interface, the source and
destination of the data transfer is represented in the form of URL, thus both transfer
between client and server and third-party transfer are supported by this interface.

Service Query: Searches through the target grid system registration and retrieves
appropriate services according to the query condition. Different grid systems may
have different forms of service registration. However, as stated above, heterogeneities
of the service registration mechanisms of the grid middleware is dealt and encapsu-
lated within the Target Grid Interface module.

To illustrate the basic coding paradigm, a sample code of GridPPI task is shown
below in Fig. 3.

From Fig. 3, it can be seen clearly that the invoking paradigm of the GraidPPI in-
terface, especially of the process synchronization functions, is quite similar to that of
MPI libraries which parallel application developers are quite familiar with.

4. Testing Environment
Flawed program code may cause unpredictable performance expenditure or dam-

age to the grid system. To avoid, or at least to minimize, the fault or bugs in the user
program code, a Testing Environment is designed to simulate the real grid environ-
ment for testing of user’s program code. In consideration of unpredictablility and
heterogeneities existing in various real grid environments, it is impossible to perfectly
simulate a real grid system. However, some simpler testing like deadlock detection or
approximate performance prediction can be done in the Testing Environment.

4.3 Administration Tool Set

All the Administration tools are developed based on MSA layer. The main goal of
these tools is to provide a graphic user interface to system administrators or applica-
tion deployers to register resource, import files, deploy services etc.

4.3.1 Data Storage Client Tool
Data storage client tool provides data management user interface. In the design of
GDE, data management UI is also provided in the portal page. However, large file
transfer through portal has mainly 2 disadvantages:

The file data must be transferred to the portal server before the file is imported into
the data storage server, thus 50% waste of bandwidth is inevitable;

Long period data transfer from client to portal server over http protocol will cause
unbearable idle of the web browser.

Therefore, it is recommended to import large data files into the data storage man-
ager through the client tool.

320 W. Zheng et al.

4.3.2 Domain Manager Client Tool
In the design of CGSP architecture, the composition unit of the entire grid is called
domain. Each domain represents a virtual organization. A whole set of CGSP compo-
nents are deployed within each domain and make the domain fully operational inde-
pendently from the other domains. Each domain has its local security mechanism.
Authentication across domains is also supported to support interoperation between
domains.

Both the internal and external user information is administrated by the Domain
Manager. Therefore, the Domain Manager Client Tool is a GUI for the domain ad-
ministrators to maintain the account information of the domain.

4.4 Development Toolkit Set

The development toolkits ease the development of the portal and various client tools
by encapsulating frequently used procedures. As stated above, currently 2 of such
procedures are encapsulated in development toolkit:

Software Packing. In the architecture of CGSP, software applications can be packed
into a general running service with the arguments of the application being mapped to
the input message of the service. Current implementation of this design is to generate
a special wsdl file with extensional elements describing mapping information from
the input message to the application arguments and to zip the application executable
file into the .gar file which will be interpreted and deployed by CGSP GRS(general
running service). This implementation procedure is denoted as ‘software packing’,
and is encapsulated in the software packing tool. Currently, it is used in the develop-
ment of CGSP Portal to implement software packing user interface.

Job Defining. The terminology ‘job’ in CGSP denotes a single grid service invocation
or an invocation of a well defined workflow, which is described in BPEL[7] and is
also deployed in CGSP container as a service. The job defining tool allows the devel-
oper or administrator user to construct such workflow jobs by specifying inputs and
outputs, defining control flow structure of the job and exporting BPEL scripts and
other related meta information descriptions. In the current release of the CGSP, the
job defining tool is also used in the development of Portal.

4.5 Common Resource Presentation Layer

In the second release of CGSP, the CRP layer is deployed in the Portal server.
Portal server receives and responses http requests. The request URL of a specific
pattern defined in CRP is forwarded to the CRP handler which performs the ac-
tual query operation via MSA interface and returns the query result in the form of
xml document. The advantage of CRP layer in performance consideration is that
the cache mechanism based on the URL indexing of the Portal engine can be eas-
ily utilized to minimize the actual query operation submitted to the underlying
grid system.

 Grid Developing Environment in CGSP System 321

4.6 Portal Pages

Utilizing functionalities of MSA layer, Development toolkits and CRP layer, Portal
pages provide user interfaces to all administrative and common user operations of the
CGSP system.

4.7 Workflow Debug Tool

In the design of CGSP authentication policy, after a workflow is defined and de-
ployed by the application developer (or administrator), it can be invoked by common
users who have sufficient access right. Thus the application developer may wish to
debug the workflow being constructed to verify its correctness. In the second release
of CGSP, breakpoint and debug mechanism is to be supported by the CGSP Job Man-
ager and Workflow debug tool.

The workflow debug tool is to be implemented as a standalone client application.
Its main function is to load a workflow definition, specify breakpoints in the control
flow, start workflow execution in the Job Manager, and to monitor and control the
runtime status of the workflow. It uses CRP layer to update the status of the current
workflow, and submits controlling commands to the Job Manager via MSA library.

5 Conclusions

The current architecture design of the Grid Developing Environment is based on the
CGSP middleware system. GDE provides various programming interfaces and admin-
istrative utilities to allow users to develop grid services, develop applications, deploy
software, register resources, construct workflow, submit jobs and monitor many kinds
of information within the grid. Compared to the other client-side developing envi-
ronments or client tools, CGSP GPE offers the following advantages:

1. It provides API in different abstraction levels to satisfy demands of different users;
2. It provides both API and various client tools to enrich the measure to develop and

deploy services and applications;
3. Modules and applications in the higher layer of GDE architecture is developed

based on the lower layer, thus higher-layer modules themselves provide sufficient
examples to the developers on how to utilize the lower-layer modules.

Reference

1. Jin, H., ChinaGrid: Making grid computing a reality. Digital Libraries: International Col-
laboration and Cross-Fertilization, Proceedings 2004

2. Yongwei Wu, Guangwen Yang, Qing Wang, Weiming Zheng, Coarse-grained Distributed
Parallel Programming Interface for Grid Computing. Lecture Notes in Computer Science,
(2004), 3032, 255-258

3. I. Foster and C. Kesselman: Globus: A Metacomputing Infrastructure Toolkit. International
Journal of Supercomputer Applications, Vol.11, No.2, pp.115-128, 1997

4. Open Grid Services Architecture,
 http://www.ggf.org/Public_Comment_Docs/Documents/draft-ggf-ogsa-specv1.pdf

322 W. Zheng et al.

5. Web Service Resource Framework (WSRF),
 http://www.globus.org/wsrf/ and http://www.ggf.org/documents/GFD.30.pdf
6. ChinaGrid, http://www.chinagrid.edu.cn
7. Business Process Execution Language for Web Services,
 http://www-128.ibm.com/developerworks/library/specification/ws-bpel/
8. G. Andronico, R. Barbera, A. Falzone: Grid portal-based data management for lattice QCD

data. Nuclear Instruments and Methods in Physics Research A 534 (2004) 76–79
9. A. Andronico, R. Barbera, A. Falzone, P. Kunszt, G. Lo Re, A. Pulvirenti, A. Rodolico:

GENIUS: a simple and easy way to access computational and data grids. Future Generation
Computer Systems 19 (2003) 805–813

J. Cao, W. Nejdl, and M. Xu (Eds.): APPT 2005, LNCS 3756, pp. 323 – 331, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Grid Job Support System in CGSP∗

Jinpeng Huai1, Yu Wan1, Yong Wang1, and Haifeng Ou2

1 Advance Computer Technology Institution, Computer Science and Technology,
 Beihang University 7 28#, 100083 Beijing, China

huaijp@buaa.edu.cn,{wanyu, wangy}@act.buaa.edu.cn
2 The Key Laboratory of Virtual Reality Technology, Ministry of Education, China,

Beihang University 7 28#, 100083 Beijing, China
ouhf@vrlab.buaa.edu.cn

Abstract. As Grid computing becomes more and more practical, User needs a
steady computing environment and an effective way to assemble simple ser-
vices into complicated service to meet their requirements. Based on BPEL4WS,
this paper introduces a Grid Job Description Language (GJDL) to combine cor-
relation services into composited service. With GJDL, we design and imple-
ment a job support system which has been already applied successfully in China
Grid Support Platform (CGSP).

1 Introduction

Grid computing turns out to be an effective solution for large scale computing re-
sources sharing and coordinated use of resources at multiple sites. In grid architecture
OGSA service is a key conception, every thing in grid is a Grid Service. WSRF which
heavily depends on web service specifics defines and refers a set of specifications
which are used to implement resource lifetime management, discovery, notification
and so on to form a Grid Service. It makes Grid Service compatible with current web
service technology.

As grid jobs became more and more complex, the categories of jobs evolute from
simple job and batch job to complicated jobs described by workflow languages that
are called grid workflow. In most common grid systems, such as Globus Toolkit[10],
do not support this kind of job. In service oriented grid architecture, a simple job is
the request to a service; a batch job is the request to a set of services that are simply
called one by one. Complicated job, in its nature, is the request to a set of correlation
services. It includes the control of the execution sequence, which makes constructing
a more complex service by simple services a reality. To define a complicated job, user
needs to define the execution sequence of the element services, correlation data han-
dling, exception handling mechanism, identification of job instance, roles of element
services and so on.

In our grid middleware, China Grid Support Platform (CGSP) [1, 2, 3], in order to
support both simple jobs and complicated jobs, we defined a Gird Job Description

∗ This Work is supported by ChinaGrid project of Ministry of Education of China, Natural

Science Foundation of China under Grant 60373004, 60373005,90412006, 90412011.

324 J. Huai et al.

Language (GJDL), which is simplified from BPEL4WS [12] and added some feature
for grid characteristic. We designed and implemented a job support system that sup-
ports the jobs described by this language.

In this paper, we begin with goals and functions of job support system. Then, we
introduce our job description language GJDL. In fourth part, we describe our job
support system architecture and its implements in detail. Conclusion and future work
are discussed at last

2 Goals and Functions

CGSP is a grid middleware developed for the construction and evolution of Chi-
naGrid. Different from normal grid middleware efforts (GT series [10], OMII [17]),
CGSP is a platform. Not only does it include the grid running components, such as
portal, service container, service monitoring and discovery, file delivery and trans-
formation, but it also provides the grid developing tools, such as programming API,
portal constructing tool, service deploying and packaging tools and so on.

2.1 Goals

Job support system, as a key part of this platform, must meet the following goals.

− Easy to use. Most users of ChinaGrid are not computer scientists, nor are they
computer engineers. They are most likely the experts of different fields who need
to take advantage of the grid computing. Keeping our job support a simple model
will helps them to easily define and submit jobs for use.

− Robust. Since many grid jobs are time-consuming mission, if we cannot keep our
job support system running in a steady status, we cannot really provide services for
grid jobs.

− Effective. Grid jobs are often time critical. For an instance, weather forecast. To
perform user’s jobs as soon as possible, we must schedule jobs in an effective way.

− Throughput. Grid platform does always support many jobs concurrent execution.
As the nature of grid, it tries to make full use of the large scale computing re-
sources.

2.2 Functions

In the first stage of CGSP job support system, the main functions provided as follow.

− Defining a job. User chooses suitable Grid Services (or let job support system to do
this for him) to make up his job. This procedure makes a job definition that is used
for job execution.

− Submitting a job. After user defines a job, he should submit it to job support sys-
tem. Job support system will process the job later.

− Scheduling a job. During job support system running procedure, it interacts with
information center(IC) to get the suitable Grid Service to perform user’s job.

 Grid Job Support System in CGSP 325

− Workflow management. In CGSP, jobs are often workflow. Job support system
provides flow management of this kind of jobs. It includes the management of exe-
cution process, data and lifetime.

− Job status management. Job support system provides job execution information to
grid administrators and the job owner. And it allows administrators and the job
owner to control the job’s execution.

3 Grid Job Describing Language (GJDL)

With the progress of the grid computing, grid jobs become more and more complex.
Simple job, which is a simple request to a Grid Service or resource, cannot meet
user’s requirements. In service oriented grid system, we need to give job support
system the ability to compose correlated services into a complicated job. Traditional
job description languages (ClassAD [14], RSL [18]) do not have this capacity.

BPEL4WS, which is based on both XLANG [16] and WSFL [15], is designed for
web service oriented workflow. BPEL4WS, for its nature, is an effective web service
workflow description language. It is the standard recommended by OASIS.

As WSRF refers, Grid Service now relies heavily on web service specifications
and is an extension from web service. In order to take advantage of web service
environment and workflow technology, we defined our grid job description language
based on BPEL4WS. So our GJDL has the ability to describe complicated jobs, which
means to describe complicated work flow of grid applications. Our jobs described by
GJDL, is whole service oriented, according to the fact that grid technology and web
service technology integrate daily. Job in our system is composed by correlated Grid
Services, and job itself is a Grid Service.

Although BPEL4WS is a good language for service composition, its nature is for
business process described by web service. It doesn’t suit for describing Grid Service
composition from the beginning. It does not support WSRF, which means it is impos-
sible to use a WS-Resource [13]. And the BPEL4WS language is too complex and too
large for Grid Service composition. For grid computing, job support system needs the
ability to make full use of the large scale computing resources, which means job sup-
port system should balance the load between different computing nodes to make a
well throughput. That is done by dynamic binding element services in runtime accord-
ing to information center. This late binding technology also helps job support system
has the capacity of fault tolerance. We simplified the useless features and extended
some elements in BPEL4WS to form our GJDL. Now we only keep four core atom
activities (invoke, receive, assign and reply) and four structure activities (sequence,
flow, while, switch) in our GJDL. We extends invoke activity for supporting WS-
Resource, dynamic element service selection and binding, fault tolerance.

Here are brief differences between BPEL4WS and GJDL.

Features BPEL4WS GJDL
Support WSRF specifics No Yes
Simple structure Yes No
Dynamic element service binding No Yes
Fault tolerance Must be defined by user Job support system

automatism

326 J. Huai et al.

4 Job Support System Architecture

4.1 Whole Architecture

As the goals and functions described in second part of this paper, we designed our job
support system architecture as figure 1 shows.

Fig. 1. Job support system whole architecture

There are three layers in job support system. The top layer is for client to define a
job, submit a job to job manager, and control and monitor stubs for user to take full
control to his a job. We will discuss the job definition in other papers. The middle
layer is the core of our job support system, which we will describe in detail. It is
named job manager, which takes charge of deploying users’ jobs, grid workflow in-
stances management, monitoring jobs’ running information and control jobs execu-
tion under users’ instructions. There is only a job manager in each domain of CGSP.
Domain administrator deploys it, and Information Center [4] remembers its location,
which will be used by CGSP Portal [4] or CGSP Grid PPI [4]. The bottom layer is the
foundation of job support system, which includes support for web service, WS-
Resource and General Running Service (GRS). GRS, in brief, adapts user’s local
binary runnables to normal WS-Resource. Its work mechanism likes GRAM [10].

4.2 Job Manager Architecture

Main functions of job manager is handling user’s request based on job definition. Its
core functions are described as follow.

− Job deployment. User defined jobs in user space, which can be a simple service
(job) or a complicated service (job). Job manager should have the ability to dy-
namic deploy jobs for future execution.

 Grid Job Support System in CGSP 327

− Session management. During execution, a job may interact with other job in-
stances. To delivery the requests between job instances correctly, job manager
should have a session manager in job instances level.

− Scheduling. For better throughput in domain, job manager need to schedule both
job instances and element services.

− Lifetime management. Job manager maintains jobs’ status and full control of their
lifetime. This part also includes job status monitoring and control.

− Execution. Job manager translates job definition into job instance, controls element
services execution sequences, copes with related data, and handles exceptions in
execution procedure.

− Element service binding. For load balance in domain, job manager should inquire
information center for a set of services that meets user’s expectation deployed at
different computing nodes in domain and select the computing node with a low
load to perform the request to the service.
The architecture is shown in figure 2.

Fig. 2. Job manager architecture

Modules and the relations of modules are described as follow.

− Job manager interface. Service container (in this version, it’s Globus container
[10]) deliveries user’s request of deploying a job or executing a job to job manager
with this interface. All the interactions between user and job manager are through
this interface. It receives the user’s request, deliveries it to related module, blocked
the request procedure until the related module answer back. Then it transforms the

328 J. Huai et al.

answer message with the right format, and answers service container with it. Ser-
vice container then does the dirty job to interact with user.

− Deployment manager. User defined complicated job should be known by job man-
ager. Deployment manager is responsible for receiving user deploying file which is
called gar file, putting the job definition file into job definition library and adding
description information and other useful stuff into service container to help future
user to use.

− Session manager. Its main function is picking up correct job instance for the in-
coming request message from job instances pool and identifying the session infor-
mation to the in-coming and out-going messages so that related job instance knows
which job instance it deals with.

− Instance manager. It takes charge of job instances management. For effective rea-
son, it caches job definitions and their execution related structure and data for fu-
ture requests for same jobs. It also monitors job instances status and manages in-
stances’ lifetime by user’s order. It can start, pause, resume and terminate a job in-
stance. Following figure (figure 3) shows the exactly translation between job in-
stance states.

Fig. 3. Job Instance status

− Invoker manager. Invoker manager handles the request to element service. As we
discussed formerly, considering load, the invoker manager inquiries information
center for a set of services that meets user’s expectation deployed at different com-
puting nodes in domain. Based on specific load algorithms, it invokes the best fit
onet and handles the exceptions during the service invoking procedure.

− GJDL parser and compiler. When user request for complicated job incomes, if
there is no suitable job instance for that request, the instance manager will pick up
the right job definition file from job definition library and call GJDL parser to
parse the job definition file, it translates the GJDL describing job into a definition
entity. Then instance manager uses compiler to make the entity to a runtime entity,
which is called a job instance. Instance manager will then put this new job instance
into instance pool and take care of its lifetime.

Other parts of job manager are introduced briefly here. Job definition library is the
place where job manager puts the job definition files. Job monitor interface replies
user’s request for job instance status information, which is collected by instance man-
ager during the job instance execution.

 Grid Job Support System in CGSP 329

4.3 Execution Diagram

To make the execution procedure straight, we will show a typical job request execution.

1. User sends a request to service container via SOAP message.
2. Service container unpacks the message. For example, logging. Then service con-

tainer deliveries it to job manager interface.
3. Job manager interface finds out it is a request for a job. It deliveries the request to

session manager.

Fig. 4. Job execution diagram

4. Session manager depends on the identification in the request to pick up the right
instance to delivery the request to. If success, execution procedure goes to step 8.

5. Instance manager receives that request and picks up the right job definition file
from job definition library.

6. Instance manager uses parser and complier to make out a new job instance for
that request.

7. Instance manager puts the newly created job instance into instance pool.
8. Instance manager begins or resumes the execution of the job instance. If the job

instance is not an active one, that is to say, it has been paused by user or job man-
ager for scheduling. Instance manager actives the job instance to execute.

9. During the job instance execution procedure, instance manager records the chang-
ing status of the job instance.

10. When the job instance needs to call a service, the invoker manager inquiries in-
formation center for a set of services that meets user’s expectation deployed at
different computing nodes in domain and selects the right computing node with
low load to perform the request to the service.

330 J. Huai et al.

11. During the job instance execution, if some exception occurs, instance manager
handles the exception and make the job instance finished with useful error
information.

12. When job instance finishes, instance manager returns the result to job manager inter-
face, takes out the job instance from instance pool and destroys the job instance.

13. Job manager interface then returns the result to service container. Then do some
extra work such as recording the process period and so on.

14. Service container ships the result to user. So a job instance execution finishes.

5 Conclusion and Future Work

Grid jobs became more and more complex. Simple job or service could not satisfy user
any more. User needs an effective way to assemble simple services into complicated
service to meet their requirements. In OGSA, a service-oriented architecture, composing
correlation services into a complicated job is an effective and smart way to resolve this
issue. In many important grid systems, such as Globus Toolkit, VEGA[5], there is no
such part to match this up. We use complicated job, which describes the relationship
between related services, to stand for user’s requirement for complicated service.

Job support system is a core part of a grid platform. It takes charge of defining a
job, executing a job and scheduling jobs in domain to get the largest throughput and
best use of large-scale computing resources shared in domain.

Supporting complicated job is an important part of the job support system in
CGSP. Based on BPEL4WS, which suits describing service composition about web
service, we simplified BPEL4WS for easy usage and extended some activities for grid
feature such as WSRF and throughput and load balance for domain computing re-
sources effective use. This is our most valuable contribution to grid computing field.
Our job manager, which is the core of our job support system, has following strong-
point. First of all, it supports the execution procedure management of complicated
job. Secondly, it handles the job request message in layers, which helps us to focus on
the main issue we try to resolve. Also that makes it easy to add some new features to
existing process procedure for user’s interests. The third is that enabling our platform
with the capacity of load balance and throughput. Finally, our job support system is
service container independent, so other gird platform can easily replant our job
support system to their environments.

In the future, we will support Job Submit Description Language (JSDL) to support
job submitting between inhomogeneous grid systems and CGSP. We will enrich our
GJDL that has been proven to be an effective language to describe complicated job to
meet up other key feature of grid computing fields such as large data management
between element services and so on.

References

1. ChinaGrid, http://www.chinagrid.edu.cn.
2. H. Jin, "ChinaGrid: Making Grid Computing a Reality", Proceedings of ICADL 2004,

Lecture Notes of Computer Science, (2004), 3334, 13-24
3. ChinaGrid Support Platform, http://www.chinagrid.edu.cn/CGSP.

 Grid Job Support System in CGSP 331

4. CGSP Work Group, Design Specification of ChinaGrid Support Platform, Tsinghua
University Press, Beijing, China, 2004

5. Z. Xu, W. Li, "Vega Grid: A Computer Systems Approach to Grid Research", Keynote
speech paper at the Second International Workshop on Grid and Cooperative Computing
(GCC 2003), Shanghai, China, December 2003.

6. Hu CM, Huai JP, et al. "WebSASE4G: A Web Services-based Grid Architecture and its
Supporting Environment". Journal of Software, 2004 (in Chinese)

7. Foster I, Kesselman C, Nick J, Tuecke S. "The Physiology of the Grid: An Open Grid Ser-
vices Architecture for Distributed Systems Integration". http://www.globus.org/ re-
search/papers/ogsa.pdf, January 2002.

8. Foster I, Kesselman C, Tuecke S. "The Anatomy of the Grid: Enabling Scalable Virtual
Organizations". International J. Supercomputer Applications, 2001, 15(3). 1~10.

9. Open Grid Services Architecture Roadmap. 7th Global Grid Forum Draft, 2003.
http://www.gridforum.org/ogsa-wg/papers/ ogsa_roadmap.0.4.pdf.

10. 10.Globus Toolkit, http://www.globus.org
11. Curbera, F., Goland, Y., Klein, J., Leymann, F., Roller, D., Thatte, S., and Weerawarana,

S. (2002) 'Business Process Execution Language for Web Services', http://msdn.microsoft.
com/webservices/default.asp?pull=/library/en-us/dnbiz2k2/html/bpel1-0.asp, accessed 22
September 2002.

12. BPWS4J, http://www.alphaworks.ibm.com/, 2004-3-15
13. Karl Czajkowski. "The WS-Resource Framework", http://www.globus.org/wsrf/specs/ws-

wsrf.pdf, 2004-9-2
14. ClassAD, http://www.cs.wisc.edu/condor/classad/refman/, 2004-11-7
15. 15. Leymann, F.(2001) "Web service flow language (WSFL) 1.0", http://www-

4.ibm.com/software/solutions/webservices/pdf/WSFL.pdf, accessed 22 September 2002.
16. Thatte, S. (2001), "XLANG: Web Services for Business Process Design", http://www.

gotdotnetcom/team/xml_wsspecs/xlang-c/default.htm, accessed 22 September 2002.
17. Open Middleware Infraxtructure Institute, http://www.omii.ac.uk/
18. RSL, http://www.globus.org/gram/rsl_spec1.html , 2004-11-7

J. Cao, W. Nejdl, and M. Xu (Eds.): APPT 2005, LNCS 3756, pp. 332 – 341, 2005.
© Springer-Verlag Berlin Heidelberg 2005

JFreeSim: A Grid Simulation Tool Based
on MTMSMR Model*

Hai Jin, Jin Huang, Xia Xie, and Qin Zhang

Cluster and Grid Computing Center, School of Computer Science and Technology,
Huazhong University of Science and Technology, Wuhan, 430074, China

hjin@hust.edu.cn

Abstract. Due to the non-repeatability of the grid environment, limitation
comes out when conducting grid performance analysis in real environment.
Therefore, grid simulation tool is used extensively as an important research
tool. This paper proposes JFreeSim, a new grid simulation tool based on
multiple tasks, multiple schedulers and multiple resources (MTMSMR) model.
As a modular and extensible simulation tool, JFreeSim realizes many kinds of
entity modeling and communication mechanism between all entities, and makes
system simulation accord with the characteristics of the grid environment.
Experiments indicate that JFreeSim can provide users with flexibility in
configuring and meet requirements of different system architectures and
applications, and the simulation results are as expected.

1 Introduction

For using resources that belong to different organizations and are geographically
distributed, the grid system is the realization infrastructure and techniques. Grid
system has great potential to help people solve various problems. In the grid
environment, the execution of the task needs to be adjusted dynamically according to
the change of the run-time environment. Though the performance of applications can
be evaluated by executing the applications on actual resources, this approach usually
has very large limitation. This is because not only the resources needed may not be
able to satisfy, but the experiments are difficult to repeat in grid environments. In
addition, the scale of current experimental grid is relatively small, and cannot totally
reflect the characteristics of the actual grid systems. Therefore, grid simulation tool is
used extensively as an important research tool to evaluate the performance of various
fields of grid systems [1, 2].

This paper proposes JFreeSim, a new grid simulation tool base on multiple tasks,
multiple schedulers and multiple resources (MTMSMR) model. The following
characteristics make JFreeSim feasible to simulate various grid environments:

1. JFreeSim models the main parts of the grid system, and provides flexible
simulation according to the needs of the user. MTMSMR model that multiple

* This paper is supported by National Science Foundation under grant 60273076 and 90412010,

ChinaGrid project from Ministry of Education of China.

 JFreeSim: A Grid Simulation Tool Based on MTMSMR Model 333

tasks are scheduled by different schedulers and executed on multiple resources is
supported. This model makes JFreeSim convenient to simulate various complex
execution situations in grid environments.

2. The dynamic characteristic of grid is fully considered. In the course of
simulation, the status of resources is described accurately, which makes the
execution status of application correspond to the actual situations. In addition, the
simulation of layered information directory also reflects the dynamic
characteristic of grid environments.

3. Various overheads during running are estimated because they have a significant
impact to the performance of an application. JFreeSim estimates the control and
communication overhead incurred in the execution, thereby providing an
effective approach to describe internal feature of real system accurately.

4. The design of JFreeSim follows the principles of making it modular and
extensible [3]. Each part is independently modeled, and interacts by a certain
message mechanism. The extensible design allows the user to construct different
simulation script for various applications and execution processes.

The rest of the paper is organized as follows. Related works are discussed in
section 2. Section 3 describes the entity models used in JFreeSim. Section 4 discusses
the architecture and implementation of JFreeSim. Section 5 illustrates a use example
of JFreeSim. Section 6 concludes the paper.

2 Related Works

For the grid system, one approach used to study the system characteristics is to
emulate a grid system on a real computing system. This approach is used by
MicroGrid [4] which emulates multiple computing resources on a real resource to
increase grid size using limited resources. MicroGrid is suitable for testing real
application on real, controllable environment. However, emulating real application
may take a substantially long time. Hence, in order to minimize the turnaround time
for the extensive study of grid environment, a simulator is needed.

At present, the main related simulation tools include Bricks [5], SimGrid [6],
GridSim [7], ChicSim [8], HyperSim [9]. Bricks is a Java-based discrete event
simulator. It is designed to maximize modularity of reconstructing system model
based on client-server architecture. One may run Bricks to evaluate scheduling
heuristics or to evaluate data movement algorithms on grid. Status of each component
is the estimation of real world system trace.

SimGrid is a C language based toolkit for the simulation of task scheduling in a
distributed environment. In SimGrid, resources are assumed to be time-shared with
other applications. The performance of a resource can be a constant number or
specified through a trace file containing real run time load variations. Tasks are
described using a Directed Acyclic Graph (DAG). The task scheduling algorithm is
defined by the SimGrid user, and SimGrid provides highly accurate network model
for TCP and non-TCP transport. Thus, SimGrid offers the flexibility to simulate
various applications and scheduling algorithms.

GridSim is a Java-based discrete event grid simulation toolkit. It provides high
extensibility and portability through Java and thread technologies. GridSim supports

334 H. Jin et al.

modeling and simulation of heterogeneous grid resources, gird users and applications.
Designed for a market-like grid computing environment, GridSim can simulate
multiple computing grid users, applications, and schedulers, each with their own
objectives and policies.

ChicSim is a Parsec-based simulator for concurrent job and data scheduling.
System model is fixed. The user just needs to specify resources, networks, and
workload characteristics to the simulator by a list of files.

HyperSim is a general-purpose discrete event simulation library developed on
C++. It provides comprehensive classes for constructing a simulator. The
experimental evaluation shows that HyperSim can be used to simulate the same grid
environment with a much faster simulation speed [10].

3 Entity Models in JFreeSim

In this section, we discuss various entity models in JFreeSim. These entities include
user entity, application and task entity, resource entity, scheduler entity, information
directory entity, network entity, statistics and analysis entity. These entity models are
used to describe the process of application executed and resource changed in grid
environments [11, 12].

3.1 User Model

User entity is used to simulate the behavior of the user in JFreeSim. The user’s
behaviors involve selecting scheduler, dispatching the requests of the user, and
receiving the processing results of the tasks. In the user model, the user request to
implement one or several tasks. In the case of those involvements with more than one
task, their submission and execution are based on the order of the tasks.

3.2 Task Model

In JFreeSim we assume that the simulations are performed at the task level. The static
view of an application consists of two components: the problem and the scheduling
algorithm used to solve this problem. A problem is defined as a set of related tasks,
and the algorithm of the scheduler describes the process of resource selection and task
scheduling.

Usually, task modeling defines various basic attributes needed for its simulation,
including execution code quantity, data quantity before and after executing, etc. In
addition, the conditions under which tasks are executed on resources are also defined,
including resource type, computing capability, storage capacity, etc. In JFreeSim,
DAGs are used as internal representations of the problem. These DAGs are generated
by the user’s input configuration files and the script tool.

3.3 Resource Model

A typical grid system consists of various resource nodes connected by a network. In
JFreeSim, the resources are characterized by the computing resources. Each
computing resource can own one or more computing nodes, and each computing node

 JFreeSim: A Grid Simulation Tool Based on MTMSMR Model 335

can own a lot of CPU units. We assume that the performance of a computing node is
denoted by its computing power and storage capacity.

JFreeSim describes the performance characteristics of computing node through
constants, random variables with predefined distributions, trace files, or system level
abstraction based on random variables. In JFreeSim the storage capacity of a
computing node is described through available storage space. When the execution of
the tasks has constraints for the storage capacity of the computing resource, these
constraints will be considered by the scheduler while selecting resources.

In grid environments, resources may fail and new resources may become available
during computation. This scenario can be usually used to simulate hardware related
events such as power shutdown. In JFreeSim, user can directly configure the available
time range of resources when defining these entities, which can offer support to
describe the dynamic characteristics of resources.

Each computing node has its own local scheduling policy. In JFreeSim, possible
choices provided include Round Robin, First In First Out, and Shortest Job First. In
addition, the users can extend new scheduling policies by themselves. When multiple
tasks are ready to run on a single computing node, the designated local scheduling
algorithm is used to determine the order of their execution.

3.4 Information Directory Model

The information about computation process and dynamic performance of resources is
maintained by the information directory entity. In order to reflect accurately the
collecting and maintaining process of the information directory in the real system, we
analyze the existing typical grid information service systems, abstract and partition
their function modules and construct the four independent modules.

The bottom layer is the information collector (IC) used to collect the status of the
object monitored. In resource layer, the information server (IS) classifies and
combines the information from the lower layer, and forms the usage information of
the local resources. A layer above IS is the aggregate information server (AIS) which
is responsible for aggregating variety of information from different IS layers and
organizing the information directory. AIS offers resource information in a large
scope. The top layer is the user-oriented directory server (DS). DS provides the
function of querying, finding and allocating the resources for the user, and offers
other functions according to the needs of the system. In addition, DS also sends
queries to IS directly to obtain the resource information.

Due to the different architectures of information directory and deployment of
resources and applications, each application has different resource view from others.

3.5 Scheduler Model

Scheduler entity is used to select resources and assign tasks to those resources after
the tasks are submitted. The scheduler obtains dynamically useful information in the
system according to the scheduling strategy, and finds out suitable resources and
assigns tasks to them. The scheduling strategy during simulating can be specified by

336 H. Jin et al.

the user. So the simulation process can perform various scheduling strategies
containing plenty of constraints to tasks, users and resources. The scheduler entity
responds to the performance variations through querying information directory. In
addition, the scheduler also monitors execution status of the tasks that have been
assigned. Thus, it can control the process of simulation execution.

3.6 Network Model

Another important aspect of the grid simulation is the simulation of the network.
Assuming a fully connected network would minimize the difficulty of implementing
the simulator. However, the major drawback of a fully connected model is that it may
not accurately describe the situation in actual grid system. In an actual grid system, a
network link may be shared by several computing nodes.

Network model consists of some network entities, including network link, router
and network traffic generator. Network link joins two entities that need to
communicate with each other, and a user can configure the bandwidth and the latency
of the link. Router is responsible for joining links that have different communication
performance and determining the accurate transfer path of data. The data transferred
in the network is split into transport units with specified size. Transport units are
transmitted according to the routing policy of the router entity. In an actual
environment, a network link may be shared. So a network traffic generator is used to
simulate the impact of other network traffic for the data transfer in the system. User
can predefine the network traffic generator with specified distribution, which benefits
us in evaluating the transfer performance affected by traffic congestion.

3.7 Statistics and Analysis Model

During the whole simulation, obtaining, coordinating and analyzing the simulation
data produced must be supported as an important function. It makes sense only when
the simulator is designed to reflect the simulation data produced during the
simulation. In JFreeSim, processing simulation data is classified into three stages:
acquisition, statistics and analysis process.

The process of obtaining the simulation data is the base of further study in this part,
and it goes through the whole simulation. The simulator needs to obtain various data,
such as the status information and the running information, at any time. After
obtaining the simulation data, the simulator will classify them. The statistical
measurements include system’s build-in measurements such as average response time
of the task, success rate of the request, utilization rate of the resource, and user-
defined measurements as well. The various statistical results are displayed through a
comprehensive GUI tool. Finally, JFreeSim analyzes the whole course of simulation
according to the relevant statistical measurements and evaluation algorithms. The
process of analysis may be directed at the performance of a single function as well as
many interactive functions and even the whole system. As the analysis results, the
simulator may provide a series of evaluation results and possible references for
further improvement.

 JFreeSim: A Grid Simulation Tool Based on MTMSMR Model 337

4 Architecture and Implementation of JFreeSim

4.1 JFreeSim Architecture

The modular architecture of JFreeSim is shown in Fig. 1. The simulation is performed
on various real platforms. The discrete event simulation infrastructure is the base of
various entity models. The GUI of the system includes the definition of the users,
tasks and resources and the configuration of the information directory, scheduler,
network, statistics and analysis entities. JFreeSim provides a variety of GUIs of the
output results [13], including many graphic displays and simple animation of whole
simulation process. Thus, users can immediately understand the process and results of
the simulation.

Fig. 1. Modular architecture of JFreeSim

In JFreeSim, the simulation of an application is performed as follows. First, system
receives global configuration parameters sent by user entity, initializes other entities
and starts the process of simulation. Meanwhile, information directory receives the
register information from various resources available. User entity passes the tasks to
scheduler entity according to DAG configuration. Scheduler queries the information
directory and assigns the tasks to suitable resources according to scheduling strategy.
Each resource maintains a local task queue. When multiple tasks are ready to run, the
execution of those tasks is simulated according to the local scheduling policy. During
the simulation, new resources may become available, some resources may fail, and
the performance of the resources is variable. These performance variations are
updated in the information directory. By querying the information directory, the
scheduler determines the scheduling situation. The above process is repeated until all
the tasks complete execution.

338 H. Jin et al.

4.2 Implementation of JFreeSim

To implement JFreeSim, SimJava [14] is used as the discrete event simulation
infrastructure. SimJava is a process-oriented discrete event simulation package, and
has a series of API based on Java language to define and execute simulation process.

The behavior of each entity in the system is implemented by an independent Java
thread. Each thread is looping continuously to process the messages from other
entities. The way of thread implementation is able to well support the MTMSMR
model and makes JFreeSim convenient to complete various complex simulations.

The instance of the user entity is started first and it is main procedure in the course
of simulation. User instance is responsible for creating other entities according to the
user’s configuration. In addition, user instance creates task instances as well, which
are represented by certain class structures. User instance submits the tasks to
corresponding schedulers after simulation starts.

After information directory is created and initialized, it receives the register
information from the resources and organizes global status information. Information
directory is responsible for maintaining the performance variations of resources, and
responds to the queries from the scheduler. The above process is repeated until finish
signal is received.

Each computing node receives tasks from the scheduler, executes the tasks according
to its local scheduling policy. This loop is terminated by the simulator once it receives
finish signal from main procedure. The execution time of a task on a computing node is
determined by the number of floating point operations in the task, the local scheduling
policy, the computing power, and the I/O capacity. The computing node may also
receive messages from the scheduler to remove or cancel a task.

The kernel code of the scheduler is the scheduling algorithm. The scheduling
algorithm queries the information directory for the current status of the resources in
the system. JFreeSim provides the flexible scheduler configuration tool for the user,
which makes it easy to perform different scheduling algorithms.

Network entities including network link, router and network are all created and
initialized by the main procedure. Network links are assumed to be time-shared if
multiple data transfers are performed concurrently. The data transfer time over a
network link is determined by the size of the data, the bandwidth and the latency of
the network link at the time of the transfer.

During the implementation of JFreeSim, control and communication overheads are
considered. Control overhead refers to the execution time used to discover and select the
resource, and communication overhead refers to the execution time spent to transfer
control message among the entities. Control overhead is estimated by considering the
complexity of the scheduling algorithm in terms of the number of operations. As
JFreeSim models various entities independently, it is able to trace each individual
message transfer among these entities and to estimate the related communication
overheads. The above overheads may also be directly specified by the user.

JFreeSim displays various build-in and user-defined measurements with the
comprehensive graphical interface through the special statistics entity. Furthermore,
JFreeSim is also able to analyze the activities of entities for a simulation and to
determine possible performance bottlenecks.

 JFreeSim: A Grid Simulation Tool Based on MTMSMR Model 339

5 Use Example of JFreeSim

In this section, we take hierarchical resource selection and task scheduling model as
an example to illustrate the use of JFreeSim.

To solve the problem of resource management and control of the application with a
large number of tasks in grid, a hierarchical resource selection and task scheduling
model is proposed and applied to control the execution of a large number of tasks.
This model solves the participant application problems, increases parallelism of task
scheduling, accelerates the speed of resource allocation, shortens the average response
time of the tasks, and therefore, offers an effective means to improve the system
performance.

In the course of simulation, the scenario that the tasks only request computing
resources is considered. Table 1 lists the main configuration used during the
simulation.

Table 1. Configuration used during the simulation

Parameter Configuration
Length of instructions 5000*80% ~ 5000*120% (million instructions)

Size of data file before execution 12.5*80% ~ 12.5*120% (kilobytes)
Size of data file after execution 30*80% ~ 30*120% (kilobytes)

Computing power of resources

Each resource contains three computers: computer 1
contains four CPU units, computer 2 contains four CPU
units, computer 3 contains two CPU units; computing
power is 377MIPS for each CPU unit

Number of resources 6 resources
Sharing mode of CPU Time-shared mode

Algorithm of assignment of center
scheduler

Round Robin algorithm for dispatching the tasks to
lower schedulers

Algorithm of resource selection for
lower scheduler

Random algorithm for selecting resources

Information directory configuration Default mode: simple layered mode
Network configuration Simple network mode, bandwidth: 10Mb/s

Statistics and analysis configuration Default configuration

Fig. 2. Situation of simulating 1000 tasks

340 H. Jin et al.

Fig. 3. Impact of the number of tasks to the execution time

The situation of simulating 1000 tasks execution is shown in Fig. 2. When the
number of lower scheduler increases from 1 to 8, average waiting time (AWT) of the
tasks is decreasing, but average execution time (AET) is increasing. Generally
speaking, average response time (ART) of the tasks is decreasing gradually.

In order to illustrate the impact of the number of tasks to the scheduling
performance, simulation is executed under the circumstances that the number of tasks
is 1000, 2000, and 5000, respectively. The simulation result is shown in Fig. 3.

From the above results, JFreeSim has flexible configuration strategies, and is able
to perform various simulations in the condition of different architectures and
applications. The results of experiments are as we expected.

6 Conclusions

In this paper, we have proposed a new simulation tool, JFreeSim, based on
MTMSMR model. As a modular and extensible simulation tool, JFreeSim realizes
many kinds of entity modeling and communication mechanism between all entities,
and makes system simulation accord with the characteristics of the grid environment.
Examples indicate that JFreeSim can provide users with flexibility in configuration
and meet requirements of various system architectures and applications, and the
simulation results are as expected.

Although JFreeSim is a useful tool for simulating the execution of various entities
in grid system, several limitations need to be addressed. Currently, the performance of
a computing node refers only to its computing capability. We are going to extend the
model with more information, such as the memory availability of each node. The
model of the network entity needs to be designed exactly the same as that in the actual
environments. More overheads should be estimated during data transfer. In addition,
JFreeSim suffers from the high overhead of Java thread management. The number of
entity thread is limited because of the capability of operating system. We are
investigating these issues and expanding the related entity models to overcome these
limitations.

 JFreeSim: A Grid Simulation Tool Based on MTMSMR Model 341

References

1. A. Sulistio, C. Shinyeo, and R. Buyya, “A Taxonomy of Computer-based Simulations and
its Mapping to Parallel and Distributed Systems Simulation Tools”, International Journal
of Software: Practice and Experience, Vol.34, No.7, pp.653-673, June 2004.

2. R. M. Fujimoto, “Parallel and Distributed Simulation Systems”, Proceedings of the
Simulation Conference, Vol.1, pp.147-157, Dec. 2001.

3. B. Hong and V. K. Prasanna, “A Modular and Extensible Simulator for Performance
Evaluation of Adaptive Applications in Heterogeneous Computing Environments”,
Proceedings of the Algorithms and Architectures for Parallel Processing, pp.453-461,
Oct. 2002.

4. MicroGrid: Online Simulation Tools for Grids, Distributed Systems and the Internet,
http://www-csag.ucsd.edu/projects/grid/microgrid.html.

5. Bricks Project. http://www.is.ocha.ac.jp/~takefusa/bricks/.
6. SimGrid: A Toolkit for the Simulation of Application Scheduling, http://gcl.ucsd.

edu/simgrid/.
7. GridSim: A Grid Simulation Toolkit for Resource Modelling and Application Scheduling

for Parallel and Distributed Computing, http://www.gridbus.org/gridsim/.
8. ChicSim Project, http://people.cs.uchicago.edu/~krangana/ChicSim.html.
9. HyperSim Project, http://hpcnc.cpe.ku.ac.th/moin/HyperSim/.

10. S. Phatanapherom, P. Uthayopas, and V. Kachitvichyanukul, “Fast Simulation Model for
Grid Scheduling Using HyperSim”, Proceedings of the Simulation Conference, Vol.2,
pp.1494-1500, Dec. 2003.

11. A. Sulistio and R. Buyya, “A Grid Simulation Infrastructure Supporting Advance
Reservation”, Proceedings of the 16th International Conference on Parallel and
Distributed Computing and Systems, pp.1-7, Nov. 2004.

12. R. Buyya and M. Murshed, “GridSim: A Toolkit for the Modeling and Simulation of
Distributed Resource Management and Scheduling for Grid Computing”, The Journal of
Concurrency and Computation: Practice and Experience, Vol.14, No.13-15, Wiley Press,
Nov.-Dec. 2002.

13. A. Sulistio, C. Shinyeo, and R. Buyya, “Visual Modeler for Grid Modeling and Simulation
(GridSim) Toolkit”, Proceedings of the 3rd International Conference on Computational
Science, June 2003.

14. SimJava: a discrete event simulation package for Java with applications in computer
systems modeling, http://www.dcs.ed.ac.uk/home/simjava/.

J. Cao, W. Nejdl, and M. Xu (Eds.): APPT 2005, LNCS 3756, pp. 342 – 352, 2005.
© Springer-Verlag Berlin Heidelberg 2005

OOML-Based Ontologies and Its Services
for Information Retrieval in UDMGrid∗

Xixi Luo and Xiaowu Chen

The Key Laboratory of Virtual Reality Technology, Ministry of Education,
School of Computer Science and Engineering, Beihang University,

Beijing 100083, P.R. China
luoxixi, chen @vrlab.buaa.edu.cn

Abstract. In order to effectively integrate and share the enormous dispersed re-
sources of various digital museums, University Digital Museum Grid
(UDMGrid) has been developed to provide one-stop information services about
kinds of digital specimens in the form of grid services. To eliminate the hetero-
geneity between the information resources, shared concepts for these digital
museums are indispensable. This paper studies OOML-based ontologies and its
services for information retrieval in UDMGrid, including the object oriented
ontology construction and ontology mapping, in which a novel inheritance
mechanism is proposed to eliminate logic confusion. On the basis of OOML-
based ontologies, ontology services are developed to assist the information re-
trieval by transforming global concepts to local concepts.

1 Introduction

Eighteen featured university museums have been digitized mainly relating to Geology
& Geography, Archaeology, Humanities & Civilization, and Aeronautics & Astro-
nautics [1]. These digital museums play an important role in the fields of education,
scientific research, as well as specimen collection, preservation, exhibition, and inter-
communication. However, these digital museums dispersed on different nodes in
CERNET (China Education and Research Network) [2] confront a problem that the
multi-discipline resources at these digital museums are isolated and dispersed without
sufficient interconnection. Hence it is necessary to propose a digital museum re-
sources integration solution, through which these eighteen digital museums would be
incorporated as a more comprehensive virtual one.

University Digital Museum Grid (UDMGrid) [3] [4] is proposed to using the grid
technology to integrate and share the distributed digital museum information re-
sources. From the user’s perspective, UDMGrid should perform as a virtual digital
museum, in which users can browser the digital specimen information in multiple
manners on only one UDMGrid portal instead of eighteen separate homepages, with-

∗ This paper is supported by China Education and Research Grid (ChinaGrid)(CG2003-GA004

& CG004), National 863 Program (2004AA104280), Beijing Science & Technology Program
(200411A), National Research in Advance Fund (51404040305HK01015).

 OOML-Based Ontologies and Its Services for Information Retrieval in UDMGrid 343

out rushing about among these digital museums. However, the information resources
of digital museums are constructed by different domain experts, who use special
metadata to describe information, thus the heterogeneity among these metadata brings
difficulties for users to locate, organize and integrate the information resources.
Therefore, shared concepts for these digital museums are indispensable.

Ontology defines a set of representational terms that we call concepts, among
which the interrelationship describes a target world [5]. In grid environment, Ontol-
ogy becomes increasingly crucial to operations about the analysis and integration of
information resources [6].Ontology is widely applied to information system. Knowl-
edge Sifter is a scaleable agent-based system that supports access to heterogeneous
information sources such as the Web, open-source repositories, XML-databases and
the emerging Semantic Web, in which the concept of ontology is central to this ap-
proach. By the Ontology Agent, user can pose queries to those data sources without
needing to know the location of the supporting data, nor how the ontological concepts
are materialized through the integration and ranking process [7]. Infosleuth is a re-
trieval agent system that provides access to information form multiple domains, re-
gardless of its heterogeneity or distribution, in which domain ontologies and an evolu-
tionary model of the use’s interests are some of the basic concepts used by the system
to help users identify and retrieve relevant domain information [8]. Meanwhile, the
application of ontology in grid is emerging. Earth System Grid, a project of the U.S.
Department of Energy Scientific Discovery through Advanced Computing (SciDAC)
program, used and modified ontological concepts for its domain area to provide a
basis for classifying and retrieving data files, collections and information about the
files and collections based on content for use in a grid context [6]. Furthermore, some
ontology development methodology comes out. ROD, a rapid ontology development
methodology that can be used to build ontology for underdeveloped domains, make
the development process more efficient so that domain concepts and relations can be
automatically discovered from large-scale semi-structured and/or unstructured textual
resources[4]. Additionally the ontology modeling is up-and-coming. OIL [9], DAML
[10], SHOE [11], RDF(S) [12] and OOML (improved Object Oriented Markup Lan-
guage) [13] are introduced as ontology modeling. Compare to former four kinds of
makeup language, OOML are suitable for the UDMGrid ontology modeling, since the
better support of generalization and specialization goes well with the ontology inter-
nal structure of UDMGrid.

This paper studies the OOML-Based Ontologies and its services for information
retrieval in UDMGrid, through which a unified view of available resources is pro-
vided to users. In this paper, OOML is adopted for object oriented ontology modeling,
in which a novel inheritance mechanism is proposed to eliminate logic confusion.
Based on the mechanisms of ontology mapping in UDMGrid, ontology services are
developed to assist the information retrieval.

The remainder of this paper is organized as follows. Section 2 presents the modules
concerning ontology in UDMGrid. Section 3 elaborates the OOML-based ontologies
in UDMGrid, including the hierarchy architecture and the mapping strategy. On the
basis of OOML-based ontologies, the ontology services are introduced in Section 4,
and Section 5 briefly issues the application workflow. Section 6 ends this paper with
conclusions and future work.

344 X. Luo and X. Chen

2 Ontology-Modules in UDMGrid

The framework and function modules of UDMGrid are shown as Fig.1, in which the
modules concerning ontology are in gray, including User & Applications, Ontology
and Data management, whose collaboration is depicted in Fig.2. The other modules
are indispensable for constructing a grid environment, such as job scheduler, and
security etc.

Fig. 1. The framework and function modules of UDMGrid

UDMGrid supplies an “on-stop” information service to users and applications. A
global ontology, which is tree structured, is presented to users & Application, so that
query statements can be constructed using the terms that appear in it. After the con-
struction, the query statements are sent to query agent which is responsible for sub-
mitting the queries to the ontology services.

Ontology is used to integrate information from heterogeneous domains to provide a
unified view of resources to users & application layer. In UDMGrid, it serves as a
bridge for application to utilize digital museum resources. Ontology Repository con-
tains a collection of concepts and their interrelationships, which provides an abstract
view of an application domain [5]. Ontology services make the mapping between
different ontology be available.

Data Management offers uniform interface to access heterogeneous resources, in-
cluding the database resources and web resources, and Grid Services Architecture
Data Access and Integration (Grid-DAI) [14] is a middleware to provide a component
library for accessing and manipulating data in Grid environment especially for
UDMGrid.

 OOML-Based Ontologies and Its Services for Information Retrieval in UDMGrid 345

Fig. 2. The collaboration of ontology-modules in UDMGrid

3 OOML-Based Ontologies of UDMGrid

3.1 OOML-Based Ontologies

OOML is an improved object oriented markup language which is outstanding in reus-
ability and expansibility suitable for the distributed environment. By means of object
oriented paradigm, such as abstract class [15], OOML can simplify the concept of
domain of interest. Moreover, it is also capable of solving frequently occurring con-
flicts in the distributed environment, thus enhance reusability and expandability of the
ontology [13]. In the field of object-oriented modeling, Unified Modeling Language
(UML) has become a standard modeling language and is widely supported by robust
commercial tools [16]. Therefore, we utilize the UML to implement the object ori-
ented ontology model.

There are two kinds of ontology to describe information resources of UDMGrid.
One is global ontology, including generic ontology and domain-dependent ontology,
both of which are stored in global ontology repository. The other one is local ontology
which are also called source-specific ontology, and this ontology is stored in the local
resources repository and might be keyword in web, attribute in database, or some
other terms used to index the local resources.

3.2 Global Ontology

Global ontology, the key to integrate resources, consists of a set of concepts used to
describe entities and relationships in digital museum. In principle, the global ontology
can be tailored to suit the needs of each user or each group of users that share a com-
mon vocabulary [17].

As mentioned above, there are two kinds of global ontology which are generic on-
tology and domain ontology. Generic ontology is characterized by information-rich
and flexibility, and with coarse granularity, thus suitable for kinds of domains, for

346 X. Luo and X. Chen

example, “name”, “person” can be used to describe a entity of aviation, archeology
and so on. Domain ontology is constructed by domain experts, who hold professional
and specific information of a domain. Compare to generic ontology domain ontology
has finer granularity and more specific, for example, “airplane name”, “aviator” of
aviation domain.

Fig. 3. UML for relationship of global ontol-
ogy in UDMGrid

Fig. 4. UML for relationship of attribute
classes

OOML-based ontology in UDMGrid express the conception of global ontology by
“class” which can be divided to node class and attribute class, just as show in Fig.3,
the node classes construct the basic hierarchical structure, such as GO_TOP,
DO_Specimen, DO_Archeology, DO_Aviation, DO_Geology (“Go” means generic
ontology, and “DO” means domain ontology). Each node class has a list of attribute
classes. For example, GO_Name, GO_Date, GO_Person .etc. are attribute classes of
node class GO_Top. The classes maintain the hierarchically structure by a inheri-
tance, which not only for the node classes, but also for the attribute classes, just as
shown in Fig.4, GO_Person, an attribute class of GO_Top, is the sup class of
DO_Creator, DO_Owner, and DO_Aviator which belong to different node classes.

Traditional inheritance mechanism means that the sub class should have all the at-
tributes of the sup class, which means that DO_Specimen should inherit all the attribute
class of GO_TOP, then the GO_Person and DO_Creator, DO_Owner are the attributes
of DO_Specimen, however, among which imply a inheritance relationship
(DO_Creator, DO_Owner inherit GO_Person), the concurrence of these three attribute
class in one node class will bring logic confusion. Thus we proposed a special inheri-
tance mechanism, during which, the sub node class will automatically omit the attribute
class, which is the supper class of that node class’s attribute classes. Following this

 OOML-Based Ontologies and Its Services for Information Retrieval in UDMGrid 347

special inheritance mechanism, the GO_Person would not appear in the attribute list
of DO_Specimen, because the DO_Creator, DO_Owner has substitute the GO_Person
by finer granularity.

3.3 Local Ontology

Local ontology is source-specific, might be keyword in web, attribute in database, or
some other terms can used to index the local resources. As resource provider, each
digital museum should publish their digital specimens accompanying by local ontol-
ogy in the form of metadata, which is utilized to support search, access and explana-
tion. In addition, the mapping relationship between global ontology and local ontol-
ogy should also be provided. In UDMGrid, there are three kinds of local ontology:
access metadata, database resource metadata and web resource metadata.

3.3.1 Access Metadata
Access metadata contains information on the location, structure, access rights and
ownership of the distributed data sources. For example, the database name, user name
and password, which are dispensable to access database are metadata of this kind.

3.3.2 Database Resource Metadata
Database is the main carrier of digital museum information resources. Database re-
source metadata describes the table information and attribute information of digital
museum databases, which are described by two designed object classes: Table Object,
Attribute Object. The detail design of these two object classes is illustrated in Table 1.

Table 1. Database resource metadata object classes

Object class Attributes describing the object class
Table Object Name, Database, Description, etc.
Attribute Objec Name, Type, Database, Table, Description, etc.

Table 2. Web resource metadata related object classes

Object class Attributes describing the object class
Keyword Object Name, URL, Description, etc.

3.3.3 Web Resource Metadata
Besides database, there are a large mount of web pages of digital museums which are mainly
non-structured or semi-structured. In order to utilize keywords to annotate the contents of
web pages, one object class is designed to record the information about the keywords: Key-
word Object. Table 2 shows some attributes belonging to this object classes.

3.4 Ontology Mapping

Ontology mapping is to establish the mapping relationship between global concepts of
global ontology and local concepts of local ontology. There are two mapping strategy
for two kinds of information resource. For database resource, every attribute object

348 X. Luo and X. Chen

will be mapped to an attribute class of global ontology with the database and table
information, for web resource, the keyword object will be mapped to an attribute class
of global ontology with the web page’s URL.

The ontology mappings are done by resource publishers, by which each local on-
tology is mapped to one or more than one global ontology. For example, an attribute
object “MingCheng” (Chinese for name) which is the local ontology of an aviation
database would be mapped to DO_Airplane_Name a keyword “ ” of web page
http://digitalmuseum.buaa.edu.cn/store/aircraft.jsp?aircraftid=12020201 as Fig.5
shows would also be mapped to DO_Airplane_Name. The mapping information
will be stored in the ontology repository in the form of Table 3 or Table 4.

Originally, the information resources in UDMGrid is expressed by local concep-
tions, after mapping, all the information resources can be described by the global
conceptions, on the basis of which the heterogeneity between the information re-
sources can be eliminated.

.

Fig. 5. Web page with keyword “ ”

Table 3. An example of the mapping information from database attribute “MingCheng” to
DO_Airplane_Name

Local ontology Global ontology Type Database Table
MingCheng DO_Airplane_Name String dm feiji

Table 4. An example of the mapping information from keyword “ ” to
DO_Airplane_Name

Local ontology Global ontology URL
DO_Airplane_Name http://digitalmuseum.buaa.edu.cn/store/air

craft.jsp?aircraftid=12020201

 OOML-Based Ontologies and Its Services for Information Retrieval in UDMGrid 349

4 Ontology Services

Ontology services assist the information retrieval by transforming global concepts to
underlying local concepts. As shown in Fig. 2, users select interested global concepts
of global ontology from portal and offer the corresponding value, and then query
agents construct an abstract query with these parameters, which is comprehensible but
can not be executed on local data source. Therefore, it is required for ontology ser-
vices to transform the abstract query to executable queries on relevant data source
which is comprised of local ontology metadata. Then the retrieval agent can utilize
the executable query to collect desirable information resources.

Two steps form the transformation. Firstly, the global concept should be extended
according to the inheritance relationship between attribute classes, after that the origi-
nal global concept is extended to more than one global concept which are the sub
classes of the original global concept. Secondly, these global concepts will be trans-
formed to the local concepts according to the mapping information.

We will take an example to detail the procedure. Suppose users select the global
concept and the corresponding value in the form of name = “horse” (name is a global
concept, and “horse” is the expected value of the name). Firstly, the original global
concept should be extended, and the original global concept GO_name will be ex-
tended to DO_Airplane_Name, DO_Ore_Name, and so on. Secondly, these global
concepts will be transformed to the local concepts. From Table 3 and Table 4, the
DO_Airplane_Name would be transformed to “MingCheng” , “ ” and so on.

Every local concept is from a specific data source, which may contain the corre-
sponding expected value, for example, the web page: http:// digitalmu-
seum.buaa.edu.cn/store/aircraft.jsp?aircraftid=12020201 with the local concept “
” may contain the expected value “horse”. If that is true, then the URL will be re-
turned to the user as the grid service result.

5 Application

The prototype has been developed to integrate the information resources of several
university digital museums, and provide integrative and intelligent information re-
trieval service through grid portal. The university digital museums involved include
the Digital Museum of Aeronautics and Astronautics (BUAA) [18], the Archaeologi-
cal Digital Museum (SDU) [19], the Geoscience Digital Museum (NJU) [20], and the
Mineralogical Digital Museum (KUST) [21], etc.

Kinds of grid application services have been designed and developed, such as Ab-
stractSQLService, OntologyService and DoSearchService (as shown in Fig.6). Ab-
stractSQLService is to form an abstract query based on the users’ request parameters
which are shown on the portal, and it is important to note that the definition of users’
request parameters is according to the definition of global ontologies. OntologySer-
vice is responsible to transform the abstract query to a few executable ones, and dur-
ing the process of transformation, OntologyService completes the transformation
between global ontologies and local ontologies using the mapping information in
ontology repository. The grid service DoSearchService has two functions. One is to

350 X. Luo and X. Chen

Fig. 6. UDMGrid deployment

execute these executable queries with the assist of Grid-DAI to get information re-
sources stored in database, and the other function is to get information resources from
webs, and both of the two functions need to transfer the retrieved result to the portal.

Here is an example to demonstrate the workflow. Suppose that a global ontology and
local ontology have been constructed, and the mapping relationship is also established.

1. A user access to the UDMGrid Portal, and submit his/her request to UDMGrid
through the Portal

2. The request then will be sent by Portal to Job manager, and the Job manger invokes
specific services to response the request

3. The first service is AbstractSQL, which is to form an abstract SQL query statement
that is composed of terms in global ontology. The formed query statement is
ASQL(SELECT all FROM specimen WHERE name=’horse’), and then this query
statement is sent back to Job manager

4. The second service is OntologyService that transforms abstract SQL query state-
ment (ASQL) to executable ones (RSQL). Two steps form the transformation. In
the first step the OntologyService extends ASQL to ASQLs using global ontology,
while in the second is to convert ASQLs to RSQL. In this example, the query
statements after first step are ASQLs1 (SELECT all FROM Aviation WHERE
DO_Airplane_Name =‘horse’), ASQLs2 (SELECT all FROM Archaeology
WHERE DO_Ore_Name =‘horse’) and so on, the terms like ‘Aviation’ and ‘Ar-
chaeology’ are sub classes of ‘specimen’, the terms like ‘aero name’ and ‘cultural
relic’ are sub classes of ‘name’. The final executable query statements after second
step are RSQL1 (SELECT all FROM aircraft WHERE MingCheng = ‘horse’),
RSQL2 (SELECT all FROM wenwu WHERE =‘horse’) and so on, the terms
like “MingCheng” and “ ” are database metadata or web metadata, and the
mapping information between global ontology and local ontology is used in second
step

5. These RSQLs in addition with the access information (based on access metadata)
will be sent to the last service DoSearchService that is response for the execution

 OOML-Based Ontologies and Its Services for Information Retrieval in UDMGrid 351

of the query statements generated by OntologyService. During this process, Grid-
DAI will be invoked to retrieve data from distributed data source, and then the re-
sult will be sent back to Portal

6. Finally, as Fig.7 shows, this job totally retrieved 1304 specimens from three digital
museums except for the Mineralogical Digital Museum of Kunming University of
Science & Technology, and 65 of which are from databases, 1249 from webs. In
Fig.7, the left part is a picture of an aircraft named “wild horse” in the Aeronautics
and Astronautics Digital Museum, and the right picture is about some 2000 years
ago carriage equipments in the Archaeological Digital Museum of Shandong Uni-
versity. Moreover users can download the results from portal.

Fig. 7. Parts of grid service result in UDMGrid portal

6 Conclusion and Future work

This paper presents an ontology-based digital museum resources integration solution
in Grid, its purpose is to solve the information island problem of established univer-
sity digital museums, provide easy resource sharing, and offer intelligent information
retrieval service. Much research and development has been done on ontology. In this
paper, not only the OOML-based ontology hierarchical structure is explicated, but
also the object oriented ontology mapping. Furthermore, this paper proposed a novel
inheritance mechanism, which can eliminate the logic confusion in the ontology. In
addition, Ontology services, which can assist the information retrieval by transform-
ing global concepts to underlying local concepts, are also discussed.

Recently, our work is regular keyword based information retrieval, in order to
make retrieved results more reasonable, and the potential relationship between speci-
mens can be found, the research on the data mining technology in UDMGrid is one of
the key topics of study work in the future, Moreover, distributed ontology need to be
developed to suit the grid environment.

352 X. Luo and X. Chen

Reference

[1] University Digital Museums, http://www.edu.cn/20020118/3018035.shtml.
[2] China Education and Research Network, http://www.edu.cn/.
[3] Xiaowu Chen, Xixi Luo, Zhangsheng Pan, Qinping Zhao. A CGSP-based Grid Applica-

tion for University Digital Museums. Third International Symposium on Parallel and Dis-
tributed Processing and Applications (ISPA'2005), Nanjing, China, 2005.

[4] Xiaowu Chen, Zhi Xu, Zhangsheng Pan, Xixi Luo. UDMGrid: A Grid Application for
University Digital Museums. Grid and Cooperative Computing (GCC 2004), pp.
720~728, Wuhang, China, 2004.

[5] Latifur Khan, Feng Luo Ontology construction for information selection, ICTAI’02.
[6] Line Pouchard, Luca Cinquini, Bob Drach. An ontology for scientific information in a

Grid environment-the earth system Grid, CCGRID.03.
[7] L. Kerschberg, M.Chowdhury, A. Damiano. Knowledge Sifter: Ontology-Driven Search

over Heterogeneous Database, SSDBM’04.
[8] Tomasz Ksiezyk, Gale Martin, Qing Jia Infosleuth: Agent-Based System for Data Inte-

gration and Analysis.
[9] D. Fensel, I. Horrocks, F. Van Harmelen, S. Decker OIL in a nutshell. Proceedings of the

12th European Workshop on Knowledge Acquisition, Modeling, and Management.
[10] Dan Connolly, Frank van Harmelen, Ian Horrocks, Annotated DAML+OIL Ontology

Markup, http://www.w3.org/TR/2001/NOTE-daml+oil-walkthru-20011218/.
[11] The SHOE Specification http://www.cs.umd.edu/projects/plus/SHOE/spec.html.
[12] Decker. S., Melnik. S., van Harmelen The Semantic Web: the roles of XML and RDF,

IEEE Internet Computing.
[13] Kangchan Lee, Myonghwan Yoo, Injeong Chung Improved markup language for seman-

tic Web using object oriented technology.
[14] Zhangsheng Pan, Xiaowu Chen, Xiangyu Ji. Research on Database Access and Integra-

tion in UDMGrid. Third International Symposium on Parallel and Distributed Processing
and Applications (ISPA'2005), Nanjing, China, 2005.

[15] Fowler Martin, Scott Kendall, UML Distilled second edition, Addidon-Wesley.
[16] Wei Liu, Zong-Tian Liu, Kun Shao UML-based domain ontology modeling for multi-

agent system.
[17] Jaime A Reinoso Castillo, Adrian Silvescu, Information Extraction and Integration from

Heterogeneous, Distributed, Autonomous Information Sources - A Federated Ontology-
Driven Query-Centric Approach.

[18] The Digital Museum of Aeronautics and Astronautics (Beihang University, BUAA)
http://digitalmuseum.buaa.edu.cn/.

[19] The Archaeological Digital Museum (Shandong University) http://museum.sdu.edu.cn/
index/index.asp.

[20] The Geoscience Digital Museum (Nanjing University) http://202.119.49.29/museum/
default.htm.

[21] The Mineralogical Digital Museum (Kunming Univ. of Sci. & Technol.) http://www.
kmust.edu.cn/dm/ index.htm.

J. Cao, W. Nejdl, and M. Xu (Eds.): APPT 2005, LNCS 3756, pp. 353 – 362, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Hybrid Integrated QoS Multicast Routing Algorithm
in IP/DWDM Optical Internet*

Xingwei Wang, Jia Li, and Min Huang

College of Information Science and Engineering,
Northeastern University, Shenyang, 110004, P.R.China

wangxw@mail.neu.edu.cn

Abstract. An integrated QoS multicast routing algorithm in IP/DWDM optical
Internet is proposed in this paper. Considering load balancing, given a multicast
request and flexible QoS requirement, to find a QoS multicast routing tree is
NP-hard. Thus, a hybrid algorithm based on simulated annealing and tabu
search is introduced to construct the cost suboptimal QoS multicast routing tree,
embedding the wavelength assignment procedure based on segment and wave-
length graph ideas. Hence, the multicast routing and wavelength assignment is
solved integratedly. Simulation results have shown that the proposed algorithm
is both feasible and effective.

1 Introduction

Dense Wavelength Division Multiplexing (DWDM) is a key technology to exploit
enormous bandwidth of optical fibers to meet the explosive growth of bandwidth
demand in the Internet. However, DWDM has been traditionally used just to increase
the transport capacity, leading to lack of scalability, high cost and low efficiency.
Thus, running IP directly over DWDM to eliminate one or more of these intermediate
layers (e.g., SONET/SDH, ATM) is considered to be the right solution [1].

From the architecture viewpoint, there are three models for IP over optical net-
works: peer, overlay and augmented [2], and we call that with peer model as
IP/DWDM optical Internet. Three routing approaches exist, namely integrated rout-
ing, overlay routing and domain-specific routing [2], and the integrated routing ap-
proach supporting the peer model is adopted in this paper.

There is no doubt that multimedia will become the dominate traffic in IP/DWDM op-
tical Internet. Many multimedia applications, such as video conferencing, distance edu-
cation, telemedicine, and etc. often have strict quality of service (QoS) requirements
(e.g., bandwidth and delay) and also multicast demands [3]. In order to support such
kinds of multimedia group applications, QoS based multicast routing tree should be
established, spanning the source and all destinations of the group. It has been proved

* This work is supported by the National Natural Science Foundation of China under Grant No.
60473089 and No. 70101006; the Natural Science Foundation of Liaoning Province in China
under Grant No. 20032018 and No. 20032019; the Modern Distance Education Engineering
Project of China MoE.

354 X. Wang, J. Li, and M. Huang

that finding such a tree is NP-hard [4]. Thus, a lot of heuristic and intelligent solutions
are proposed in the literature [5-9]. Leung [5] proposed an algorithm that develops a
new GA to solve the multiple destination routing problem without constraints. Jia [6]
proposed a QoS multicast routing algorithm to minimize the number of used wave-
lengths under rigid delay constraint. Ran [7] considered multicast routing and wave-
length assignment in multihop optical networks under a model in which multicast com-
munication requests are made and released dynamically over time. Cui [8] discussed the
problem of multi-constrained routing based on simulated annealing. Li [9] proposed a
QoS-guaranteed multicast routing protocol operating on top of the unicast routing pro-
tocol, to find a minimum cost solution under multiple QoS constraints.

In general, most of the existing algorithms aim simply at minimizing the cost of the
tree and often only cope with the rigid QoS constraints, i.e. the QoS requirements have
strict upper or lower bounds. However, due to the difficulty in accurately describing the
user QoS requirements and the inaccuracy and dynamics of the network status informa-
tion, we believe flexible QoS should be supported. This motivates our work.

End-to-end delay has been widely considered as an important measure of QoS. To
support flexible QoS, delay interval [10] instead of bounded delay is introduced to
describe the requirement. By defining the user QoS satisfaction degree, the proposed
algorithm could achieve a better tradeoff between QoS and network cost.

Considering load balancing, given a multicast request and flexible QoS require-
ment, the proposed algorithm could find a QoS multicast routing tree. Due to its NP-
hard nature, a hybrid algorithm [11] based on simulated annealing and tabu search is
introduced to construct the cost suboptimal multicast routing tree, embedding the
wavelength assignment procedure based on segment [12] and wavelength graph [13]
ideas. Hence, the multicast routing and wavelength assignment is solved integratedly,
which could optimize both the network cost and QoS.

The rest of this paper is organized as follows. In Sec. 2, the network model and the
mathematical model of the problem are described. Sec. 3 is devoted to the design of
the hybrid integrated QoS multicast routing algorithm. In Sec. 4, the proposed algo-
rithm is applied to several networks by simulation. The paper concludes with a sum-
mary of the results in Sec. 5.

2 Model Description

IP/DWDM optical Internet can be considered to be composed of optical nodes (such
as wavelength routers or OXCs) interconnected by optical fibers. Assume each optical
node exhibits multicast capability, equipped with optical splitter at which an optical
signal can be split into an arbitrary number of optical signals. In consideration of the
still high cost of wavelength converter, assume only some optical nodes are equipped
with full-range wavelength converters. Assume the conversion between any two dif-
ferent wavelengths has the same delay. The number of wavelengths that a fiber can
support is finite, and it may be different from that of others.

Given a graph),(EVG , where V is the set of nodes representing optical nodes and
E is the set of edges representing optical fibers. If wavelength conversion happens at
node Vvi ∈ , the wavelength conversion delay at iv is tvt i =)(, otherwise, 0)(=ivt .

The set of available wavelengths, delay and cost of edge Evve jiij ∈=),(are denoted

 A Hybrid Integrated QoS Multicast Routing Algorithm 355

by },,,{)(21 ijnijij wew λλλ L=⊆ ,)(ijeδ and)(ijec respectively, where ijw is the set

of supported wavelengths by ije and || ijij wn = .

A multicast request is represented as),,(ΔDsR , where Vs ∈ is the source node,
}}{{},,,{ 21 sVdddD m −⊆= L is the set of destination nodes, and Δ is the required

end-to-end delay interval of users. Suppose the set DsU ∪= }{ . The proposed algo-
rithm is to construct a multicast routing tree from the source to all the destinations, i.e.

),(FXT , VX ⊆ , EF ⊆ .
The total cost of T is defined as follows:

∈

=
Fe

ij

ij

ecTCost)()(.
(1)

To balance the network load and thus to reduce the call blocking probability, those
edges with more available wavelengths should be considered with priority. Thus, the
edge cost function is defined as follows:

|)(|)(ijij ewnec −= . (2)

}{max ij
Ee

nn
ij∈

= . (3)

Therefore, for the edge on which available wavelengths are more, the cost takes
smaller value, otherwise, takes larger value.

Let),(idsP denote the path from s to id in T . The delay between s and id

along T , denoted by
isdPD , can be represented as follows:

∈∈

+=
),(),(

)()(

iijii

i

dsPe

ij

dsPv

isd evtPD δ .
(4)

The delay of T is defined as follows:

}|max{)(DdPDTDelay isdi
∈∀= . (5)

Let],[highlow ΔΔ=Δ , and the user QoS satisfaction degree is defined as follows:

Δ≥

Δ<<Δ
Δ−Δ

−Δ
Δ≤

=

high

highlow
lowhigh

high

low

TDelay

TDelay
TDelay

TDelay

QoSDegree

)(%0

)(
)(

)(%100

)(. (6)

3 Algorithm Design

Simulated annealing (SA) [11] is well suited for solving combinatorial optimization
problems because it can avoid local optima effectively, but it requires excessive compu-
tation time. Tabu search [11] can improve convergence efficiency by using flexible

356 X. Wang, J. Li, and M. Huang

memory structures and reasonable tabu criteria. Integrating simulated annealing with
tabu search could not only alleviate local optima but also improve runtime performance.

3.1 Solution Expression

A solution is denoted by binary coding. Each bit of the binary cluster corresponds to
one node in),(EVG . The graph corresponding to the solution S is),(EVG ′′′ . Let the
function),(iSbit denote the ith bit of S , 1),(=kSbit iff Vvk ′∈ . The length of the

binary cluster is || V . Construct the minimum cost spanning tree),(iii FXT ′′′ of 'G . iT ′

spans the given nodes in U. However, G′ may be unconnected, thus S corresponds to
a minimum cost spanning forest, also denoted by),(iii FXT ′′′ . It’s necessary to prune

the leaf nodes not in U and their related edges in iT ′ , the result is denoted by

),(iii FXT , and assign wavelengths to iT .

3.2 Neighborhood Structure

Choose one node not in U randomly, and take the reverse value for the corresponding
bit in its binary coding solution.

3.3 Wavelength Assignment Algorithm

The objective is to minimize the delay of the multicast routing tree by minimizing the
number of wavelength conversions, making)(QoSDegree high. If iT is a tree, assign

wavelengths; otherwise, the solution is unfeasible.

3.3.1 Constructing Auxiliary Graph AG.
The method is described as follows:

(1) Dividing iT into segments.

Locate the intermediate nodes with converters in iT , and divide iT into segments

according to them, i.e., the edges having wavelength continuity constraint should be
merged into one segment. Number each segment. The source node is considered to be
equipped with wavelength converter.

(2) Creating nodes in AG.
In AG, add node 0a as the source node, and create node ja according to segment

j , where mj ,,2,1 L= , m is the number of segments. A mapping table is created to
record the relationship between ja and segment j . Each node in AG can be consid-

ered to be equipped with wavelength converter.
(3) Creating edges in AG.
Assume ka)1(mk ≤≤ corresponds to the segment that the source node in iT be-

longs to. Add a directed edge),(0 kaa between 0a and ka , making the intersection of

the available wavelength set on each edge in segment k as its available wavelength
set. For each node pair

1j
a and

2j
a),,1(2121 jjmjj ≠≤≤ , if segments 1j and 2j are

connected in iT , add a directed edge),(
21 jj aa between

1j
a and

2j
a , making the

 A Hybrid Integrated QoS Multicast Routing Algorithm 357

intersection of the available wavelength set on each edge in segment 2j as its avail-

able wavelength set.
By now, AG is constructed. In the extreme, if all the intermediate nodes of iT have

been equipped with wavelength converters, AG is iT .

3.3.2 Constructing Wavelength Graph WG.
Transform AG to WG. In WG, create wN * nodes, named ijb , for 1,,1,0 −= wi L and

1,,1,0 −= Nj L , where N is the number of nodes in AG, and w is the number of
wavelengths available at least on one edge in AG. All the nodes are arranged into a matrix
with w rows and N columns. Row i represents a corresponding wavelength iλ′ and

column j represents a node 'ja in AG. A mapping table is created to record the

relationship between i and iλ′ , and another one is created to record the relationship

between j and 'ja . The two tables will help map the paths in WG back to the paths and

wavelengths in AG. Create edges in WG, where a vertical edge represents a wavelength
conversion at a node, assigning 1 as its weight, and a horizontal edge represents an actual
edge in AG, assigning 0 as its weight. The WG construction method is shown in [15].

3.3.3 Wavelength Assignment.
Treat WG as an ordinary network topology graph. Find the shortest paths from the
source node column to each leaf node column in WG using Dijkstra algorithm [15],
and construct the multicast routing tree WGT . Map WGT back to AG, and denote the

resulting subgraph in AG by AGT . Since in WG all the nodes in one column

correspond to the same node in AG, those shortest paths that are disjoint in WGT may

intersect in AGT . Thus, pruning some edges is needed. If these edges are pruned in

AGT directly, it dose not consider wavelength conversion cost, thus doing it in WGT is

better. For example, for column h in WGT , there are two nodes ijb and kjb),(hjki ≠≠

with the edges),(ihij bb and),(khkj bb , indicating that two wavelengths 'iλ and 'kλ are

selected on edge)','(hj aa in AGT , thus ijb or kjb must be pruned. Here, only the node

with the shortest distance from the source node is reserved.
Map the paths in WG back to the paths and wavelengths in AG, and then map them

back to the paths and wavelengths in iT , thus wavelength assignment is completed.

3.4 Generating Initial Solution

A destination-node-initiated joining algorithm [14] is adopted to find an initial feasi-
ble solution, leading the algorithm to be more robust with fewer overheads.

3.5 Fitness Function

Fitness function)(Sf is determined by)(iTCost and)(QoSDegree together:

)(

*]1)([)(
)(

QoSDegree

TcountTCost
Sf ii ρ−+

= . (7)

358 X. Wang, J. Li, and M. Huang

)(iTcount is the number of trees in iT , ρ is a positive value. If iT has more than one

tree, add a penalty value to the cost of iT and take a smaller value for)(QoSDegree .

3.6 Cooling Schedule

Set the initial annealing temperature ηKt =0 , K is a sufficiently large number, and

}|)(min{}|)(max{ SpjjfSpjjf ∈−∈=η , Sp denotes the solution space, η can be
estimated simply by ug CC −=η , gC is the total cost of the current graph, and uC is

the cost of the subgraph composed of all the nodes in U. Based on the idea of “con-
trolling iteration times by the ratio of acceptance to rejection”, the allowed upper
bound of iteration times and that of continuous non-improved current optimum solu-
tion is increased gradually with annealing temperature descending. Both “stopping
after definite iteration times” and “controlling the change of the object value” are
adopted as termination rules.

3.7 Tabu List

Constructing tabu list involves designing tabu object, tabu length, aspiration crite-
rion and so on. According to the neighborhood structure, tabu object is 0-1 ex-
change of the components of solution vectors. Tabu length is the constant t. Aspira-
tion criterion is as follows: if a tabued solution in the candidate set could give a
better solution than the current optimum one, meaning that a new region has been
reached, make it free. For convenience, make the size of the candidate set is larger
than t and smaller than num, avoiding the phenomenon that all the elements in the
candidate set are tabued. If num is too small to satisfy the above prescription, it is
unsuitable to the proposed algorithm, however, it is easy to be solved because of its
tiny searching space.

3.8 Algorithm Description

In the hybrid algorithm, tabu search is integrated into simulated annealing to help
improve runtime performance. The proposed algorithm is described as follows:

Step 1. Run the destination-node-initiated joining algorithm to get an initial feasible
solution x , evaluate its fitness value)(xf according to Sec. 3.5. Let the current
optimum solution bestx be x . Clear the tabu list. Set initial annealing tempera-

ture to be 0t , and temperature-descended times k to be 0.

Step 2. If the termination rule is satisfied, bestx is the final solution, the algorithm

ends; otherwise, perform the following operations:
Step 2.1. Clear the candidate set and the exchanged bit set which records the

exchanged bit of each element in the candidate set according to the cur-
rent solution.

Step 2.2. If the candidate set is full or iteration times at the current temperature
have exceeded the allowed upper bound, go to Step 2.4; otherwise, ac-
cording to x, among the neighbors whose exchanged bits are not in the

 A Hybrid Integrated QoS Multicast Routing Algorithm 359

exchanged bit set, select a solution 'x randomly, and add 'x and its ex-
changed bit to the candidate set and the exchanged bit set respectively.

Step 2.3. If 'x is not in the tabu list or has been freed by the aspiration crite-
rion, evaluate the fitness value of 'x according to Sec. 3.5; otherwise, re-
ject 'x , go to Step 2.2. If)()'(bestxfxf < , 'xxbest ← , accept 'x , i.e.

'xx ← , go to Step 2.2; otherwise, let fΔ equal)()'(xfxf − , if 0≤Δf ,

accept 'x , otherwise, accept 'x at the probability ktfe /Δ− . Go to Step
2.2.

Step 2.4. If the candidate set is full, among the solutions not in the tabu list in
the candidate set, add the exchanged bit of the best one to the tabu list.
Free the tabu object whose tabu term has become 0.

Step 2.5. If iteration times at the current temperature have exceeded the al-
lowed upper bound, go to Step 3, otherwise; go to Step 2.1.

Step 3. 1+← kk . Modify the annealing temperature: 1−← kk tt μ)10(<< μ , go to

Step 2.

4 Simulation Research

Simulation research has been done over some actual network topologies and mesh
topologies with 20 nodes to 100 nodes. Several example topologies are shown in
Fig.1.

4.1 Auxiliary Graph Effect Evaluation

Compared with the wavelength graph based algorithm (WG-based) [15], the proposed
wavelength assignment algorithm based on segment and wavelength graph (S&WG-
based) needs one more time of graph transformation. To evaluate the auxiliary graph
effect, compare the runtime of S&WG-based with that of WG-based. The results are
shown in Fig. 2. The runtime of S&WG-based is less than that of WG-based in most
cases. When all the intermediate nodes have wavelength conversion capabilities, the
runtime of S&WG-based is just a little more than that of WG-based. Hence, the intro-
duction of auxiliary graph could reduce the problem complexity effectively.

(a) Topology 1 (b) Topology 2 (c) Topology 3 (d) Topology 4

Fig. 1. Example topologies

360 X. Wang, J. Li, and M. Huang

0
5

10
15
20
25

0.13 0.25 0.38 0.5 0.63 0.75 0.88 1
The ratio of intermediate nodes with

wavelength converters

R
un

tim
e

/ m
s

S&WG-based
WG-based

Fig. 2. Evaluation on auxiliary graph effect

4.2 Multicast Routing Tree Cost Evaluation

Comparing solutions obtained by the proposed algorithm with the optimal ones ob-
tained by exhaustive search, the quantitative analysis is made. The results are shown
in Table 1. ≤ 1% means that the ratio of the difference between the cost of the ob-
tained solution and the optimal cost (i.e. the deviation of the obtained tree cost from
the optimal one) is not more than 1%. ≤ 5% means that the deviation ratio is more
than 1% and not more than 5%, and others have the similar meanings. The value un-
der each ratio interval refers to the lower bound of the percentage of the solutions of
which deviation ratios are within this interval. Apparently, the solutions obtained by
the proposed algorithm are rather satisfied, sometimes are even optimal.

4.3 QoS Evaluation

The delay of the tree obtained by the proposed algorithm and its counterpart obtained
without considering)(QoSDegree are compared. Take Topology 1 of Fig. 1 (a) as
example, simulation results are shown in Fig. 3. The QoS of the multicast routing tree
is improved effectively and efficiently.

4.4 Runtime Evaluation

The runtime of the proposed algorithm is compared with that of the simulated anneal-
ing based algorithm. Simulation results are shown in Table 2, indicating that the pro-
posed algorithm could improve the searching efficiency effectively.

Table 1. Evaluation on multicast routing tree cost

Obtained tree cost vs. optimal tree cost
Topology

≤ 1% ≤ 5% ≤ 10% >10%
Topology 1 0.84 0.01 0.1 0.05
Topology 2 0.7 0.3
Topology 3 1
Topology 4 0.85 0.15

 A Hybrid Integrated QoS Multicast Routing Algorithm 361

Fig. 3. Evaluation on QoS

Table 2. Evaluation on runtime

Topology Runtime ratio (hybrid / SA)
Topology 1 0.70 / 1
Topology 2 0.98 / 1
Topology 3 0.83 / 1
Topology 4 0.52 / 1

5 Conclusions

An integrated algorithm for flexible QoS multicast routing and wavelength assign-
ment in IP/DWDM optical Internet is proposed. Given a multicast request and flexible
QoS requirement, a hybrid algorithm based on simulated annealing and tabu search is
introduced to construct QoS multicast routing tree, embedding the wavelength as-
signment procedure based on segment and wavelength graph ideas. Hence, the multi-
cast routing and wavelength assignment is solved integratedly. Simulation results
have shown that the proposed algorithm is feasible and effective.

The multimedia group communications we considered here are static, that is, the
group membership does not vary over time. Further study is needed on the dynamic
multimedia group communications. Besides, additional QoS parameters (such as
bandwidth, delay jitter, etc.) than only the delay should be considered, thus making
the model more general. In this regard, we propose to utilize the fuzzy information
processing methods.

References

1. Ghani N., Dixit S., Wang T. S.: On IP-over-WDM Integration. IEEE Communications
Magazine. Vol. 38. No. 3 (2000) 72-84

2. Rajagopalan B.: IP over Optical Networks: a Framework. IETF-RFC-3717 (2004)
3. Carlos A. S. O., Panos M. P.: A Survey of Combinatorial Optimization Problems in Multi-

cast Routing. Computers & Operations Research, Vol. 32. No. 8 (2005) 1953-1981
4. Ramaswami R., Sivarajan K. N.: Routing and Wavelength Assignment in All-Optical

Networks. IEEE/ACM Transactions on Networking. Vol. 3. No. 5 (1995) 489-500

15

20

25

30

35

1 2 3 4 5 6 7 8
Session number

D
el

ay
 /

m
s

no QoS
QoS

362 X. Wang, J. Li, and M. Huang

5. Leung Y., Li G., Xu Z. B.: A Genetic Algorithm for the Multiple Destination Routing
Problems. IEEE Transactions on Evolutionary Computation. Vol. 2. No. 4 (1998) 150-161

6. Jia X. H., Du D. Z., Hu X. D., et al: Optimization of Wavelength Assignment for QoS
Multicast in WDM Networks. IEEE Transactions on Communications. Vol. 49. No. 2
(2001) 341-350

7. Ran L. H., Rami M.: Multicast Routing and Wavelength Assignment in Multihop Optical
Networks. IEEE/ACM Transactions on Networking. Vol. 10. No. 5 (2002) 621-629

8. Cui Y., Xu K., Wu J. P., et al: Multi-Constrained Routing Based on Simulated Annealing.
Proc. IEEE ICC (2003) 1718-1722

9. Li L., Li C.: A QoS-Guaranteed Multicast Routing Protocol. Computer Communications.
Vol. 27. No. 1 (2004) 59-69

10. Dean H. L., Ariel O.: QoS Routing in Networks with Uncertain Parameters. IEEE/ACM
Transactions on Networking. Vol. 6. No. 6 (1998) 768-778

11. Jeon Y. J., Kim J. C.: Application of Simulated Annealing and Tabu Search for Loss
Minimization in Distribution Systems. Electrical Power and Energy Systems. Vol. 26. No.
1 (2004) 9-18.

12. Aijun D., Gee S. P.: A Survey of Optical Multicast over WDM Networks. Computer
Communications. Vol. 26. No. 2 (2003) 193-200

13. Chlamtac I., Farago A., Zhang T.: Lightpath (Wavelength) Routing in Large WDM Net-
works. IEEE Journal on Selected Areas in Communications. Vol. 14. No. 5 (1996) 909-
913

14. Wang X. W., Cheng H., Huang M.: A Tabu-Search-Based QoS Routing Algorithm. Jour-
nal of China Institute of Communications. Vol. 23. No. 12A (2002) 57-62

15. Wang X. W., Cheng H., Li J., et al: A Multicast Routing Algorithm in IP/DWDM Optical
Internet. Journal of Northeastern University (Natural Science). Vol. 24. No. 12 (2003)
1165-1168

J. Cao, W. Nejdl, and M. Xu (Eds.): APPT 2005, LNCS 3756, pp. 363 – 372, 2005.
© Springer-Verlag Berlin Heidelberg 2005

An Efficient Distributed Broadcasting Algorithm
for Ad Hoc Networks∗

Sun Qiang and Li Layuan

School of Computer Science, Wuhan University of Technology,
Wuhan, Hubei 430063, China

chyang_sun@163.com, jwtu@public.wh.hb.cn

Abstract. In this paper, an efficient distributed heuristic-based algorithm is
presented, which is based on joint distance-counter threshold scheme. It features
a distributed manner by each node in the network needing no global information.
Each node in an ad hoc network receives the message from its neighbors and
decides whether to operate retransmitting or not according to the signal strength
and times of the receiving messages. The algorithm has superiority such as
reliability, rebroadcast saving, less communication overhead for broadcasting
task, localized and parameter-less behaviors, so it is easy to operate and
possesses a good performance in mobile ad hoc communication environments. A
comparison with several other existing algorithms is conducted. It shows by
simulation results that the new algorithm is more efficient than others.

1 Introduction

A mobile ad hoc network is a self-organizing network without any existing fixed
communication infrastructure support. Because of its independence of a fixed
infrastructure, instant deployment, and easy reconfiguration capabilities, the ad hoc
wireless networking technology shows great potential and importance in many
situations, such as in military and disaster-relief applications.

In mobile ad hoc networks, the research of routing is still under way and
considerable routing protocols have been put forward [1, 2, 3, 4, 5, 6, 7]. But nearly all
these protocols depend on a broadcasting mechanism [8, 9, 10]. An efficient distributed
broadcast algorithm based on joint distance-counter threshold is proposed in this paper.
It drastically reduces the effect of the mobility and no exchanged messages or control
messages are needed. Joint distance-counter threshold is to provide both a satisfied
coverage, less broadcast and average latency, unlike joint distance threshold just
guaranteeing a high coverage, and counter threshold just guaranteeing a high saved
broadcast and less latency.

The rest of this paper is organized as follows. Section 2 provides an overview of key
efficient broadcast protocols proposed for ad hoc networks. Major related definitions
and assumptions are presented in Section 3. Joint distance-counter threshold broadcast

∗ This work is proudly supported in part by the Grand Research Problem of the National Science

Foundation of P.R.C. under Grant No. 90304018.

364

algorithm is introduced in Section 4. Simulation results are in Section 5, thus
conclusions are drawn in Section 6.

2 Related Work

A straightforward broadcast by flooding is usually very costly and will result the
broadcast storm problem [8]. Various efficient flooding schemes have recently been
proposed in the mobile ad hoc networks.

[12] proposed a broadcast protocol for ad hoc networks based on a distributed
hierarchical framework i.e. cluster structure. With a cluster platform, the broadcast
protocol in [12] can choose a dominating sets, which is only composed of clusterhead
nodes and gateway nodes to rebroadcast packets. In [13], using a passive clustering,
clustering algorithm is suspended until the data traffic commences. Thus it reduces
setup latency and control overhead caused by active clustering. The main drawback of
using cluster structure is its significant communication overhead for maintaining the
structure in a moving environment [14]. Ivan Stojmenovic et al. [15] proposed a simple
and efficient distributed algorithm for calculating connected dominating sets enhanced
by neighbor elimination scheme and highest degree key. Nevertheless location
information of each node should be available to implement such algorithm.

The Multipoint Relay (MPR) method [16, 18] is presented for efficient flooding in
mobile wireless networks. In [16], a node periodically exchanges the list of adjacent
nodes with its neighbors, each node collects 2-hop neighbor information, and selects the
minimal subset of forwarding neighbors that covers all neighbors within 2-hop away.
Only nodes chosen as forwarding neighbors rebroadcast the flooding packet. In [17], two
practical heuristics for selecting the minimum number of forwarding neighbors are
proposed. In order to choose forwarding neighbors, a node needs to know its 1-hop and
2-hop neighbors. Any changes from any neighbors can cause a reselection of forwarding
neighbors. Thus, the exchanged messages are main overhead to the algorithm.

Note that the global information is difficult and sometimes is impossible to get in ad
hoc networks, broadcast algorithms based on global network information cannot
provide scalability and is unsuitable for the qualifications of mobile ad hoc networks. In
[19], a generic distributed broadcast scheme is proposed, which depends on correct
k-hop neighborhood information to reduce the broadcast storm problem and guarantee
full coverage. If the neighborhood information cannot be acquired correctly, the
algorithms in [12, 13, 14, 15, 16, 17, 18, 19, 20, 21] cannot run properly. In order to
acquire correctly neighborhood information, more exchanged messages are needed,
which will deteriorate the performance of networks and consume many of limited
resources in ad hoc networks.

The distance-based algorithm and the counter-based algorithm in [8] give a simple
scheme, in which each node, when receiving packets from its neighbors, decides
whether to forward the broadcast packet or not according to distance or counter
threshold. But all these methods are in dilemma about how to provide both high
reachability, less rebroadcast and average latency.

Sun Q and Li. L.

 An Efficient Distributed Broadcasting Algorithm for Ad Hoc Networks 365

3 Notations and Assumptions

An ad hoc network can be mapped to a unit disk graph () ()EVtG ,= , where V is the set of
nodes and E is the set of logical edges at which two nodes are connected if their
geographical distance is within a given transmission range r. Considering the effect of
the mobile nodes, ()tG is a time-relevant function.

Fig. 1. An ad hoc network

The symbols and definitions used in this paper are defined as follows:

Definition 1: ()yxd , is defined the distance between node x and y within their
transmission range r, () ryxd ≤, .
Definition 2:)(xc denotes the number of received messages in node x during
broadcasting.
Definition 3: ThD denotes a distance threshold, where rDTh <≤0 .

Definition 4: ThC denotes a counter threshold, where 0≥ThC .

Definition 5: ()xN is a set of neighbors of node x, () () ryxdxNy ≤∈ ,, . See Fig.1, the
neighbors of node 1 consist of node 2, 3 represented as () { }3,21 =N .
Definition 6: ()xI is a subset of ()xN , () () ThDyxdxIy ≤∈ ,, . In Fig.1, () { }31 =I .

Definition 7: ()xE is a subset of ()xN , () () ryxdDxEy Th ≤<∈ ,, .See Fig.1, () { }21 =E .

Definition 8: ()xRt is a set of nodes that retransmit the message from source node,
{ } { }{ }{ }{ }VxCxcxExExExxExExExxxRt iTHkk ∈<∉∈= ,)(,)()()()()()(|)(2121 LIIULII .

Definition 9: R is defined as the coverage ratio of a broadcast algorithm, the number of
mobile nodes receiving the broadcast message divided by the total number of mobile
nodes.

The following assumptions are made in our system model.

1) Mobile nodes in an ad hoc network share a single common channel.
2) The maximum transmitting radius of each node in the network is the same.
3) There are no unidirectional links.
4) The explicit acknowledgement to confirm the reception is not needed.

366

4 Joint Distance Counter Threshold Broadcasting Algorithm

In this section, an efficient distributed heuristic-based algorithm is presented. The
proposed algorithm aimed at solving the broadcast storm problem without consuming
additional network resources, such as bandwidth and energy.

4.1 Details of the Algorithm

In order to alleviate the broadcast storm problem, ()xRt has to be found by an efficient
distributed heuristic-based algorithm. The relationship between the redundancy of a
broadcast and the additional coverage is revealed in [8] that the more additional
coverage a node gets, the less broadcast redundancy it has. Moreover, it also shows the
relationship among the additional coverage, ()yxd , and)(xc i.e. the farther ()yxd , is, the
larger additional coverage of a node can be acquired, and the larger)(xc is, the smaller
additional coverage of a node can be acquired.

Based on these relationships, joint distance-counter threshold broadcasting
algorithm is proposed. It works as follows. When a node x sends a broadcast message
M, its neighbors will receive M and compute ()yxd , according to the signal
strength [22]. If { })()()(21 xExExEy LII∈ or { } () ,,)()()(21 ThCxcxExExEy <∉ LII

{ } ()yNxxx ⊆L,, 21 , it easy to get that ()xRty ∈ and node y waits for a short time. The

delay helps to avoid nodes transmitting M all at once. If node y didn’t receive any
messages during this short delay, it will transmit M when time expires. Otherwise, it
will compute the distance from the sending node and wait again. If () ThCyc ≥ , node y

stops transmitting. The algorithm can be described as follows:

PROCEDURE ()MBroadcast
while timer is expired
 do
 if M has not been transmitted then send (M)
 end if
delete(M)
end while
PROCEDURE ()MageHandleMess
while v receives M Vv ∈
 do
 if M has been retransmitted then delete(M)
 else
 cancelTimer ()
 1+← cc
 push ()vud , to DisList
 end if
 if ()vud , > ThD and no values in DisList less than ThD

 then ()()1,, vudsetDelayt ←
 else
 if (c < ThC) then ()()cvudsetDelayt ,,←
 else
 delete (m)

,

Sun Q and Li. L.

 An Efficient Distributed Broadcasting Algorithm for Ad Hoc Networks 367

 end if
 setTimer(t)
 end if
end while

The DisList is a list to save distance value in each node. As nodes are mobile in ad
hoc networks, in order to get a less latency, counter threshold will be introduced and
distance threshold will be forbidden when there exists () (), ,Th id x y D y N x≤ ∈ . In order

to reduce collision, a distance and counter relevant function, setDelay(d, c) , is used to
set the waiting time for each node.

An analysis and comparison with the distance-based algorithm, the counter-based
algorithm, and the JDCT Algorithm will be given through an example in Fig. 2. The
result shows that through using joint distance-counter threshold scheme, JDCT
algorithm gets a better performance than the other two algorithms. First, some
assumptions are given as follows,

(1) The sequence of retransmission for the neighbors of a source node is decided by
its distance with the source node. The farther the distance is, the earlier a node
may retransmit M. In Fig. 2, as () () () () () () (),1 ,7 ,3 ,5 ,4 ,6 ,2d S d S d S d S d S d S d S> > > > > > ,

the sequence of retransmission is 1-7-3-5-4-6-2.
(2) There are no collision and contention during broadcasting, and 3=ThC .

Fig. 2. Comparison for redundant to broadcast among (a) distance-based algorithm, (b)
counter-based algorithm, and (c) JDCT algorithm

In Fig. 2, node S is a source node which broadcasts a message M, node 1-7 are
neighbors of S which will receive M all at once. Form above definitions and according
to [8], the retransmitting node set of distance-based algorithm (Fig. 2 a) and
counter-based algorithm (Fig. 2 b),)(xRtDB and)(xRtCB , are,

{ }7,6,5,4,3,2,1)(=xRtDB .

{ }7,3,2,1)(=xRtCB .

368

The sum of transmitted M in distance-based algorithm and counter-based algorithm
is 34 times and 25 times. In Fig. 2 b, the shaded region is the uncovered area caused by
using counter-based algorithm. The results are in accordance with the analysis in [8],
that is, the distance-based algorithm provides a better reachable but worse saved
broadcast and more latency time than the counter-based algorithm.

In Fig. 2 c, each node uses JDCT algorithm to decide whether to retransmit or not.
The node decide as follows,

S1: node 1 is the farthest node among the neighbor nodes of the source S, so node 1
retransmits M first.

S2: As () { } () () () ()7,13,,226,)1(,,7,6,2)1(1 dSdccISEN >==Φ=== , node 3 retrans-
mits M.

S3: As () { } () () () ()5,3,4,37,,32,)3(,,5,4,2)3(3 ddSdcISEN >=Φ=== , node 7 retransmits
M, node 2 quits retransmitting M.

S4: As () { } { } { } 3)6(,6)7(,,5,1)7(,,6,5,17 ==== cISESN , from definition 8, the retrans-
mitting node set is { }7,5,4,3,1)(=xRtJDCT . The sum of transmitted M is 28 times.

Form above analysis, in Fig. 2, the JDCT algorithm can get the same reachable as
distance-based algorithm with less cost, only 1 additional retransmitting node and 3
additional transmitted M, than counter-based algorithm.

5 Simulation Results

Simulations are performed to evaluate the new broadcasting algorithm and compare
with other existing algorithms. A Mobility Framework for OMNeT++ [23] is used as a
tool. The network possesses 100 nodes in a 10001000× meter square. Nodes in the
simulation move according to “random waypoint” model [24]. The transmitting radius
of each node is 230 meters and channel capacity is 10Kbits/sec. The mobility speed of a
node is set from 0 m/s to 30 m/s. The CSMA/CA is used as the MAC layer in our
experiments. Four distributed broadcasting algorithms are compared, as following.

− SB: straightforward broadcasting algorithm
− DB: distance-based broadcasting algorithm
− CB: counter-based broadcasting algorithm
− JDCT: JDCT broadcasting algorithm

The performance measures of interest are:

• Average latency: defined as the interval between its arrival and the moment when
either all nodes have received it or no node can rebroadcast it further.

• Ratio of Saved Rebroadcast (RSR): the total number of saved rebroadcast nodes is
divided by the total number of nodes receiving the broadcast message.

• Ratio of Collision (RC): the total number of collisions is divided by the total number
of packets supposed to be delivered during broadcast.

• Total Number of Contention (TNC): the total number of contention during broadcast.
• Total Number of Received Messages (TNRM): the sum of the number of messages

heard by each node during broadcast.

Sun Q and Li. L.

 An Efficient Distributed Broadcasting Algorithm for Ad Hoc Networks 369

Fig. 3. (a) Distance threshold ThD vs. RSR (R=1) (b) RSR vs. Mobility speed

Fig. 4. (a) Average Latency vs. Mobility speed (b) RC vs. Mobility speed

Fig. 5. (a) TNC vs. Mobility speed (b) TNRM vs. Mobility speed

0 5 10 15 20 25 30
0

200

400

600

800

1000

T
N

R
M

Mobility Speed (m/s)
(b)

 SB
 DB
 CB
 JDCT

0 5 10 15 20 25 30
0

20

40

60

80

100

120

140

160

C
ha

nn
el

 C
on

te
nt

io
n

nu
m

be
r

Mobility Speed (m/s)
(a)

 SB
 DB
 CB
 JDCT

90 120 150 180 210
0
5

10
15
20
25
30
35
40
45
50
55

R
S

R
 (

%
)

Distance Treshold (m)
(a)

 DB
 JDCT

0 5 10 15 20 25 30
0
5

10
15
20
25
30
35
40
45
50
55

R
S

R
(%

)

Mobility Speed (m/s)
(b)

 SB DB
 CB JDCT

0 5 10 15 20 25 30
0.0

0.1

0.2

 SB DB
 CB JDCT

R
C

(%
)

Mobility Speed (m/s)
(b)

0 5 10 15 20 25 30

240

320

400

480

560

A
ve

ra
ge

 L
at

en
cy

 (
m

s)

Mobility Speed (m/s)
(a)

 SB
 DB
 CB
 JDCT

370

The first set of experimental results (Fig. 3 a) demonstrates the relationship between
average RSR and distance with R=1. The result shows that JDCT algorithm obtains
higher SRS than the distance-based algorithm. When mrDTh 2109.0 =≈ , the RSR of

both distance-based algorithm and JDCT algorithm get their maximum value of SRS,
about 52% in JDCT, while 28% in DB. When rDTh 9.0> , the distance-based algorithm

can’t cover the whole network, and the RSR of JDCT decreases. This is
understandable, because with the threshold value increasing, the number of
retransmitting nodes decreases. When rDr Th <≤9.0 , by using joint distance-counter

threshold scheme, the JDCT can always find enough nodes to retransmit the packet.
Thus a high RSR value can be acquired.

In Fig. 3b-Fig. 5, the results are obtained with the parameters of
3,9.0

,1
==

=
ThTh CrD

R
 . Fig.3b shows the ratio of saved rebroadcast using different

algorithms with varying node speeds (from 0 to 30m/sec). The average latency using
different broadcast algorithms with varying node speeds is reported in Fig. 4a. Fig. 4b
gives the ratio of collision using different algorithms with varying node speeds. Fig.5 a
presents the total number of contention in different node speeds using different
algorithms. Fig. 5b shows the total number of received messages in different algorithms
with varying node speeds. In ad hoc networks, the key to lessen the broadcast storm
problem is to reduce redundant rebroadcasts, collision, and contention. Thus, a high
and stable ratio of saved rebroadcast is desirable to reduce the broadcast storm problem.
As shown in Fig. 4b-Fig. 5, the broadcast storm problem becomes serious with mobility
increment. In Fig.3b, the RSR value of DB and CB fluctuates seriously when mobility
increases, whereas the JDCT algorithm keeps a high stable ratio of saved rebroadcast
(more than 50%). The results show the robustness and resilience of the JDCT. This
makes JDCT a good choice for the mobile environment.

As the topology is dynamic in ad hoc networks, a low average latency is desirable for
scalability of the protocol. In addition to the algorithm process time, the average latency
is influenced by many factors such as collision, channel contention and the number of
nodes not delivered broadcast packets. The other important factor that affects the
average latency is related to the schedule algorithm that decides which node to
rebroadcast the message. For example, in the distance-based algorithm, a node can
rebroadcast the message only if none of transmission distances are below a given
distance threshold, thus, the node may consume more time to hear the messages from
its neighbors and the average latency may be higher than other algorithms. In Fig. 4a,
the average latency of the JDCT algorithm is the lowest among the four broadcast
algorithms because the JDCT algorithm gets the lowest collisions, lower contention,
and the least received messages with varying node speeds by using joint distance-
counter threshold scheme (Fig. 4b-Fig. 5).

6 Conclusion

It is challenging to build efficient broadcast algorithm for ad hoc networks, due to the
dynamic nature of the nodes. In ad hoc networks, centralized algorithms are not suitable
for the global information is extraordinarily difficult to get. While many existing
broadcast algorithms depended on local information such as k-hop neighbor information

Sun Q and Li. L.

 An Efficient Distributed Broadcasting Algorithm for Ad Hoc Networks 371

can not get a desirable performance when local information cannot be acquired correctly
because of existing hidden/exposed terminals. As we know, ad hoc networks are
resource-limited networks, algorithms based on exchanging control messages such as
hello message as well as that based on GPRS device are both unsuitable.

In this paper, an efficient distributed heuristic-based algorithm named JDCT
algorithm is presented. The algorithm is based on joint distance and counter threshold
scheme. It runs in a distributed manner by each node without needing any global
information. The simulation experiments have demonstrated the efficiency of proposed
broadcast algorithm meanwhile the broadcast storm problem is significant alleviated.
It’s a good choice for mobile ad hoc networks considering the algorithm’s efficiency
and robustness. Our future work includes a performance evaluation of the JDCT
broadcast algorithm in realistic simulation environments with packet collision and node
mobility. In addition, our JDCT algorithm will be embed in some routing protocols
such as AODV protocol to investigate its efficiency in ad hoc networks.

References

1. Li Layuan, Li Chunlin: A QoS multicast routing protocol for dynamic group topology.
Information Sciences, Vol. 169(1-2). Elsevier, UK (2005) 113-130

2. S. Ramanathan, M. Streenstrup: A Survey of Routing Techniques for Mobile
Communication Networks. Mobile Networks and Applications, pp. 89-104, 1996

3. C. E. Perkins, E. M. Royer: Ad hoc on-demand distance vector (AODV) routing. In
Proceedings of the 2nd IEEE Workshop on Mobile Computing Systems and Applications,
Feb. 1999

4. Li Layuan, Li Chunlin: A routing protocol for dynamic and large computer networks with
clustering topology. Computer Communications, Vol. 23(2), Elsevier, UK (2000) 171-176

5. David B. Johnson, David A. Maltz, Yih-Chun Hu, and Jorjeta G. Jetcheva: The Dynamic
Source Routing Protocol for Mobile Ad Hoc Networks (DSR). http:
//www.ietf.org/internet-drafts/draft-ietf-manet-dsr-09.txt, April 2003

6. Li Layuan, Li Chunlin: Acta Informatica. A distributed QoS-aware multicast routing
protocol. Computer Science, Vol. 40 (3). Springer-Verlag GmbH (2003) 221-233

7. J. Cartigny, D. Simplot: Border Node Retransmission Based Probabilistic Broadcast
Protocols in Ad-Hoc Networks. In Proc. 36th International Hawaii International Conference
on System Sciences (HICSS’03), Hawaii, USA. 2003

8. Y.-C. Tseng, S.-Y. Ni, Y.-S. Chen and J.-P. Sheu: The Broadcast Storm Problem in a
Mobile Ad Hoc Network. MOBICOM'99, ACM Press New York (1999) 151-152

9. E. Royer and C-K. Toh: A Review of Current Routing Protocols for Ad-Hoc Mobile
Wireless Networks. IEEE Personal Communications, Vol. 6(4). IEEE Communications
Society (1999) 46-55

10. J. Broch et al: A performance comparison of multi-hop wireless ad hoc network routing
protocols. Proc. ACM MOBICOM, ACM Press New York (1998) 85-97

11. Mike Burmester, Tri van Le and Alec Yasinsac: Weathering the storm: managing
redundancy and security in ad hoc networks. Proceedings of the 3rd International
Conference on AD-HOC Networks & Wireless. LNCS 3158, Springer(2004) 96-107

12. E. Pagnani, G. P, Rossi: Providing reliable and fault tolerant broadcast delivery in mobile
ad-hoc networks. Mobile Networks and Applications, Vol. 5(4). DBLP (1999) 175-192

13. M. Gerla, TJ Kwon, G. Pei: On demand routing in large ad hoc wireless networks with
passive clustering. Proceedings of the IEEE WCNC 2000, Chicago, IL, September 2000

372

14. Wu and H. Li: A dominating-set-based routing scheme in ad hoc wireless networks.
Telecommunication Systems, Vol. 18(1-3). DBLP (2001) 13--36

15. Ivan Stojmenovic, Mahtab Seddigh, Jovisa Zunic: Dominating Sets and Neighbor
Elimination-Based Broadcast Algorithms in Wireless Networks. IEEE Transactions on
Parallel and Distributed Systems, Vol. 1(13). IEEE Computer Society (2002) 14-25

16. A. Qayyum, L. Viennot, A.Laouiti: Multipoint relaying for flooding broadcast messages in
mobile wireless networks. In Proceedings of the 35th Annual Hawaii International
Conference on System Sciences (HICSS’02), Hawaii, 2002

17. G Calinescu, Ion I. Mandoiu, P J. Wan, and A. Z. Zelikovsky: Selecting forwarding
neighbors in wireless ad hoc networks. Mobile Networks & Applications, Vol. 9(2). ACM
Press (2004) 101-111

18. ITSI STC-RES10 Committee. Radio Equipment and Systems: High Performance Radio
Local Area Network Type 1, Functional Specifications. 1999, 7

19. Jie Wu, Fei Dai: A Generic Distributed Broadcast Scheme in Ad Hoc Wireless Networks.
IEEE TRANSACTIONS ON COMPUTERS, Vol. 10 (53). IEEE Computer Society (2004)
1343-1354

20. B. Chen, K. Jamieson, H. Balakrishnan, and R. Morris: Span: An Energy-Efficient
Coordination Algorithm for Topology Maintenance in Ad Hoc Wireless Networks. ACM
Wireless Networks, Vol. 5 (8). ACM Press (2002) 481-494

21. H. Lim, C. Kim: Multicast Tree Construction and Flooding in Wireless Ad Hoc Networks.
In Proc. of the ACM Int’l Workshop on Modeling, Analysis and Simulation of Wireless and
Mobile Systems (MSWIM) (2000) 61-68

22. R. Dube, C. D. Rais, K.-Y. Wang and S. K. Tripathi: Signal stability based adaptive routing
(SSA) for ad hoc mobile networks. Technical Report CS-TR-3646. University of Maryland,
College Park (1996)

23. A. Vargas: OMNET++Discrete Event Simulation System. version 3.0 edition, 2005
24. Christian Bettstetter, Christian Wagner: The Spatial Node Distribution of the Random

Waypoint Mobility Model. Mobile Ad-Hoc Netzwerke, 1. deutscher Workshop über Mobile
Ad-Hoc Netzwerke WMAN 2002, March 25-26, 2002 41-58

Sun Q and Li. L.

J. Cao, W. Nejdl, and M. Xu (Eds.): APPT 2005, LNCS 3756, pp. 373 – 381, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Chaos-Based Dynamic QoS Scheme
and Simulating Analysis

Qigang Zhao and Qunzhan Li

School of Electrical Engineering, Southwest Jiaotong University,
Chengdu, Sichuan, 610031, China
qgzhao@vip.sina.com

Abstract. This paper takes use of chaos related theories to analyze the real net-
work traffic about its chaotic properties and prediction attributes. Owning to the
good performance of chaos-based prediction in short term forecasting, the pre-
diction-based DiffServ framework and the Dynamic QoS scheme are firstly
given in the paper. The OPNET-based simulating result shows that the QoS per-
formaces and the network’s throughputs in heavy-load environment are all im-
proved remarkably, comparing with the traditional static QoS configuring and
measure-based dynamic QoS setting methods.

1 Introduction

To guarantee the QoS (Quality of Service) in multi-service applied environment of
Internet, IETF put forward both RSVP (Resource Reservation setup Protocol) based
on InerServ (Integrated Services) model and coarse granularly control based on Diff-
Serv (Differentiated Services) model. InerServ requires that all routers in the network
have to support RSVP and keep the transmitting status for every service stream while
service transports. Owning to the present networks needing huge upgrade at vast cost
and the additional status data requiring too much network resources, InterServ is gen-
erally only applied in small-scale network or access network and difficulty to be used
in large-scale networks. In DiffServ, Most of working loads are put to edge routers
and the core routers only need classifying the different services according to pre-
defined PHB (Per Hop Behavior). Since its simplicity and modifying the present net-
work little, DiffServ is attached more importance [1-3] than InterServ.

The main idea of DiffServ model is that firstly to classify different services and de-
fine as different behavior aggregates (labeled by service code: codepoint) in edge
route, then routing equipments to transmit the service streams according to its code-
point, wherein resources such as the cache and the bandwidth are allocated based on
the service priority. The present resource allocated schemes of router are mainly static
resource allocating method (SRAM), in which the services’ resource allotting regula-
tions and priorities are fixedly pre-set in both edge and core router, and the regula-
tions and priorities shall not be changed in service transmitting. SRAM generally
takes use traditional QoS parameters estimating method, such as to estimate the re-
quirements of peak and average bandwidth of different services based on ON/OFF
model, Markov modulating passion process or Markov modulating hydro-process.
The limitations of SRAM are as following: (1) the statistic characteristics of services

374 Q. Zhao and Q. Li

source generally are difficulty to be described by one service model; (2) the services’
statistic properties will change owning to the queues; (3) different service usually has
different stream characteristics. For the reasons, SRAM is difficulty to guarantee QoS
of the precedence service while the network is busy and hard to improve the network
throughput when the network is idle.

In view of the limitations of SRAM, the article [4] has given a measure-based pa-
rameters estimating method (MPEM). The method periodically collects the network
traffic value in edge router, estimates the QoS and dynamically modify the resource
allocating parameters. In paper [5], the method, that to allocate resources for different
service is implemented by modify the WFQ (Weight Fair Queue) value of service
based on the traffic measurement, is put forward. However, the references [6-7] have
proved that Internet traffic has characteristics of long-term correlation and short-term
multi-fractal, which just matches the chaotic attractor’s macroscopical and micro-
scopical characteristics. Thanks to the properties of bursting and complex dynamics
of network traffic, the value of MPEM usually loses its availability. The present traf-
fic property and distributing characteristic generally do not represent several hours, or
several minutes later traffic properties, so MPEM also has its limitations.

Due to the limitations of SRAM and MPED, as well as chaos and fractal properties
of network traffic, this paper puts forward a framework of prediction-based DiffServ
model and gives the chaos-based dynamic QoS scheme. The OPNET-based simulat-
ing shows that the method given in this paper has the best performances among the
three methods and the network throughput is also improved remarkably by using the
scheme.

2 Network Traffic Prediction

Based on Lyapunov Exponent Methodology, the references [6-7] have given the analy-
sis results of that both LAN and WAN’s traffic have the characteristics of chaos and
fractal. The Primary Component Analysis (PCA) method is used in this paper to analyze
the real traffic data and the primary components of the data are shown as figure 1. Ac-
cording to PCA method, the curve of noise or period signal’s primary components is a
line paralleled with X-axis, but that of chaos signal’s is a crossing fixed point, negative
slope bias. In figure 1, the PCA slopes of both video and data traffic are all negatives, so
the traffic of real network has distinct characteristic of chaos.

The traditional methodologies of network traffic forecasting are mainly based on
dynamics or statistics, wherein the subjective model of data sequences is firstly cre-
ated and then the prediction results are calculated by basis of the model. However, if
the chaos theory is applied, the results of prediction may be directly calculated
through the data sequences themselves and the subjective model may be not necessary
to build. In this way, the man-made subjectivity is avoided and the accurateness and
reliability are all improved. Because of “butterfly effect” property of chaos system,
the chaotic data sequences can not be forecasted in long term. In short term, however,
the motion path of the chaotic system changes little, so the traffic can be short-term
predicted by basis of collected data sequences.

 Chaos-Based Dynamic QoS Scheme and Simulating Analysis 375

1 2 4 6 8 10
-15

-12

-8

-4

0

4

i 1 2 4 6 8
-80

-60

-40

-20

0

20

ln
(

/
)

 Figure 1-a Video PCA of SC unicom ISN Figure 1-b Data PCA of SC unicom ISN

ln
(

/
)

i

Fig. 1. The PCM of IP services traffic

As a measure value to estimate degree of chaotic motion divergence, Lyapunov
exponent is an excellent traffic forecasting parameter. The reference [9] has employed
it to predict short-term electric power load in power system and gotten good perform-
ance. We firstly take it as prediction parameter to forecast IP traffic in this paper.

Let MY as prediction central point, the nearest neighbor point of MY in phase space

is kY , the distance between them is (0)Md , and the largest Lyapunov exponent is

1λ . Here,

(0) minM M J M K
j

d Y Y Y Y= − = − (1)

1
1 1M M K kY Y Y Y eλ

+ +− = − (2)

In equations, for vector 1MY + only the last component 1()nx t + is unknown in recon-

struction phase space, so 1MY + can be computed based on equation (2). The algorithm

of how to calculate the largest Lyapunov exponent 1λ can refer to the paper [10].

Based on the historical data sequences of 2003 January to March (collected from
telecom operator Sichuan Unicom , the sample rate is 1/5Min), we reconstruct the
phase space by delaying the coordinate system, and build the short-term traffic predic-
tion model. To guarantee the forecasting accuracy, only one step prediction method is
used, that is, to search reference vectors over again after every prediction step. The
prediction result and the original data of February 6 are compared and shown in figure
2. The statistics of prediction are shown in table 1.

As shown in table 1, the errors of chaos prediction are mainly smaller than 3%, and
the amounts of those smaller than 2% exceeds 75% of total. In view of that the packet
loss rate of the present operator’s network has reached or exceeded 10% when the
network is busy, and taking into account the reality that the packet loss rate of voice
service smaller than 3% can be acceptable, the performance of chaos prediction can
excellently satisfy the requests of IP dynamic QoS control scheme.

376 Q. Zhao and Q. Li

0 50 100 150 200 250 300
0

10

20

30

40

50

Figure 2-a Original signal and prediction result

0 50 100 150 200 250 300
-0.5

0

0.5

1

1.5

2

Figure 2-b Prediction error

original signal
prediction result

Mb/s

Sample num.

Sample num.

Mb/s

Fig. 2. Original data and prediction result comparison

Table 1. the Statistics of chaos prediction result

Month Average Error Max Error <2%
1 1.62% 8.34% 75%

2 1.57% 7.23% 83%

3 1.60% 7.91% 79%

3 Prediction-Based DiffServ Model

3.1 The Framework of Prediction-Based DiffServ

The QoS performance of IP services can be described as two layers parameters: net-
work and service layer QoS. The QoS of two layers influence each other, but not only
one layer affects another. The QoS parameters of network layer, such as delay, delay
quiver, packet loss rate and bandwidth, will affect the service layer performance pa-
rameters for instance voice clearness and voice quiver etc. And, the admission control
of service layer will influence the total traffic of network, so the QoS performance of
network will be affected. Consequently, the correct IP QoS control scheme should be
following as:

− The admission control of service layer must be based on the current states of the
network’s resources;

− Every service’s traffic control of network layer must be based on the transmitting
requirement of the service;

− The QoS of two layers should be controlled separately through the information
feedback from another layer, so the communication scheme between service layer
and network layer must be created.

 Chaos-Based Dynamic QoS Scheme and Simulating Analysis 377

Fig. 3. Prediction-based DiffServ Model

By basis of before-mentioned network traffic prediction model and methodology,
the service admission controller can get the guideline information about how to con-
trol the network traffic of the service, so the exchange scheme of QoS control infor-
mation between two layers can be efficiently created. Accordingly, the prediction-
based DiffServ model is built and shown as Fig.3.

As shown in Fig.3, being different with traditional model, one component—
Resource Controlling Server (RCS) is added to the DiffServ framework. In the model,
the edge router is responsible to collect the traffic data of every service, to upload to
RCS, and to accept the QoS commands about resource assignment from RCS; RCS is
responsible to predict next period traffic of every service, to send out the QoS com-
mands to edge and core router, and to answer the information query about resource
statues for service controller such as Softswitch, Web server and video server etc.

Fig. 4. Prediction-based QoS control process

378 Q. Zhao and Q. Li

3.2 Prediction-Based QoS Control Process

Based on the Prediction-based DiffServ model, the QoS control process is followed as
Fig.4.

Therein, the steps to control the network traffic are as following:

1. The edge router collects the current traffic data of every service periodically (the
interval time might be two or five minutes), and send to RCS by using UDP message;

2. The RCS predicts the next period traffic of every service by basis of the current
traffic information from edge routers and the historical data in database;

Based on the next phasic traffic prediction and the values of the current network
bandwidth, service priority etc, the resource allotting parameters are calculated;
The following are the formulas to compute the bandwidth allotting parameters:

If, (1) (2) ()pt pt pt TS S S n B+ + ⋅⋅⋅ + ≤

then
()

()
()

pt
A T

pt
j

S i
B i B

S j
= × ; (3)

else,
()

()
()A T

j

W i
B i B

W j
= × .

(4)

In equations, ()ptS i , ()AB i , iW are separately the prediction traffic, allotted

bandwidth and priority right of service i , and TB is the total bandwidth of the router.

1. To send the QoS command to edge and core router, in which the resource allotting
parameters are included;

2. The router modifies its PHB value and allot transmitting resource such as band-
width, queues etc to every service according to the newly PHB, and do the trans-
mitting and routing based on the service’s priority and the modified PHB.

The steps of service admission control are as following:

1. The client sends the service request to the service controller;
2. The service controller queries the RCS about the traffic status of the next period

after obtaining the service request;
3. The service controller accepts or refuses the service request based on the traffic

changing tendency.

4 Simulating and Analysis

To evaluate the performance of prediction-based dynamic QoS control scheme, we
have simulated the model (labeled as scheme 3) with OPNET modeler produced by
OPNET Corp, and compared with SRAM (labeled as scheme 1) and MPEM (labeled
as scheme 2). For convenience, the router queues algorithms of the three methods
have all taken WFQ. The simulation topology of the model is as figure 5.

 Chaos-Based Dynamic QoS Scheme and Simulating Analysis 379

Fig. 5. Network simulation topology

Table 2. Service type and its priority

In simulating model, there have including three types traffic sources (Http, Video
conference and voice) and a traffic interference client, which separately are counter-
parts with three types servers and another interference client. The traffic model used
in simulating is Psedo-self-similar model. The service type and priority of four types
traffic can referred to table 2. One VC++ designed module used to collect traffic data
is added to the edge router node. The additionally designed node RCS (not necessary
in SRAM and MPED simulating model) is communicating with edge and core router
based on ICI. The link between edge router and core router is the bottleneck of the
simulating network, whose bandwidth is 2Mb/s. The simulating is continued 20 hours
and under heavy-load.

The corresponding Packed Delay curves of three methods are shown in figure 6-a,
Packet Delay Jitter in figure 6-b, Packet loss in figure 6-c,traffic throughput in figure
6-d, and performance statistics in table 3.

As shown in figure 6 and table 3, when there exists bottleneck in network and the
communications are under heavy load, the values of Packet Delay, Packet Delay Jitter
and Packet Loss of SRAM is the biggest in three simulating, those of MPED smaller,
those of our method smallest and the throughput of our method is biggest, thanks to
applying the prediction-based service admission control and resource allocation in our
model.

380 Q. Zhao and Q. Li

0 5 10 15 20
0

0.05

0.1

0.15

0.2

Figure 6-a Packet Delay
0 5 10 15 20

0

0.05

0.1

0.15

0.2

Figure 6-b Packet Delay Jitter

0 5 10 15 20
0

100

200

300

400

Figure 6-c Packet Delay Loss
0 5 10 15 20

0

0.5

1

1.5

2

2.5
x 10

6

Figure 6-c Network Throuthput

Sk1
SK2
Sk3

Sk1
SK2
Sk3

Sk1
Sk2
Sk3

Sk1
Sk2
Sk3

s

Min

s

Min

Min Min

pkts Kb

Fig. 6. Network simulating comparison

Table 3. Performance comparison of three schemes

Notice: APD, Average Packet Delay; MPD, Max Packet Delay; Average Packet
Loss(packets);APL, Average Traffic Throughput; ATT, Average Traffic Throughput;
Sk1—Static Setting; Sk2—Measure Based; Sk3—Prediction Based

5 Conclusions

The bandwidth allotting and QoS control of IP network must be a complex and
dynamic process due to the bursting, chaos and multi-fractal properties of IP multi-
service. SRAM-based DiffServ can not guarantee the whole process QoS of IP
integrated services, and the MPED-based improves some but not remarkable own-
ing to not taking chaos characteristics of traffic into account. Based on the chaotic
nature of network traffic, the chaos-based traffic prediction method is evaluated and

 Chaos-Based Dynamic QoS Scheme and Simulating Analysis 381

the prediction-based DiffServ model is given in the paper. The simulating result
shows that the QoS of services and throughput of network all have been improved
remarkably.

Acknowledgments

We wish to thank Operation Managing Department of Sichuan Unicom for its provid-
ing the IP traffic data of the NGN for the experiment.

References

1. IETF working Group:Resource Reservation Protocol(RSVP)– version 1Functional Speci-
fication.RFC 2205.

2. IC.J. Cheng, M.Anthony, C.Armando et al.: QoS Architecture Based on Differentiated
Services for Next Generation. IETF Internet Draft, July 2000.

3. K.Isoyama, M.Yoshida et al.: Policy Framework QoS Information Model for MPLS. IETF
Internet Draft, 12 July 2000.

4. Bin Zhao, Zengji Liu: Estimation of QoS Parameters Based on Measurement and Its Apl-
lication, Journal of Software, Vol.13, No.7 2002.

5. Xiaohui Jin, Jiandong Li: Using Measurement-Based WFQ to Implement PDS and Its Per-
formance Analysin, ACTA Electronica Sinica, Vol.30 No.3 2002.

6. Leland W. E., TAQQU M. S., WILLINGER W.: On the self-similar nature of Ethernet
traffic. IEEE/ACM Transactions on Networking,1995,2:1-15.

7. FELDMANN W, Gilbert A.C, Willinger W.: Data networks as cascades: investigating the
multigractal nature of Internet WAN traffic. ACM SIGCOMM 98 Conference. Vancouver,
BC, Canada,1998.

8. G. Sugihara and R. M. May: Nonlinear forecasting as a way of distinguishing chaos from
measurement error in time series, Nature, 1993,344:734-741.

9. Zhishuan liang, Liming Wang: Short-term load prediction for power system based on
Lyapunov exponent, Chinese Electrical Engineering Transaction, 2002, 18(5): 368-371.

10. D. Kugiurmtzis: State space reconstr uction parameters in the analysis of chaotic time se-
ries-the role of the time window length, Physica D, 1998,95:13-28.

J. Cao, W. Nejdl, and M. Xu (Eds.): APPT 2005, LNCS 3756, pp. 382 – 389, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Dynamic Delaunay Triangulation
for Wireless Ad Hoc Network

School of Computer Science, National University of Defense Technology,
Changsha 410073, Hunan,China
liming_cs@hotmail.com

Abstract. Geometric routing protocols benefit from localized Delaunay triangula-
tion, which can guarantee the delivery of packet and bound the length of route. In
this paper we propose a localized algorithm to build Delaunay triangulation in
wireless ad hoc network. The algorithm considers not only stationary situation but
also dynamic situation in which nodes can dynamically join and leave the network.
The communication cost of the algorithm is O(nlogn). Therefore, our algorithm is
applicable in wireless sensor network, in which nodes dynamically join and leave
network. We also prove the correctness of the algorithm.

Keywords: Topology control, ad hoc network, Delaunay Triangulation,
geometric routing protocols.

1 Introduction

Geometric routing protocol[1] is an attractive problem in wireless ad hoc network, which
exploits the underlying geometry of ad hoc network locations to keep routing overhead
small. Geometric routing does not require the nodes to maintain routing tables, a distinct
advantage given the scarce storage resources and the relatively low computational power
available to the wireless nodes. More importantly, given the numerous changes in to-
pology expected in ad hoc networks, no re-computation of the routing tables is needed
and therefore we expect a significant reduction in the overhead. Thus, geometric routing
is scalable. Geometric routing is also uniform, in the sense that all nodes execute the same
protocol when deciding to which other node to forward a packet.

But the design of geometric routing protocol is a challenging problem. Guaranteeing
the successful arrival at the destination of the packet requires the underlying topology
to be planar. Guaranteeing the route traveled by the packet is at most t times longer than
the shortest path requires the underlying topology to be t-spanner of UDG. Delaunay
triangulation[2] satisfies these two requirements. However, build Delaunay triangula-
tion is not a viable solution, because edge may be longer than the communication range
and it cannot be built locally.

In this paper, we present an algorithm to build Delaunay triangulation in wireless ad
hoc network. The algorithm can build and maintain Delauany triangulation in dynamic

Ming Li, XiCheng Lu, and Peng Wei

 Dynamic Delaunay Triangulation for Wireless Ad Hoc Network 383

environment efficiently. The communication cost of the algorithm is O(nlogn), where n
is the number nodes in the network. Our algorithm is the first algorithm can ensure such
low communication cost in dynamic environment.

The rest of the paper is organized as follows. We provide some definitions and no-
tions in section 2. In section 3 we review some related works. In section 4 we describe
our algorithm and prove its correctness. Finally, we draw conclusion in section 5. The
proofs of theorems are in appendix.

2 Preliminaries

2.1 Definitions and Notions

Given a set of nodes V positioned in a two-dimensional space, a wireless ad hoc network is
modeled as a Unit Disk Graph (UDG), which is composed of all vertices V and all possible
edges connecting pairs of nodes of V whose distance is not longer than the maximum
transmission range R. Small letters are used to represent nodes. The 1-hop neighbors of
node u and itself is represented as N(u). Edges are represented by the two nodes define
them, for example, node u and v define edge uv; a triangle defined by node u, v and w is
represented as Δ uvw. The disk or circle that has edge uv as its diameter or has Δ uvw as its
inscribed triangle is represented as D(uv) or D(uvw) respectively. An edge uv is called GG
edge (Gabriel Graph) [3]if D(uv) does not contain any other node of V. A triangulation of a
node set V is called a Delaunay triangulation and represented as Del(V) if the circumstance
of each of its triangles does not contain any node of V. Unit Delaunay Graph has all the
edges in Del(V) except those longer than R, represented as UDel(V).

2.2 Spanner

A graph His a t-spanner of a graph Gif V(H)=V(G) and, for any two nodes uand vof V(H),

|| (,) || || (,) ||H Gu v t u vΠ ≤ Π , where (,)G u vΠ is the shortest path connecting node u and v

in graph G, || (,) ||G u vΠ is the length of the shortest path. Constant t is calledthe length

stretch factor of the spanner H. There are several geometrical structures that are proved to

be t-spanners for the Euclidean complete graph For example, Yao graph [6], θ -graph [7]

and Delaunay triangulation [8][9] have been shown to be t-spanners. However, the first

two geometrical structures are not guarantee to be planar. Though Delaunay triangulation

is planar t-spanner, it has edges that are longer than R. As UDel(V) is a t-spanner of UDG

[4][5], it is much more suitable for topology of wireless ad hoc networks.

3 Related Work

Geometric routing protocols have received much attention for its excellent perform-
ance. It does not need to maintain routing tables and impose little routing computation

384

overhead. Unfortunately these algorithms are not guarantee to converge, such as
compass routing[10]. When fails they need to use methods, such as right-hand rule, to
guarantee to converge, which require the underlying topology is planar. Under the
assumption of the planar topology, many geometric routing protocols guaranteed to
converge have been proposed, such as GPRS[11](Greedy Perimeter Stateless Routing),
FACE routing [12].

As density is important to routing performance, many efforts have made to create
good planner spanners of UDG. Delaunay triangulation is a planar spanner of UDG.
Gao[4] use Delaunay triangulation to build a planar graph called RDG (Restricted
Delaunay Graph), which is a spanner of UDG. The communication of their algorithm is
O(n2).Li et el[5] use Delaunay triangulation to build another planar graph called PLDel(
Planarized Delaunay triangualtion) with communication cost O(nlogn).

Our algorithm improves Li’s algorithm. Although the asymptotic communication
cost is the same, O(nlogn). The communication cost of our algorithm is about 50% less.
And our algorithm can accommodate to node entrance and departure.

4 Dynamic Delaunay Triangulation Algorithm

4.1 Overview

In this section, we propose an algorithm, called DynDel, to dynamically build planar
spanner of UDG. DynDel algorithm considers not only stationary situation but also
dynamic situation.

DynDel algorithm is a localized algorithm, in which nodes only need to exchange
information with 1-hop neighbors. And the topology generated by DynDel algorithm is
planar spanner of UDG. DynDel algorithm comprises of three steps.

Neighbor Discovery. In the neighbor discovery step, nodes exchange HELLO mes-
sage periodically. HELLO message contains the ID and position of nodes. As soon as
the neighbor discovery step is complete, node can compute all GG edges incident to it.
As GG edges belong to Delaunay triangulation, node puts these GG edges into its in-
cident edges set.

GG Edge Broadcasting. After the computation of GG edges, nodes broadcast incident
GG edges. All nodes collect the information of incident GG edges of its 1-hop
neighbors.

Delaunay Triangulation. Assume node gathered all the information of its 1-hop

neighbors, node computes the Delaunay triangulation of its 1-hop neighbors. If

, , (())uv uw vw Del N u∈ and / 2vuw π∠ ≥ and edge vw does not intersect with any GG

edge in node u’s GG edge list, then node u sends message proposal(uvw). When node u

receives message proposal(vuw), if (())uw Del N u∈ , then node u sends message ac-

cept(vuw), else node u sends message reject(vuw). When node u receives message

accept(vuw), if (())uw Del N u∈ , then node u puts edge uw into incident edge set.

M. Li, X. Lu, and W. Peng

 Dynamic Delaunay Triangulation for Wireless Ad Hoc Network 385

Condition / 2vuw π∠ ≥ is used to limit the number of proposal message. Without

this condition, as shown in fig 1, node u will broadcast arbitrary number of wrong

proposal messages. If edge uv belongs to Del(N(u)), and exists node w so that

2
vuw

π∠ ≥ , then node u waits for the proposal message from node w to put edge uv into

its incident edge set.

Fig. 1. Arbitrary number of wrong proposal messages

Our algorithm can support node join and leave network at any time at anywhere. So
the neighbor discovery step is a continuous process. When detected some node joins
and leaves network, the algorithm is triggered.

4.2 Dynamic Aspect of the Algorithm

Node departure or fail is detected by lost HELLO message. When node u detects some
node v failed, which is 1-hop neighbor of u, node u computes Del(N(u)) and broadcasts
the disappearance and appearance of GG edges and proposal messages.

When node u detects some node v active, node u computes Del(N(u)) and broadcasts
all incident GG edges and proposal messages.

4.3 Final Algorithm

In this section we summarize the description of our algorithm. The algorithm is divided
into two separated components. The first component reacts to asynchronous events,
such as detection of new nodes or detection of failed nodes reception of messages. The
action of this component is depicted in fig 2. The second component uses information
collected in the first one to keep the Delaunay triangulation update. The second com-
ponent is a synchronous component. The action of this component is depicted in fig 3.

Let i+1 be the current iteration of the second component of the algorithm. The al-
gorithm keeps the following data structures:

386

case detects node x join the network
1 1() () { }i iN u N u x+ += ∪

NewNodei+1 =TRUE
case detects node x leave the network

1 1() () { }i iN u N u x+ += −

FailedNodei+1 = TRUE
case receives message proposal(wuv)
if ()iuv TRI u∈ then sends message accept(wuv)

 else sends message reject(wuv)
case receives message proposalAdd(wuv)

if 2 ()iwuv TRI u∈ then sends message accept(wuv)

 else send message reject(wuv)
case receives message proposalDel(wuv)

deletes edge uv from node u’s incident edge set
case receives message GG(xy)

2() 2() { }GG u GG u xy= ∪

case receives message GGAdd(xy)
2() 2() { }GG u GG u xy= ∪

case receives message GGDel(xy)
2() 2() { }GG u GG u xy= −

case receives message accept(wuv)
if 2 ()iwuv TRI u∈ then puts edge uv into node u’s incident edge set and

marks wuv as accepted
case receives message reject(wuv)

if 2 ()iwuv TRI u∈ then deletes edge uv from node u’s incident edge set and

marks wuv as rejected

Fig. 2. Asynchronous component

Ni(u)—1-hop neighbors of node u,

NewNodei+1—Boolean variable, TRUE if detected new nodes,

FailedNodei+1 – Boolean variable, TRUE if detected failed nodes,

GGi(u) – GG edges incident to node u,

GG2i(u) – GG edges broadcasted by 1-hop neighbors of node u,

TRIi(u) – Triangles proposed by node u in ith iteration,

TRI2i(u) – Triangles not proposed by node u in ith iteration but in Del(Ni(u)).

4.4 Correctness

Theorem 1 proves that DynDel builds a planar graph. Theorem 2 proves that UDel(V) is
a sub-graph of the graph built by DynDel. Therefore, DynDel builds a planar t-spanner
of UDG(V). See the proof in appendix.

M. Li, X. Lu, and W. Peng

 Dynamic Delaunay Triangulation for Wireless Ad Hoc Network 387

Function Iteration
if Ni+1(u) == Ni(u) and GG2i+1(u)==GG2i(u) then return
Calculate Delaunay(Ni+1(u))
Compute GGi+1(u)
Assume uv0,uv1,uv2,...,uvk(v

k==v0) is the list of edges that belong to Del (Ni+1(u))
in clockwise order.

for each vi do
if edge uvi is a GG edge then puts edge uvi into GGi+1(u)
else if 1 / 2i iuv v π+∠ ≥ then put 1i iv uv+ into TRIi+1(u)

else puts 1i iv uv− into TRIi+1(u)

if 1 / 2i iv uv π+∠ ≥ then put 1i iv uv+ into TRI2i+1(u)

endfor
if NewNodei+1 == TRUE
then broadcasts all the edges in GGi+1(u)
if NewNodei+1 == FALSE and FailNodei+1 == TRUE
then broadcasts GGAdd message of all the edges in GGi+1(u)- GGi(u)
 broadcasts GGDel message of all the edges in GGi(u)- GGi+1(u)
collects all GG edges broadcast by 1-hop neighbors into GG2i+1(u)
for each 1i iv uv+ in TRI2i+1(u) do

 if edge vi+1vi intersected with some edge in GG2i+1(u)
then deletes 1i iv uv+ from TRI2i+1(u)

endfor
for each 1i iv uv+ in TRI2i+1(u)-TRI2i(u) do

 broadcasts proposalAdd(uvi+1vi)
endfor
for each 1i iv uv+ in TRIi(u)-TRIi+1(u) do
broadcasts proposalDel(uvi+1vi)
endfor
i = i+1
NewNodei+1 = FALSE
FailNodei+1 = FALSE
GGi+1(u) =
TRIi+1(u) =

Fig. 3. Synchronous component

Theorem 1: Graph built by algorithm DynDel is planar.

Theorem 2: Graph built by algorithm DynDel ⊇ UDel(V).

4.5 Communication Cost of Algorithm

Under stationary situation, where no nodes join and leave the network, the communi-

cation cost of the algorithm DynDel is O(nlogn), where n is the number of nodes in the

388

network. In fact, the cost of HELLO message is O(nlogn). For the condition

/ 2vuw π∠ ≥ , each node broadcast at most 4 proposal messages. And two nodes reply

each proposal message. So the cost of proposals and their replies is O(nlogn). For there

are only O(n) GG edges, the cost of broadcasting GG edges is O(nlogn). Therefore the

total communication cost of algorithm is O(nlogn), where n is the number of nodes in

the network.
Under dynamic situation, communication cost of the algorithm is also O(nlogn). For

the communication cost is not more than the communication under stationary situation.
Under favorable condition, the communication cost is O(logn).

5 Conclusions

Geometric routing protocols take much advantage of localized Delaunay triangulation.
Therefore, in this paper we propose an algorithm to build localized Delaunay triangu-
lation, which is a planar spanner of UDG. Unlike previous algorithms, the algorithm
considers not only stationary situation but also dynamic situation, in which nodes can
join and leave network at any time and any moment. The communication cost of node’s
entrance and departure is O(nlogn), where n is the number of nodes in the network.
Like previous algorithm, the communication cost of setup the network is O(nlogn),
where n is the number of nodes in the network. In future work, we want to improve the
algorithm to accommodate to network with mobile nodes.

References

[1] J. Urrutia. Routing with Guaranteed Delivery in Geometric and Wireless Networks. In I.
Stojmenovic, editor, Handbook of Wireless Networks and Mobile Computing, chapter 18,
pages 393-406. John Wiley & Sons, 2002.

[2] P. Bose and P. Morin. Online Routing in Triangulations. In Proc. 10th Int. Symposium on
Algorithms and Computation (ISAAC), volume 1741 of Springer LNCS, pages 113-122,
1999.

[3] P. Bose, L. Devroye, W. Evans, and D. Kirkpatrick, “On the spanning ratio of gabriel
graphs and beta-skeletons", in Proceedings of the Latin American Theoretical Infocomatics
(LATIN), 2002.

[4] J. Gao, L. J. Guibas, J. Hershberger, L. Zhang, and A. Zhu. “Geometric spanners for
routing in mobile networks. MobiHoc 2001.

[5] X.-Y. Li, G. Calinescu, and P.-J. Wan. “Distributed construction of a planar spanner and
routing for ad hoc wireless networks,” IEEE Infocom 2002,New York, June 2002

[6] A. C.-C. Yao, “On constructing minimum spanning trees in k-dimensional spaces and re-
lated problems,” SIAM J. Computing, vol. 11, pp. 721–736,1982.

[7] J. M. Keil and C. A. Gutwin, “Classes of graphs which approximate the complete euclidean
graph,” Discrete Computational Geometry, vol. 7, 1992.

[8] J.M. Keil and C.A. Gutwin, “The Delaunay triangulation closely approximates the com-
plete euclidean graph,” in Proc. 1st Workshop Algorithms Data Structure (LNCS 382),
1989.

M. Li, X. Lu, and W. Peng

 Dynamic Delaunay Triangulation for Wireless Ad Hoc Network 389

[9] D.P. Dobkin, S.J. Friedman, and K.J. Supowit, “Delaunay graphs are almost as good as
complete graphs,” Discrete Computational Geometry,1990.

[10] E. Kranakis, H. Singh, and J. Urrutia. Compass Routing on Geometric Networks. In Proc.
11th Canadian Conference on Computational Geometry, pages 51-54, 1999.

[11] Brad Karp and H.T. Kung. GPSR: Greedy perimeter stateless routing for wireless net-
works. In Proceedings of the 6th Annual International Conference on Mobile Computing
and Networking (MOBICOM-00). page 243-254. N.Y. August 6-11 2000. ACM Press

[12] P. Bose, P. Morin, I. Stojmenovic, and J. Urrutia. Routing with guaranteed delivery in ad
hoc wireless networks. ACM/Kluwer Wireless Networks, 7(6):609–616, 2001. 3rd int.
Workshop on Discrete Algorithms and methods for mobile computing and communica-
tions, 1999, 48-55.

Appendix

Lemma 1. If edge uv belongs to Del(N(u)) and Del(N(v)), edge uv intersects edge st,

|| ||uv R≤ , || ||st R≤ , || ||ut R≤ , || ||vt R≤ , || ||su R> and || ||sv R> , then there is a GG

edge intersects edge uv.

Proof is omitted for space limited.

Theorem 1: Graph built by algorithm DynDel is planar

Proof: Suppose there exist two edges in DynDel intersected each other.
For edges in DynDel do not intersect GG edges, neither of two edges are GG edges.
Assume these two edges are edge uv and edge st. As quadrangle is convex, there is at

least one obtuse angle. Assume it is utv∠ . ||uv|| ≤ R implies ||ut||<R and ||vt||<R.

In addition, ||us||>R and ||vs||>R. Otherwise, assume ||us|| ≤ R, so u,v,s,t are all in

N(u)and N(s). So there exist at most one edge of uv and st in Del(N(u)) ∪ Del(N(s)).

Therefore ||us||>R and ||vs||>R. So lemma 1 implies there exists GG edge intersects uv,

which contradicts the property of DynDel. Therefore, DynDel is planar.

Theorem 2: Graph built by algorithm DynDel, DynDel(V) ⊇ UDel(V)

Proof: Graph built by algorithm DynDel satisfies the following property

()uv DynDel V∈ iff (())uv Del N u∈ , (())uv Del N v∈ , uv does not intersect with

any GG edges.

For each edge ()uv UDel V∈ ,it is obvious that (())uv Del N u∈ , (())uv Del N v∈ .

For GG(V) is sub-graph of UDel(V) and UDel(V) is planar, edge uv does not intersect

with any GG edges.

Therefore, DynDel(V) ⊇ UDel(V)

Energy Efficient Multipath Routing in Large
Scale Sensor Networks with Multiple Sink Nodes

Yuequan Chen, Edward Chan, and Song Han

Department of Computer Science, City University of Hong Kong
csedchan@cityu.edu.hk

Abstract. Due to the battery resource constraint, it is a critical issue
to save energy in wireless sensor networks, particularly in large sensor
networks. One possible solution is to deploy multiple sink nodes simulta-
neously. In this paper, we propose a protocol called MRMS (Multipath
Routing in large scale sensor networks with Multiple Sink nodes) which
incorporates multiple sink nodes, a new path cost metric for improving
path selection, dynamic cluster maintenance and path switching to im-
prove energy efficiency. MRMS is shown to increase the lifetime of sensor
nodes substantially compared to other algorithms based on a series of
simulation experiments.

1 Introduction

Recent advance in micro-electromechanical system technology has made it pos-
sible to develop low-power and low-cost sensors with at a much reduced cost,
so that large wireless sensor networks with thousands of tiny sensors are well
within the realm of reality. These large sensor networks are able to support many
new applications, including habitat monitoring and agricultural monitoring . In
such wireless sensor networks (WSN), sensors send data packets to sink nodes
through multi-hop wireless communication. As the size of the network increases,
the sensors near the sink nodes will dissipate energy faster than other sensors as
they need to forward a larger number of messages, and prolonging the lifetime of
whole network becomes a critical problem. One promising approach is to deploy
multiple sink nodes in WSN, since it can decrease the energy consumption of
sensors and improve the scalability of the networks.

In this paper, we propose a protocol called MRMS, which stands for “Mul-
tipath Routing in wireless sensor networks with Multiple Sink nodes”. MRMS
includes three parts: topology discovery, cluster maintenance and path switch-
ing. The topology is constructed based on the TopDisc algorithm [1] using our
own path cost metric (which is described in a later section). Next we rotate
the cluster head within a cluster and change delivery node between clusters to
balance energy consumption in the cluster maintenance process. Finally, when
some of the sensors in the original primary path have dissipated too much energy,
we re-select the primary path to connect to an alternate sink node. Simulation
shows that MRMS can improve energy efficiency significantly.

J. Cao, W. Nejdl, and M. Xu (Eds.): APPT 2005, LNCS 3756, pp. 390–399, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Energy Efficient MRMS 391

The main contributions in our paper are as follows: First, we introduce a new
path cost metric which is based on the distance between two neighbor nodes,
hop count to sink node and the residual energy of sensor node. This metric is
very useful in path selection and improve energy efficiency. Secondly our scheme
uses stateless clusters in which all the ordinary sensors in the cluster maintain
only the previous hop and corresponding sink. This means the cluster head does
not need to maintain information on its children in its cluster, which simplifies
cluster maintenance considerably. Finally, we introduce mechanisms for path
switching when the energy of the sensors in original primary path has dropped
below a certain level. This allows us to distribute energy consumption more
evenly among the sensor nodes in the network. By combining these techniques,
we are able to construct a strategy that outperforms existing algorithms, as
shown in the extensive simulation experiments that we have carried out.

The rest of the paper is organized as follows. A summary of related work
is presented in section 2. Section 3 describes the design of the MRMS protocol
in detail. The performance of MRMS is examined in Section 4 and compared
with other protocols using simulation. The paper concludes with Section 5 where
some possible improvements to MRMS are pointed out.

2 Related Work

WSN is an area of much research recently. Since routing is a major issue, a
large number of routing protocols such as Direct Diffusion [2] and LEACH [3]
have been proposed by researchers [4]. In some of these protocols, cluster-based
routing is used to decrease energy consumption, such as in TopDisc [1] and
LEACH. However, only a few of these protocols deal explicitly with the multiple
sink nodes problem, which is the key focus of our paper. A number of recent
papers dealt with the optimal placement of sink nodes in multiple sink sensor
networks [5] but do not deal directly with routing issues.

One of the earliest cluster-based routing algorithms is the TopDisc algo-
rithm [1], which is based on the three-color or four color algorithm. TopDisc
finds a set of distinguished nodes, using neighborhood information to construct
approximate topology of the network. These distinguished nodes logically orga-
nize the network in the form of clusters comprised of nodes in their neighborhood.
However, TopDisc neither considers the residual energy of sensor networks nor
the possibility of path switching.

Dubois-Ferries and Estrin proposed an algorithm based on Voronoi clusters
to handle multiple sink nodes [6]. This Voronoi algorithm designates a sink for
each cluster to perform data acquisition from sensors in cluster. Each node keeps
a record of its closet sink and of the network distance to that sink. A node also
re-forwards the message if the distance traversed is equal to closest distance and
the message came from the closet sink. A drawback of this algorithm is that it
does not consider residual energy of sensor node.

A. Das [7] provides an analytical model of multiple sink nodes. However, it
also does not also consider path switching or how to handle excessive energy

392 Y. Chen, E. Chan, and S. Han

dissipation among the sensors on the original paths. The Two-Tier Data Dis-
semination (TTDD) scheme [8] provides data delivery to multiple mobile base
stations. However, this scheme requires precise position of the sensor nodes,
which may be difficult to attain in many cases. It is also designed primarily for
mobile sinks, and is not as efficient when the sink nodes are stationary.

3 The MRMS Algorithm

3.1 System Model

In this section we will present the system model used in our work. First we state
our major assumptions. We assume there are multiple sink nodes in the wireless
sensor networks, each of which has an infinite amount of energy. Every sensor,
whose location is randomly distributed, has the same initial energy and radio
range. Both the sensor nodes and the sink nodes are stationary. A perfect MAC
layer and error-free communication links are assumed because MRMS focuses
on routing algorithm, but no communication is possible once the energy of a
sensor node has been depleted. A transceiver exhibits first order radio model
characteristics in free space i.e. energy spent in transmitting a bit over a distance
d is proportional to d2.

A wireless sensor networks (WSN) is modeled as a graph G(V, E). where V
is the set of all sensor nodes and all sink nodes, E is the set of all links.

V = Vsink

⋃
Vsensor , E = {(i, j)|i, j ∈ V } (1)

Every sensor’s initial energy is Einit and its residual energy is ERE . The
path is defined as {V1, V2, · · ·Vi, Vj , · · · , S}, Vi, Vj ∈ Vsensor , S ∈ Vsink; the cost
is defined as the cost of one link 〈Vi, Vj〉.

Costij = α × d2 + β (2)

Now we define the path cost as follows:

path cost =
∑

costij × Eγ
RE (3)

where α is the energy/bit consumed by the transmitter electronics, β is en-
ergy/bit consumed by the transmitting and receiving signal operation overhead
for amplifying, and d is the distance between two sensor nodes,which is based on
modern RF technology. γ is the coefficient of residual energy and it is a none-zero
negative value. From formula (1) and (2), it is clear that the longer the trans-
mitting distance or the larger the overhead, the higher the cost. So the increase
in the hop count between the sensor nodes and sink node will increase path cost.
In addition, if the residual energy for each sensor decreases, the path cost will
also increase. Hence, after a path has been used excessively, the residual energy
of the sensors in the path will decrease, driving up the path cost and triggering
the path-switching process. The role of the path cost metric in energy-efficient
routing will be shown in greater detail in a later section.

Energy Efficient MRMS 393

3.2 Details of the MRMS Algorithm

There are three phases in MRMS: topology discovery, cluster maintenance and
path switching.

MRMS Topology Discovery Algorithm. MRMS topology discovery is par-
tially based on the three color algorithm used in TopDisc [1], which is derived
from the simple greedy log (n)-approximation algorithm for finding the set cover.
At the end of the TopDisc topology discovery process, the sensor network is di-
vided into n clusters and each cluster is represented by one node, which is called
the cluster head. The cluster head is able to reach all the sensor nodes in the
cluster directly because they are all within its communication range. Each cluster
head knows its sink, but they can not communication with each other directly.
Instead, a delivery node (the grey node) acts as an intermediary which delivers
messages between each pair of head node.

In the MRMS topology discovery mechanism, unlike TopDisc, the cluster
is stateless because the cluster head will not maintain any children. Instead
every sensor will note its previous hop and corresponding sink in its routing
table at the initial topology discovery’s broadcast phase, and topology discovery
only occurs at the initial phase; this approach reduces the complexity of cluster
reconstruction described in the next section. Thus each cluster can be considered
a virtual node as far as the topology is concerned. A sensor node may keep
information for more than one cluster heads and sinks in the routing table, as
it can keep track of different paths from different sink nodes. However only one
of these paths can be designated the primary path in the table, and this is the
path with the minimum path cost, hence ensuring the topology will be an energy
efficient one.

MRMS Cluster Maintenance. As explained in a previous section, MRMS
cluster maintenance includes two parts: energy monitoring and cluster recon-
struction. Energy monitoring in MRMS is relatively straight-forward. A cluster
header will check its energy periodically. If the sensor’s residual energy is below
some threshold, it will invoke the cluster reconstruction process. A special case
is that of a delivery node, in which case it needs to inform its child cluster head
to change its delivery node as well.

In cluster reconstruction, when the residual energy of the cluster head (CH)
is below some threshold, it will broadcast the SELECT NEW CH message to
its neighbors,when CH can’t communicate with other children directly, most of
sensors’ energy in this cluster has be below some low threshold based on our
method, as shown in Figure 1(a). Any sensor that receives this message will
checks its routing table and reports its residual energy to the CH if the previous
hop in its primary path is the current CH. After combining all incoming infor-
mation, the current CH will select the child with the maximum residual energy
as the new CH and pass control to the new CH, if several nodes have the same
maximum residual energy, old CH will select the new CH randomly,as shown
in Figure 1(b). The new CH will probe new delivery node based on the path
cost, and broadcast the NEW CH to all its children in its cluster, as shown in

394 Y. Chen, E. Chan, and S. Han

0.12

0.23

0.19

0.32

0.08

RE RE: residual energy

Old CH

Broadcast
SELECT NEW CH

(a) Old CH broadcasts

0.12

0.23

0.19

0.32

0.08

RE RE: residual energy

Old CH

Maximum Residual
Energy node

(b) Selection of node with

0.03

0.12

0.23

0.19

0.32

0.08

RE
RE: residual

energy

Old CH

Broadcast
NEW CH

Maximum Residual
Energy node

(c) Node with maximum residual en-
ergy broadcasts NEW CH Message to
all nodes in the cluster

0.03

0.12

0.23

0.19

0.32

0.08

RE RE: residual
energy

New CH

Point to New
CH

(d) New Cluster after intra-cluster
re-construction

Fig. 1. Intra-Cluster Reconstruction

S
0.012

0.002

0.003 CH

Old delivery
node

0.010

0.004

0.011

One hop
cost

Path_cost Multi-hops
path

(a) Old delivery node before inter-
cluster reconstruction

S
0.012

0.002

0.003 CH

New delivery
node

0.010

0.004

0.011

One hop
cost

Path_cost Multi-hops
path

(b) New delivery node after inter-
cluster reconstruction

Fig. 2. Changing Delivery Node in Cluster Reconstruction

Figure 1(c), and the result is shown in Figure 1(d). If a sensor node is the delivery
node of some cluster head and its residual energy is below some threshold, it will
notify these cluster heads to change their delivery nodes, as shown in Figure 2.

MRMS Path Switching. As discussed in a previous section, when the path
to the original sink has been used for an extended period of time, there is a need
to switch to another sink. There is a problem in determining the suitable sink,
however, is that the value of the path cost is not always current. Although it
is possible to have use a periodical update approach to refresh the path cost,
this technique is expensive and quite unnecessary since switching to a different
sink does not occur frequently for stationary sensors. In MRMS, we use an

Energy Efficient MRMS 395

S3 S1

AC

0.52

0.08

cost primary
path

Deliver Node of
primary path

CH

S2

B

0.32 0.40

0.10 0.12

cost
Alternative

path
path_cost Multi-hops

path

(a) Primary path before path switch-
ing

S3 S1

AC

0.52

0.08

cost primary
path

Deliver Node of
primary path

CH

S2

B

0.32 0.40

0.10 0.12

cost
Alternative

path
path_cost Multi-hops

path

(b) Primary path after path switch-
ing

Fig. 3. Path switching in different sink node

event-based approach where path switching is triggered when during the cluster
reconstruction process it is discovered that the current path is no longer the best
path.

We will now describe the details of path switching in MRMS, using Figure 3
to illustrate the process. In the original path, because the sensor nodes which are
near the sink node consume energy more rapidly than the sensor nodes which
are far away from the sink node, these nodes close to the sink will invoke cluster-
reconstruction. For example, in Figure 3, sensor A will probably see many of its
upstream nodes invoke cluster reconstruction first. Since the path cost in the
primary path will be updated whenever cluster reconstruction occurs, there is
no need for sensor A to do anything explicitly to refresh the path cost in the
primary path ({CH → A → S1} in Figure 3(a)).

However, if in due time the cluster containing A undergoes cluster recon-
struction, then there is a possibility that a new primary path will be chosen.
The first task is to determine whether there is a need to refresh the path cost to
the alternate path, which has not been updated for quite a while. The approach
we have adopted is for the source CH to send a probe message to confirm another
sink only if the path cost in the original primary path exceeds the path cost in
the alternate path by a certain threshold η. The value of this threshold is de-
pendent on the hop count of the CH to the sink, since the larger the hop count,
the further away it is from the sink and the larger the interval between cluster
reconstruction – and hence the more outdated the path cost of the alternate
path is likely to be Figure 3(b) shows the CH sending a probing message to sink
S3 after the above condition has been met. After S3 has received the probing
message, it will compare current path cost (path costCH→S3) to the original one
(path costCH→S1). If the current path cost is larger than some threshold, the
sink node will send fresh message to all sensor nodes in this path, and if the new
calculated path cost in the new sink is less than the path cost of the original
primary path, which is the case in Figure 3(a), then source CH will switch to
the new sink node, otherwise S3 will simply return its later path cost to the CH.
Either way, the path cost will be broadcast by the CH to all its children in the
cluster, and each child sensor node will update its routing table entries accord-
ingly. In case the CH does not receive a reply from S3, then topology discovery
will be invoked again.

396 Y. Chen, E. Chan, and S. Han

4 Performance Evaluation and Simulation Result

To evaluate the performance of the MRMS Algorithm, we have implemented it
in GloMoSim [9] which is based on Parsec [10]. In our simulation, we assume
the energy model is based on first order radio model in free space, that is, the
energy dissipation is:

eT (d) = (α × d2 + β) × r

where α, β are real numbers. α is the energy consumed at the output transmitter
antenna for transmitting one meter, β is the overhead energy representing the
sum of the receiver, sensing and computation energy which is independent of the
distance d; r is the number of bits transmitted.

In our simulation, the sensor network consists of 250 nodes which are dis-
tributed randomly over a planar square region of 100m by100m. There are up
to 3 sink nodes, with positions (33.33, 33.33), (66.67, 33.33), (50.00, 66.67). The
initial battery capacity of the sensors is set as 0.5J, α is set to 0.1 nJ/bit/m2 and
β set to 50 nJ/bit [3]. There are 10 stimulus which generate data flow randomly
in simulation, and the position of stimulus is random. And the sensor whose
distance to stimulus in 10m can receive the data flow. The data flow is based
on Poisson distribution model with an arrival rate of 0.5 packet per second. The
data packet size is 2000 bits and all control packets size is assumed to be 100 bits.
We set up the simulation time to range from 10 to 150 minutes for evaluating
the performance of the various protocols.

4.1 Performance Criteria

The main objective of our simulation is to evaluate the energy efficiency and
the lifetime of sensor networks. However, researchers have proposed different
definitions of lifetime. In our experiments, we use the following metrics.

– Time to first node failures: This metric indicate the duration for which the
sensor network is fully functional i.e. no sensor failure due to battery outage.

– Number of dead nodes: We measure the number of dead nodes as time goes
on; this metric provides an indication of the expected lifetime and the reli-
ability of sensor networks.

– Mean Energy Consumption of one packet: the metric indicates the energy
consumption of transmitting a packet to sink successfully.

– Average hop count to sink: This metric is useful since the larger the number
of hops a packet has to traverse before it reaches the sink, the higher the
aggregate energy consumption.

– Packet delivery ratio: this metric is defined as a ratio of the number of
received packets at the sink to the number of packets transmitted by the
source sensors. The higher the delivery ratio, the higher the reliability of the
network. Uneven energy consumption in the network will lead to premature
failure of sensors and reduced reliability, hence the packet delivery ratio is
also a good indirect measure of the lifetime of the network.

Energy Efficient MRMS 397

4.2 Experiments and Result Analysis

In this section we discuss the performance of MRMS with the Voronoi Algorithm
[6], TopDisc Algorithm and Direct Flooding algorithm. The Direct Flooding
algorithm is a simplistic algorithm used as a base case; in its topology discovery
phase the sink node simply floods its information to its neighbor sensor nodes
without any optimization. After receiving the topology discovery request, the
sensor nodes broadcast it again directly without any attempt to optimize the
process. Similarly there is no optimization for sending packets to sink nodes. A
single sink is used for Direct Flooding.

From Figure 4, we see that MRMS outperforms other protocols significantly,
with MRMS close to doubling or tripling the time to first sensor node failure
in some cases. In Direct Flooding, the first node dies quicker than the other
protocols, because all packets are sent to only one sink and there is no cluster
reconstruction and path switching. The TopDisc Algorithm uses clustering to
decrease energy consumption which can improve the lifetime of sensor nodes
and the Voronoi Algorithm uses the multiple sink nodes which improve the
load-balance of data which is sent to sink nodes. However, MRMS by combining
multiple sink nodes, cluster reconstruction and path switching, can best balance
sensor energy consumption and prolong the duration for sensor network which
is fully functional.

From Figure 5, it can be seen once again that MRMS decreases the number of
dead nodes significantly, indicating that MRMS is indeed more energy-efficient
than the other algorithms. The same conclusion can be reached by looking at
Figure 7, which displays the average hop count to sink node for the various
algorithms. The effect of using multiple sink nodes is seen clearly in this exper-
iment, as both MRMS and Voronoi Algorithm decrease the hop counts by 1.5-2
hops compared to the Direct Flooding and the TopDisc algorithm. This result is
quite obvious since multiple sink nodes will decrease the average distance from
the sensor nodes to sink node and hence the hop count will drop accordingly.

0

200

400

600

800

1000

1200

Time (s)

Direct

Flooding

TopDisc

Algorithm

Voronoi

Algorithm

MRMS

Fig. 4. Time to First Node Failure

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
0

5

10

15

20

25

30

35

Simulation Time(min)

N
um

be
r

of
 D

ea
d

N
od

es

MRMS
TopDisc Algorithm
Voronoi Algorithm
Direct Flooding

Fig. 5. Number of Dead Nodes

398 Y. Chen, E. Chan, and S. Han

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5
x 10

−3

Simulation Time(min)

A
ve

ra
ge

 E
ne

rg
y

C
on

su
m

pt
io

n
fo

r
O

ne
 P

ac
ke

t (
J)

MRMS
TopDisc Algorithm
Voronoi Algorithm
Direct Flooding

Fig. 6. Average Energy Consumption for
packet

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
2

2.5

3

3.5

4

4.5

5

Simulation Time(min)

A
ve

ra
ge

 H
op

 C
ou

nt
s

F
or

 P
ac

ke
t t

o
S

in
k

MRMS
TopDisc Algorithm
Voronoi Algorithm
Direct Flooding

Fig. 7. Average Hop Count vs Time

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
25

30

35

40

45

50

55

Simulation Time(min)

A
ve

ra
ge

 D
is

ta
nc

e
to

 fr
om

 S
en

so
r

to
 S

in
k

no
de

MRMS
TopDisc Algorithm
Voronoi Algorithm
Direct Flooding

Fig. 8. Average Distance to Sink vs Time

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Simulation Time(min)

P
ac

ke
t D

el
iv

er
y

R
at

io

MRMS
TopDisc Algorithm
Voronoi Algorithm
Direct Flooding

Fig. 9. Packet Delivery Ratio

From Figure 6, it can be seen that MRMS decreases the energy consump-
tion considerably compared with the Voronoi algorithm, TopDisc algorithm and
Direct Flooding. As simulation time increases, the average energy consumption
for one packet in MRMS and the other algorithms remain relatively stable. There
are actually several factors at work. With path switching and cluster reconstruc-
tion, the average hop count decreases (as seen in Figure 7). However, the actual
distance from (which greatly affects the energy consumption of the packet, as
seen in Figure 8) may stay relatively the same because with some of the original
best paths no longer available, more and more of the outlying sensors becomes
unreachable meaning that the remaining sensors tend to be closer to the sink
nodes. Figure 9, shows that MRMS outperforms significantly the other three al-
gorithms significantly based on the packet delivery ratio, indicating the MRMS
is indeed more energy efficient and reliable, since most of the packets are actually
able to reach the final destination, unlike the other algorithms.

Energy Efficient MRMS 399

5 Conclusion and Future Work

In this chapter, we proposed the MRMS algorithm which includes topology dis-
covery, cluster maintenance and path switching. Since MRMS uses multiple sink
nodes, cluster maintenance and path switching which can distribute the energy
consumption in sensor networks more evenly, it enjoys significant improvement
in key metrics compared to other approaches. We plan on exploring the effect
of a lossy MAC layer on the MRMS, as well as how to construct node-disjoint
multipaths for multiple sink nodes.

References

1. B.Deb, S.Bhatangar, and B.Nath. A topology discovery algorithm for sensor net-
works with applications to network management. Proc. IEEE CAS Workshop on
wireless communication and networking, Passadena, USA, 2002.

2. C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed Diffusion: a Scalable
and Robust Communication Paradigm for Sensor Networks. Proc. ACM Mobicom,
boston, MA, 2000.

3. W. Heizelman, A. Chandrakasan and H. Balakrishnan. Energy-efficient communi-
cation Protocol for wireless microsensor networks. Proc. 33rd International Con-
ference on System Sciences, 2000.

4. J.N. Al-Karaki and A.E. Kamal. Routing Techniques in wireless sensor networks:
A survey. IEEE Wireless Communication. 11(2004)

5. E.I. Oyman and C. Ersoy. Multiple Sink Network Design Problem in Large Scale
Wireless Sensor Networks. Proc. International Conference on Communication, 2004

6. H. Duboris-Ferries and D. Estrin. Efficient and Practical Query Scoping in Sensor
networks. Tech Rep.2004-39, CENS/UCLA Tech Report, 2004.

7. A. Das and D. Dutta. Data Acquisition in Multiple Sink Sensor Networks. Proc.
2nd International Conference on Embedded Sensor Systems, 2004

8. F. Ye, H. Luo, J. Cheng, S. Lu and L. Zhang. A two-tier Data Dissemination Model
for large Scale Wireless Sensor networks. Proc. ACM Mobicom, 2002

9. GloMoSim: A Scalable Simulation Environment for Wireless and Wired Network
Systems. UCLA Parallel Computing Laboratory and Wireless Adaptive Mobility
Laboratory.

10. R. Bagrodia, R. Meyer, M. Takai, Y. Chen, X. Zeng, J. Martin and H.Y. Song.
PARSEC: A Parallel Simulation Environment for Complex Systems. IEEE Com-
puter. 10(1998)

J. Cao, W. Nejdl, and M. Xu (Eds.): APPT 2005, LNCS 3756, pp. 400 – 408, 2005.
© Springer-Verlag Berlin Heidelberg 2005

FLC: A Novel Dynamic Buffer Tuner for Shortening
Service Roundtrip Time over the Internet by Eliminating

User-Level Buffer Overflow on the Fly

Wilfred W.K. Lin1, Allan K.Y. Wong1, and Tharam S. Dillon2

1 Department of Computing, The Hong Kong Polytechnic University,
Hung Hom, Kowloon, Hong Kong S.A.R. P.R.C.

{cswklin, csalwong}@comp.polyu.edu.hk
2 Faculty of Information Technology, University,

University of Technology Sydney, Broadway, Sydney, Australia
tharam@it.uts.edu.au

Abstract. The proposed Fuzzy Logic Controller (FLC) is for dynamic buffer
tuning at the user/server level. It eliminates buffer overflow on-line by ensuring
that the buffer length always cover the queue length adaptively. The FLC con-
tributes to prevent the AQM (active queue management) resources dished out at
the system level from being wasted and to shorten the service roundtrip time
(RTT) by reducing retransmission caused by user-level buffer overflow at the
reception side. Combining fuzzy logic and the conventional PIDC model cre-
ates the FLC that operates with the 2},0{ Δ objective function. The fuzzy logic
maintains the given safety margin about the reference point, which is symboli-
cally represented by “0” in 2},0{ Δ . The short execution time of the FLC
makes it suitable for supporting time-critical applications over the Internet.

1 Introduction

Applications running on the Internet are basically object-based, and the constituent
objects collaborate in an end-to-end client/server relationship. This relationship is an
asymmetric rendezvous because the server can serve many clients at the same time.
Figure 1 shows the two levels of the end-to-end path (i.e. EE-path) in a client/server
interaction. The system/router level involves all the activities inside the TCP (Trans-
mission Control Protocol) channel, and the user-level includes only the client and the
server that make use of the channel for communication. In general, it is difficult to
harness the roundtrip time (RTT) of an EE-path in a time-critical application because
the sheer size and heterogeneity of the Internet. Practically it is impossible to monitor
every one of the overwhelming number of network parameters in order to control the
RTT. If the EE-path error probability for retransmissions is ρ , the average number of

trials (ANT) for a successful transmission is
)1(

1lim)]1([
1

1

ρρρ −≈−
∞→

∞

=

−

j
j

jj . The

ρ value encapsulates all the possible faults and errors along the EE-path, and one of

them is the chance of user-level buffer overflow at the receiver/server end.

 FLC: A Novel Dynamic Buffer Tuner for Shortening Service Roundtrip Time 401

Those methods devised to prevent network congestion at the system level are
known as active queue management (AQM) [1] approaches. The only known method
from the literature that can eliminate user-level buffer overflow is dynamic buffer size
tuning. One of the user-level dynamic buffer size tuners is the GAC (Genetic Algo-
rithm Controller [2]). This controller is basically the “genetic algorithm (GA) + PIDC
+ 2},0{ Δ objective function” combination. The GA moderates the PIDC control proc-

ess for more dynamic buffer size tuning precision. The GAC approach, however,
produces occasional buffer overflow because the GA does not guarantee the global-
optimal solution of the solution hyperplane [3]. Nevertheless it has demonstrated that
soft computing is potentially a powerful technique for achieving dynamic buffer size
tuning. The GAC has eliminated all the PIDC shortcomings but also produces unde-
sirable occasional buffer overflow. The desire to keep the GAC merits and eliminate
buffer overflow at the same time motivates the FLC proposal.

Fig. 1. The EE path

2 Related Work

In the practical sense, it is illogical for a user-level receiver to discard new requests in
order to prevent local buffer overflow. Such an act not only increases retransmission
and network congestion but also wastes the AQM effort already dished out by the
system. It is sensible therefore to install a user-level dynamic buffer tuner/controller
that auto-tunes the size of the server’s queue buffer so that it always covers the queue
length [4]. User-level buffer tuning and system-level AQM together provide a unified
solution for reducing the chance of buffer overflow along the whole EE-path.

The “P+D” (Proportional + Derivative) is one of the earliest models for user-level
dynamic buffer tuning. The P control element is the current, statistically computed
“queue length over buffer length (QOB)” ratio, which is also known as the . The D
control element is the current rate of changes in the queue length (Q)). The “P+D”
model worked well in simulations but failed frequently in real-life applications. The
cause of failure is the unrealistic expectation of using a static set of control parameters
to cover the whole spectrum of channel and buffer dynamics. The quest for a better
user-level overflow controller led to the proposal of the conventional/algorithmic PID
controller (PIDC), which incorporates integral (I) control to enhance the anticipative
power of the “P+D”. The PIDC effectively eliminates user-level overflow [5], even
though it has two distinctive shortcomings: a) it locks unused buffer memory and this
could lead to poor system performance, b) it does not have a safety margin to prevent

402 W.W.K. Lin, A.K.Y. Wong, and T.S. Dillon

possible overflow under serious system perturbations. The desire to eliminate these
shortcomings and preserve the PIDC merits at the same time motivated the GAC
research. Although the GAC has eliminated all the PIDC shortcomings, it produces
occasional buffer overflow. The desire to keep the control merits of the GAC without
buffer overflow has motivated the FLC proposal.

If {(dQ/dt > prescribed_positive_threshold) OR [(dQ/dt is_ positive) AND (iQOB > pre-

scribed__positive_threshold)]} then Lnow = Lnow +ICM; Lnow ≥ Lminimum

Else If {(dQ/dt < prescribed_negative_threshold) OR [(dQ/dt is_ negative) AND (iQOB < pre-

scribed_negative_threshold)]} then Lnow = Lnow-- ICM; Lnow ≥ Lminimum

Fig. 2. The basic PID controller (PIDC) algorithm

3 The Fuzzy Logic Controller (FLC) Framework

The FLC framework is basically the combination: “PIDC + fuzzy logic + 2},0{ Δ

objective function”. The fuzzy logic augments the algorithmic PIDC by keeping the
latter’s operation within the given safety margin about the chosen reference sym-
bolically represented by “0” in 2},0{ Δ . The PIDC, which is abstracted by the pseu-

docode in Figure 2, basically works with the proportional (P), integral (I) and deriva-
tive (D) control elements and two range thresholds, namely, Th1 (i.e. the Δ value of

2},0{ Δ for the P or
RQOB control) and Th2 (i.e. the Δ value for the D or

dt
dQ con-

trol). The PIDC working alone therefore has only four control regions, defined by
different 1Th± and 2Th± combinations. The fuzzy logic in the FLC model divides
these thresholds into finer membership functions, with range-thresholds among them
for more refined control actions. For example, in Figure 3, which is the FLC[6x6]
design, Th1 covers the range-thresholds for finer QOB control regions: ML, SL, L, G,
SG and MG regions, and similarly Th2 for that of the NL, NM, NS, PS, PM and PL
regions. When the FLC tuner is operating in a specific fuzzy control region there will
be an intrinsic time delay before a corrective action. For example, if the increased
value is less than the range-threshold of the current “don’t care” region, no immediate
action is taken. By the time the action is triggered there could be significant overshoot
or undershoot already. The overshoot/undershoot accumulation contributes to the
oscillations in the FLC convergence process in the steady state. In the experimental
FLC[6x6] design matrix shown in Figure 3, the “dot” defines the chosen reference
and X the “don’t care” state. In this case, the reference ratio is equal to 0.8 for the
objective function. The linguistic variables for the FLC design are as follows:

a) For QOB: ML for Much Less than QOBR, SL for Slightly Less than QOBR, L
for Less than QOBR, G for Greater than QOBR, SG for Slightly Greater than
QOBR, and MG for Much Greater than QOBR. The QOB membership function
is shown in Figure 4.

b) For the current : NL for Negative and Larger than the threshold, NM for Nega-
tive and Medium than the threshold, NS for Negative and Smaller than the

 FLC: A Novel Dynamic Buffer Tuner for Shortening Service Roundtrip Time 403

threshold, PS for Positive and Smaller than the threshold, PM for Positive and
Medium than the threshold and PL for Positive and Larger than the threshold.
The QOB membership function is shown in Figure 5.

The control decisions, which depend on the current QOB and dQ/dt values, include:
Addition (buffer elongation) or “+”, Subtraction (buffer shrinkage) or “- ”, and don’t
care. For example, the FLC prototype based on Figure 4 and 5 has the following fuzzy
rules to adjust the I control or ICM (integral control mechanism) proactively (Lnew and
Lold denote the adjusted buffer length and the old buffer length respectively):

Rule 1: If (QOB is MG) AND (dQ/dt is PL) Then Action is “+”(Addition) AND Lnew = Lold + ICM
Rule 2: If (QOB is ML) AND (dQ/dt is NL) Then Action is “-”(Subtraction) AND Lnew = Lold - ICM
Rule 3: If (QOB is G) AND (dQ/dt is PS) Then Action is “X”(Don’t care) AND Lnew = Lold

Fig. 3. A FLC example

 Fig. 4. Membership function of dQ/dt Fig. 5. Membership function of QOB

4 Experimental Results

The FLC prototypes of different design matrices were verified by simulations on the
Aglets mobile agent platform [6], which is chosen because: a) it is stable, b) it is rich
in user experience, and c) it makes the experimental results scalable for the open
Internet. The set up for the experiments is shown in Figure 6, in which the driver and
the server are aglets (agile applets) that collaborate in as client/server relationship
within a single computer. The driver picks a known waveform (e.g. Poisson) or a
trace that embeds an unknown waveform from the table. It uses the pick to generate
the inter-arrival times (IAT) for the simulated merged traffic into the server buffer.
Self-similar traffic waveforms [7] in the table are generated by using the tool pro-
posed by Glen Kramer [8]. A distribution F is heavy-tailed if and only if (1-F) is

404 W.W.K. Lin, A.K.Y. Wong, and T.S. Dillon

varying regularly with index α , for .0,))(1(
))(1(lim >=−

− −
∞→ xxtF

txF
t

α [9]. The

Selfis tool [10] is used in the simulations to identify the specific traffic pattern so that
it can be matched with the corresponding FLC performance for detailed analysis.
Figure 7 shows how the Selfis tool uses the Hurst exponent/effect to differentiate
SRD (short-range dependence) and LRD (long-range dependence) traffic [11]. The

5.00 << H and 15.0 << H ranges indicate SRD and LRD respectively.

Fig. 6. Setup for the experiment

Figure 8 compares the FLC[6x6] performance with that of the PIDC working alone
with the same trace. The buffer length controlled by the FLC follows the profile of the
changing queue length more closely than the PIDC. The FLC trend line in Figure 9
settles quickly to the given QOBR reference of 0.8. The trend-line for the PIDC work-
ing alone, however, lags behind and does not settle to QOBR reference.

It was observed in the different experiments that traffic patterns did produce nega-
tive impacts on the FLC control accuracy. These negative impacts can be expressed in
terms of the mean deviation (MD) values from given QOBR reference. Figure 10
shows the calibrations of negative impacts by different traffic patterns (e.g. Poisson)
on different FLC designs/configurations. The self-similar traffic consistently produces
the large MD values for all the designs and Poisson the least. Figure 10 is by no
means exhaustive, and the calibration table will expand if there is a necessity to in-
clude the negative impacts by new distinctive traffic patterns yet to be identified.

 FLC: A Novel Dynamic Buffer Tuner for Shortening Service Roundtrip Time 405

Fig. 7. Trace analysis/identification with Selfis [10]

Fig. 8. The performance of the FLC and the PIDC

406 W.W.K. Lin, A.K.Y. Wong, and T.S. Dillon

Fig. 9. Faster convergence of the FLC than the PIDC

Fig. 10. Mean deviation errors of different basic FLC designs versus traffic patterns

The intrinsic execution time of any FLC design can be measured by using the In-
tel’s VTune Performance Analyzer [12] in neutral clock cycles. These clock cycles

can be converted for the platform of interest by the formula PS
CCPT = , where

PT is the physical time in seconds, CC the measured number of clock cycles by

 FLC: A Novel Dynamic Buffer Tuner for Shortening Service Roundtrip Time 407

VTune, and PS is the platform speed in mega hertz (MHz). For example, the intrinsic
execution time of the FLC[6x6] is around 275 clock cycles (Figure 11). It is intrinsic
because when VTune measured its average execution (or control cycle) time the FLC
prototype worked with traces from which IAT values were immediately usable (no
actual delays). In real-life operations, however, FLC has to sample IAT values/delays
one by one. Therefore the actual (versus intrinsic) FLC execution time includes the
IAT delays and is therefore much longer than the average 275 clock cycles. For a
platform that operates at the speed of 100 MHz, the intrinsic PT for FLC[6x6] is

75.2
10*100

275
6

==PT micro seconds.

Fig. 11. R/S execution time by Intel’s VTune Performance Analyzer

5 Conclusion

The preliminary experimental results confirm that the Fuzzy Logic Controller indeed
eliminates user-level buffer overflow efficaciously. The fuzzy rules in the FLC tune
the integral control (i.e. ICM) adaptively. As a result the dynamic buffer tuning proc-

ess always maintains the Δ safety margin of the 2},0{ Δ objective function success-

fully. In this way the FLC effectively preserves the GAC merits minus its overflow
shortcoming. The FLC performance is, however, affected negatively by different
traffic patterns. This was observed in different experiments. As a result the negative

impacts, in terms of mean deviations from RQOB , by different traffic patterns were

calibrated. Therefore, the next step in the research is to investigate how the FLC
framework can make use of the calibrated negative impacts (in MD values as shown
in Figure 10) to self-tune and mitigate/nullify these impacts.

Acknowledgement

The authors thank the Hong Kong Polytechnic University for the research grants:
A-PG51, A-PF75 and .

408 W.W.K. Lin, A.K.Y. Wong, and T.S. Dillon

References

1. B. Braden et al., Recommendation on Queue Management and Congestion Avoidance in
the Internet, RFC2309, April 1998

2. Allan K.Y. Wong, Wilfred W.K. Lin, May T.W. Ip and Tharam S. Dillon, Genetic Algo-
rithm and PID Control Together for Dynamic Anticipative Marginal Buffer Management:
An Effective Approach to Enhance Dependability and Performance for Distributed Mobile
Object-Based Real-time Computing over the Internet, Journal of Parallel and Distributed
Computing (JPDC), vol.62, Sept. 2002, 1433-1453

3. E. Mitchell, An Introduction to Genetic Algorithms, MIT Press, 1999
4. Allan K.Y. Wong and Tharam S. Dillon, A Fault-Tolerant Data Communication Setup to

Improve Reliability and Performance for Internet-Based Distributed Applications, Proc. of
the 1999 Pacific Rim International Symposium on Dependable Computing (PRDC’99),
Hong Kong SAR, Dec.1999, 268-275

5. May T.W. Ip, Wilfred W.K. Lin, Allan K.Y. Wong, Tharam S. Dillon and D.H. Wong, An
Adaptive Buffer Management Algorithm for Enhancing Dependability and Performance in
Mobile-Object-Based Real-time Computing, Proc. of the IEEE ISORC’2001, Magden-
burg, Germany, May 2001, 138-144

6. Mitsuru, O., Guenter, K., and Kouichi, O.(1998), IBM Aglets Specification, http://www.
trl.ibm.com/aglets/spec11.htm

7. B. Tsybakov and N.D. Georganas, Self-Similar Processes in Communications Networks,
IEEE Transactions on Information Theory, 44(5), September 1998, 1713-1725

8. Generator of Self-Similar Network Traffic, http://wwwcsif.cs.ucdavis.edu/~kramer/code/
trf_gen1.html

9. Pareto Distribution,
10. http://www.cs.northwestern.edu/~agupta/ppts/dynamics/selfsimilarity/
11. T. Karagiannis, M. Faloutsos, M. Molle, A User-friendly Self-similarity Analysis Tool,

ACM SIGCOMM Computer Communication Review, 33(3), July 2003, 81-93
(http://www.cs.ucr.edu/~tkarag/Selfis/Selfis.html)

12. S. Molnar, T.D. Dang and A. Vidacs, Heavy-Tailedness, Long-Range Dependence and
Self-Similarity in Data Traffic, Proc. of the 7th Int’l Conference on Telecommunication
Systems, Modelling and Analysis, Nashville, USA,18-21, 1999

13. Intel’s VTune Performance Analyzer, http://ww.intel.com/support/performancetools/
vtune/v5

J. Cao, W. Nejdl, and M. Xu (Eds.): APPT 2005, LNCS 3756, pp. 409 – 416, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Intelligent Congestion Avoidance
in Differentiated Service Networks

Farzad Habibipour, Ahmad Faraahi, and Mehdi Glily

Iran Telecom Research Center and Payame Noor University, Tehran, Iran
afaraahi@pnu.ac.ir

Abstract. Active Queue management (AQM) takes a trade-off between link
utilization and delay experienced by data packets. From the viewpoint of con-
trol theory, it is rational to regard AQM as a typical regulation system. Al-
though PI controller for AQM outperforms RED algorithm, the mismatches in
simplified TCP flow model inevitably degrades the performance of controller
designed with classic control theory. The Differentiated Service (Diff-Serv) ar-
chitectures are proposed to deliver Quality of Service (QoS) in TCP/IP net-
works. The aim of this paper is to design an active queue management system
to secure high utilization, bounded delay and loss, while the network complies
with the demands each traffic class sets. To this end, predictive control strategy
is used to design the congestion controller. This control strategy is suitable for
plants with time delay, so the effects of round trip time delay can be reduced su-
ing predictive control algorithm in comparison with the other exciting control
algorithms. Simulation results of the proposed control action for the system
with and without round trip time delay, demonstrate the effectiveness of the
controller in providing queue management system.

1 Introduction

The rapid growth of the Internet and increased demand to use the Internet for voice and
video applications necessitate the design and utilization of new Internet architectures
with effective congestion control algorithms. As a result, the Differentiated Service
(Diff-Serv) architectures were proposed to deliver Quality of Service (QoS) in TCP/IP
networks. Diff-Serv architecture tries to provide QoS by using differentiated services
aware congestion control algorithms. Recently several attempts have been made to
develop congestion controllers [1,2], mostly using linear control theory. In this paper,
the traffic of the network is divided into three types: Premium, Ordinary and Best Effort
Traffic Services [3]. For very important people, there are VIPs passes. VIP passes get
preferential treatment. This category is likened to our premium traffic Service. For ordi-
nary people, there are common passes. To purchase these tickets, people may have to
queue to get the best possible seats, and there is no preferential treatment, unless differ-
ent prices are introduced for better seats. This category may be likened to our Ordinary
Traffic Service. For reasons of economy, another pass may be offered, at a discount
price for the opportunists at the door (Best Effort Traffic Service).

410 F. Habibipour, A. Faraahi, and M. Glily

In this paper, we will make use of predictive control strategy [4-7] to congestion
control in differentiated services networks. Using the proposed control action, conges-
tion control in Premium and Ordinary classes is performed. Best effort class is no-
controlled. Some computer simulations are provided to illustrate the effectiveness of
the proposed sliding mode controller.

2 Dynamic Network Model

In this section, a state space equation for M/M/1 queue is presented. The model has
been extended to consider traffic delays and includes modeling uncertainties then
three classes of traffic services are introduced in a Diff-Serv network.

Fig. 1. Diagram of sample queue

2.1 Fluid Flow Model

A diagram of a sample queue is depicted in Fig.1. Let x(t) be a state variable denoting
the ensemble average number in the system in an arbitrary queuing model at time t.
Furthermore, let fin(t) and fout(t) be ensemble averages of the flow entering and exiting
the system, respectively. dttdxtx)()(=& can be written as

)()()(toutftinftx −=& (1)

Equation of this kind of model has been used in the literature, and is commonly re-
ferred to as fluid flow equation [8,9]. To use this equation in a queuing system, C and
 have been defined as the queue server capacity and average arrival rate respectively.

Assuming that the queue capacity is unlimited, fin(t) is just the arrival rate . The flow
out of the system, fout(t), can be related to the ensemble average utilization of the
queue, (t), by fout(t)= (t)C. It is assumed that the utilization of the link, , can be
approximated by the function G(x(t)), which represents the ensemble average utiliza-
tion of the link at time t as a function of the state variable. Hence, queue model can be
represented by the following nonlinear differential equation [3,8]

 λ+−=))(()(txCGtx& (2)

In this model input and service rates both have Poisson distribution function. For
M/M/1 the state space equation would be [9]

 λ+
+

−=
)(1

)(
)(

tx

tx
Ctx& (3)

The validity of this model has been verified by a number of researchers [3,8,10].

fin =

fout = C

x(t)

 Intelligent Congestion Avoidance in Differentiated Service Networks 411

Fig. 2. Control strategy at each switch output port

2.2 System Structure and Controller Mechanism

Consider a router of K input and L output ports handling three differentiated traffic
classes mentioned above (Fig. 2). The incoming traffic to the input node includes
different classes of traffic. The input node then separates each class according to their
class identifier tags and forwards the packets to the proper queue. The output port
could transmit packets at maximum rate of Cserver to destination where

 Cserver < Cp+Cr+Cb (4)

2.3 Premium Control Strategy

Premium traffic flows needs strict guarantees of delivery. Delay, jitter and packet
drops should be kept as small as possible. The queue dynamic model can be as

 (t)
(t)x1

(t)x
(t)C(t)x

p
p

p

p
p +

+
−=& (5)

The control goal here is to determine Cp(t) at any time and for any arrival rate λp(t)
in which the queue length, xp(t) is kept close to a reference value,)(tx

ref

p
, specified by

the operator or designer. So in (5), xp(t) would be the state to be tracked, Cp(t) is the
control signal determined by the congestion controller and p(t) is the disturbance.
Note that we are confined to control signals as

 0 < Cp(t) < Cserver (6)

2.4 Ordinary Control Strategy

In the case of ordinary traffic flows, there is no limitation on delay and we assume
that the sources sending ordinary packets over the network are capable to adjust their
rates to the value specified by the bottleneck controller. The queue dynamic model is
as follows

Allocated by controller to be sent from ordinary sources

)(tpλ

)(toλ

)(tpλ

)(tbλ

)(tx ref
p

)(tx p

)(tpC

)(tC o

)(tC b

)(tpX)(tX o

serverC

Predictive Congestion
Controller

412 F. Habibipour, A. Faraahi, and M. Glily

)()(
)(1

)(
)(τλ −+

+
−= totoC

tox

tox
tox& (7)

where, denotes the round-trip delay from bottleneck router to ordinary sources and
back to the router. The control goal here is to determine λo(t) at any time and for any
allocated capacity Co(t) so that xo(t) be close to a reference value xo

ref(t) given by the
operator or designer. There are two important points that must be considered, first,
Co(t) is the remaining capacity, Co(t)=Cserver-Cp(t) and would be considered as distur-
bance which could be measured from the premium queue. In our controller scheme
we would try to decouple the affect of Co(t) on the state variable xo(t), and the another
point is that o is limited to a maximum value max and no negative o is allowed i.e.

maxmax)(0 Cto ≤≤≤ λλ

2.5 Best-Effort Traffic

As mentioned in the previous section, best effort traffic has the lowest priority and
therefore could only use the left capacity not used by Premium and Ordinary traffic
flows. So, this class of service is no-controlled.

3 Intelligent Predictive Congestion Controller Design

A predictive control anticipates the plant response for a sequence of control actions in
future time interval, which is known as prediction horizon [4]. The control action in
this prediction horizon should be determined by an optimization method to minimize
the difference between set point and predicted response. Predictive control belongs to
the class of model based controller design concepts. That is, a model of the process is
explicitly used to design the controller, as is illustrated in Fig. 2. Usually, predictive
controllers are used in discrete time. Supposed the current time is denoted by sample
k, u(k), y(k) and w(k) denote the controller output, the process output and the desired
process output at sample k, respectively. More details about this strategy can be found
in [4-7].

w u y
ProcessController

Controller
design

ModelDesign
parameters

Controller
parameters

Fig. 3. Scheme of model based control

 Intelligent Congestion Avoidance in Differentiated Service Networks 413

0 0.1 0.2 0.3 0.4 0.5
0

200

400

600

800

1000

1200

1400

t(Sec)

X
p(

P
ac

ke
t)

Fig. 4. xp
ref(t) and xp(t)

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5

2
x 10

5

Time(sec)

D
is

tu
rb

an
ce

(P
ac

ke
t/

se
c)

Fig. 5. Input rate of Premium's buffer

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5

2

2.5

3
x 10

5

Time(sec)

co
nt

ro
l S

ig
na

l(P
ac

ke
t/

se
c)

Fig. 6. Output rate of Premium's buffer

414 F. Habibipour, A. Faraahi, and M. Glily

0 0.1 0.2 0.3 0.4 0.5
0

100

200

300

400

500

600

700

Time(sec)

X
o(

pa
ck

et
)

Fig. 7. xo
ref(t) and xo(t)

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5

2

2.5

3
x 10

5

Time(sec)

D
is

tu
rb

an
ce

(p
ac

ke
t/

se
c)

Fig. 8. Input rate of Ordinary's buffer

To design the controller, we have made the following assumptions for controller
design throughout this paper

C max=300000 Packets Per Second

 max =150000 Packets Per Second

In addition at first is assumed there is not any delay in system (=0).
The simulation results are depicted in Figs. 4, 5 and 6 for premium traffic, and in

Figs. 7, 8 and 9 for ordinary traffic. Figs. 4 and 7 show x(t) with xref(t) for Premium
and Ordinary classes, respectively where good behavior for rising and settling of x(t)
is clear. The input and output rates of Premium buffer are shown in Figs. 5 and 6,
respectively. Figs. 8 and 9 shows the input and output rates for the Ordinary buffers as
well. To investigate the robustness of proposed controller, the round trip time delay
and uncertainty is applied to the system as follows:

 sec3,
)(1

)(
)

100

10
1())((m

tx

tx
txG =

+
+= τ (8)

 Intelligent Congestion Avoidance in Differentiated Service Networks 415

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5

2

2.5

3
x 10

5

Time(sec)

C
on

tr
ol

 S
ig

na
l(p

ac
ke

t/
se

c)

Fig. 9. Output rate of Premium's buffer

0 0.1 0.2 0.3 0.4 0.5
0

100

200

300

400

500

600

700

Time(sec)

X
o(

P
ac

ke
t)

Fig. 10. xp
ref(t) and xp(t) with delay

0 0.1 0.2 0.3 0.4 0.5
0

200

400

600

800

1000

1200

1400

Time(sec)

X
p(

P
ac

ke
t)

Fig. 11. xp
ref(t) and xp(t) with delay

416 F. Habibipour, A. Faraahi, and M. Glily

Figs. 10 and 11 shows the set point tracking behavior of xo(t) and xp(t) , respec-
tively with above conditions. It is evident that the performance of xp(t) with the pro-
posed control action does not vary much; so the above uncertainty does not effect on
the closed-loop system very much. The performance of xo(t) is a little worst than the
case of without delay. It means that our proposed robust controller still needs to be
improved to compensate the effect of round trip time delay.

4 Conclusions

In this paper, predictive Controller was applied to congestion control in Differenti-
ated-Services networks. A differentiated-services network framework was assumed
and the control strategy was formulated for three types of services: Premium Service,
Ordinary Service, and Best Effort Service. The proposed control action demonstrated
robust performance against round trip time delay. Some computer simulations showed
good and satisfactory performance for the proposed controller.

References

1. Kolarov and Ramamurthy G., A control theoretic approach to the design of an explicit rate
controller for ABR service, IEEE/ACM Transactions on Networking, October 1999.

2. Pitsillides and Lambert J., Adaptive congestion control in ATM based networks: quality of
service with high utilization, Journal of Computer Comm., 20, 1997, pp. 1239-1258.

3. Pitsillides A.and Ioannou P., Non-linear Controllers for Congestion Control in Differenti-
ated Services Networks, TR-99-1, Dept. CS, University of Cyprus, 2001.

4. Camacho, E.F. Model predictive control, Springer Verlag, 1998.
5. Garcia, C.E., Prett, D.M., and Morari, M. Model predictive control: theory and practice- a

survey, Automatica, 25(3), pp.335-348, 1989.
6. Parker, R.S., Gatzke E.P., Mahadevan, R., Meadows, E.S., and Doyle, F.J. Nonlinear

model predictive control: issues and applications, In Nonlinear predictive control theory
and practice, Kouvaritakis, B, Cannon, M (Eds.), IEE Control Series, pp.34-57, 2001.

7. Jalili-Kharaajoo, M. and Araabi, B.N. Neural network control of a heat exchanger pilot
plant, to appear in IU Journal of Electrical and Electronics Engineering, 2004.

8. Sharma, S., D. Tipper, Approximate models for the study of nonstationary queues and
their applications to communication networks, IEEE ICC 93, May 1993.

9. Tipper D., Sandareshan M. K., Numerical Methods for modeling Computer Networks Un-
der Non-stationary Conditions, IEEE Journal SAC, Dec. 1990.

10. Rossides L., Pitsillides A. and Ioannou P., Non-linear Congestion control: Comparison of
a fluid flow based model with OPNET simulated ATM switch model, TR-99-1, Dept.
Computer Science, University of Cyprus, 1999.

J. Cao, W. Nejdl, and M. Xu (Eds.): APPT 2005, LNCS 3756, pp. 417 – 426, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Rule-Based Anomaly Detection of Inter-domain
Routing System

Peidong Zhu, Xin Liu, Mingjun Yang, and Ming Xu

School of Computer, National University of Defense Technology,
Changsha 410073, China

National Laboratory for Modern Communications,
Chengdu 610041, China
pdzhu@nudt.edu.cn,
meteor5460@21cn.com,

ymjnudt@163.com,
xuming64@public.cs.hn.cn

Abstract. Inter-domain routing (IDR) system is a critical part of the Internet in-
frastructure. However, anomalies exist in BGP routing behaviors because of
BGP misconfigurations, router malfunctions or deliberate attacking. To help se-
cure the IDR system, this paper presents a rule-based framework and a rich set
of detection rules to identify the abnormal routing behaviors. The detection
rules are categorized into General Anomaly-detection Rules (GADRs) and Spe-
cial Anomaly-detection Rules (SADRs), and they work together with the Basic
Models and the Generated Models of the Internet respectively. Under the pro-
posed framework, a prototype system, ISP-Health, is implemented, which can
find out various abnormal routes and complex hidden routing attacks.

1 Introduction

The Internet is composed of thousands of independent networks, which are glued
together using BGP (Border Gateway Protocol). BGP routing system is a critical part
of communications infrastructure, and the correctness and stability of its operation are
vital for the valid functioning of the Internet [1]. However, BGP is vulnerable to a
variety of attacks [2, 3, 4], and a single misconfiguration or a malicious BGP speaker
could result in large-scale service disruption [5, 6].

It is very difficult to find out the security problems of BGP. To diagnose BGP
problems, a network operator is confronted with many challenges. Firstly, he needs
high experience from many years’ network operation; secondly, he cannot resolve
problems that originate beyond the network’s administrative boundary, and the situa-
tion gets even worse if a problem originates further beyond the neighbor networks;
thirdly, current practices are mainly based on SNMP-based monitoring of routers, or
writing scripts to process the output of “show ip bgp” command. In a word, it is an
ineffective and laborious work without the aid of proper tools.

Because of BGP misconfigurations, router failures or deliberate attacking, many
anomalies exist in BGP routing behaviors. To identify the routing anomalies and
possible attacks, we present a rule-based framework and define a rich set of detection
rules. The detecting engine uses these rules together with the Basic Models of the

418 P. Zhu et al.

Internet and the Generated Models to find out numerous routing problems and secu-
rity threats.

The remainder of the paper is organized as follows. Section 2 reviews the related
work. Section 3 describes our rule-based framework. Section 4 describes GADRs
(General Anomaly-detection Rules). Section 5 discusses SADRs (Special Anomaly-
detection Rules). Section 6 depicts ISP-Health, a prototype system of the proposed
framework. And in section 7 we conclude the paper.

2 Related Work

The security of inter-domain routing system is a hot topic in ISP (Internet Service
Provider) meetings and network conferences.

From the point of view of protocol design and function enhancement, some solu-
tions, e.g. S-BGP, soBGP, pSBGP and MOAS-list [7] have been proposed. Among
these proposals, S-BGP is a relatively comprehensive solution, but it uses strict hier-
archical public key infrastructure (PKI) for both AS (Autonomous System) number
authentication and IP prefix ownership verification, and it is far from practical de-
ployment due to high overhead and deployment difficulty [2]. Some other efforts have
been made to help understand the state of BGP routing table in backbones, among
which is the famous website by G. Huston [8]. [6] launches the first systematic study
of BGP misconfigurations, and [9] focuses on route-missing issues.

Despite extensive research work in the literatures, network operators in practice
still lack effective tools to diagnose BGP security problems. In this paper, we design a
powerful rule-based framework and define a rich set of detection rules to detect vari-
ous route anomalies and suspect routing attacks.

3 A Rule-Based Security-Monitoring Framework for IDR

The rule-based framework for monitoring IDR system is shown in Fig. 1. It consists
of five components: BGP Data Collectors, Rule Repository, Internet Model Pool,
BGP Security Report Generator, and Detecting Engine. Obviously, the Detecting
Engine is the core part of the whole framework.

BGP routing table and BGP update messages are gathered from the monitored net-
works. The Detecting Engine checks if there are anomalies in these BGP data using
the rules in the Rule Repository together with the network models in Internet Model
Pool .The detection rules are categorized into two classes: the General Anomaly-
detection Rules (GADRs) and the Special Anomaly-detection Rules (SADRs). The
Internet Model Pool contains the Basic Models of the Internet and the Generated
Models. A model is made up of normal BGP behavior schemes or global routing
restrictions.

Fig. 2 shows the relations between the detection rules and the network models.
Rules work together with the corresponding models to check the routing behaviors.

The Basic Models of the Internet are constructed from large amount of basic in-
formation about the Internet, such as allocated AS numbers, allocated IP prefixes, and

 Rule-Based Anomaly Detection of Inter-domain Routing System 419

Fig. 1. A rule-based security-monitoring framework for IDR

Fig. 2. Relations between the rules and the network models

the mapping from AS number to IP prefix. Such information can be acquired by in-
quiring IRR (Internet Route Registry) and RIR (Regional Internet Registry), or ex-
tracted from RFCs and formal bulletins. The Generated Models are not built so di-
rectly, and need be generated using specially devised algorithms. Such algorithms
analyze volumes of BGP routing tables from numerous typical BGP speakers in back-
bone networks and try to discover more normal routing schemes that should be
obeyed by ISPs. The Generated Models include ISP Commercial Relationship Model,
Internet Hierarchy Model, ISP Geographical Relationship Model, Small-world Char-
acteristic Model, and Power-law Characteristic Model, etc. Comparing the BGP data
from monitored networks against the Generated Models, the Detecting Engine can
find out more hidden routing misbehaviors.

4 General Anomaly-Detection Rules (GADRs)

In general, a route which violates GADRs is not allowed to spread in the Internet.
Compared with SADRs, GADRs are relatively simple, and work with the Basic Mod-
els to detect bogus routes. For example, if a BGP route has a private prefix, it is

420 P. Zhu et al.

assumed to be anomalous (according to Rule a1). Using GADRs and the Basic Mod-
els, the Detecting Engine can easily judge whether one route is problematic [10]. Here
are ten GADRs that are extracted from ISP operation experience, BCP (Best Current
Practices) guidelines and theoretical analysis of routing threats.

Rule a1: If a route from an exterior network contains an IP prefix within any private
address blocks, then it is anomalous. This rule is derived directly from RFC-1918.

Rule a2: If a route from an exterior network has unallocated addresses, then it is
anomalous. Such a route contains an IP prefix that doesn’t belong to any organiza-
tion.

Rule a3: If a route contains an unauthorized IP prefix, then it may be anomalous.
Usually, this kind of routes implies a network attack using forged or hijacking routes.

Rule b1: If a route comes from an exterior network and its AS-PATH contains private
AS number, then it is anomalous. The private AS numbers are listed in RFC-1930.

Rule b2: If a route is from an exterior network and its AS-PATH has unallocated AS
number, then it is anomalous. Such a route contains an AS number that doesn’t be-
long to any organization.

Rule b3: If a route’s AS-PATH has discontinuous repeated AS numbers, then it is AS-
Loop anomalous.

Rule c1: If an IP prefix has more than one origin AS, then the relevant routes imply a
conflict of MOAS (Multi-Origin Autonomous System).

Rule c2: If some routes satisfy Rule-c1 and the conflicting ASes haven’t any affilia-
tion relationship or the IP prefixes are not unauthorized by the legal AS, then they are
judged as hijacked routes.

Rule c3: For two MOAS-conflicting ASes , e.g., A and B, if A indicates that B is the
origin of an IP prefix in A’s BGP routing table, while B’s routing table shows that B
isn’t the origin, then it can be concluded that the routes are forged.

Rule d: If a route gathered from monitored network A indicates that its origin or the
former hop is AS B, but the route table of B shows that B isn’t the origin or has not
propagated the route , then the route is forged.

The above ten rules should be used together with the Basic Models. For example,
to decide whether one route conforms to Rule b2, the Detecting Engine should inquire
the Basic Models pool to know which AS numbers are unallocated.

Rules c2, c3 and d use routing data from different monitored networks, and com-
pare them comprehensively to further verify the anomalies or find more hidden rout-
ing attacks. Such a multiple-view detecting ability is a special feature and an advan-
tage of our system.

5 Special Anomaly-Detection Rules (SADRs)

Using GADRs and the Basic Models, the Detecting Engine can only find some fairly
straightforward routing anomalies. To disclose more complex and hidden abnormal

 Rule-Based Anomaly Detection of Inter-domain Routing System 421

behaviors, it is necessary to make in-depth data-mining into the Internet data and find
more orders in routing behaviors. We have tried to discover more normal behavior
schemes of the network and use them to check the routing data from monitored net-
works. The normal behaviors schemes are dug out using specially devised algorithms,
so it’s reasonable to call them Generated Models. In this section, we first depict two
Generated Models, i.e., Internet Hierarchy Model and ISP Commercial Relationship
Model, and then define corresponding anomaly-detecting rules.

5.1 Internet Hierarchy Model and Corresponding Anomaly-Detection Rules

5.1.1 Building Hierarchy Model of the Internet
The Internet can be described in a hierarchy model made up of mult-levels of ASes. In
this paper, we use a core-transit-stub three-level hierarchy to model the Internet.
Generally speaking, it is not known which level an AS belongs to. We want to know
the level information for all the active ASes. Therefore, we devise algorithms to
achieve such a goal by analyzing the routing table available from Routeviews, RIPE-
NCC and some other sources. The following Method-A,B and C are used to obtain the
AS-sets that constitute core-level, transit-level and stub-level of the Internet hierarchy
respectively. Some ideas of the methods are borrowed from the literature [12].

Method-A: The backbone networks of the top-level ISPs are the core of the Internet.
To achieve the global connectivity, the Tier-1 ISPs build peer-peer commercial rela-
tionship between each other, and they are formed into a fully-connected mesh. There-
fore, the problem of inferring the core-level of the Internet can be defined as: to ac-
quire the node set of maximum fully-connected sub graph in the Internet graph at AS
level. Obviously, it’s an NP-hard problem. A heuristic algorithm is given in this pa-
per. The algorithm uses the whole AS-PATH as input, which is obtained by combin-
ing all the AS-PATH attribute values in all the BGP tables used for the generation of
the Internet Hierarchy Model.

Input: the whole AS-PATH set
Output: the core AS set (Tier1_AS_SET)
Step 1. Tier1_AS_SET = ;
Step 2. Compute the degree for every node in graph G, and store it into a table T;
Step 3. Get the node set with the max degree in G:
 max_degree_nodes(G) = {v| d(v) = max(d(v1),d(v2),…), v1,v2,… V}
Step 4. If |max_degree_nodes (G)| = 1, suppose z is the only one item in

max_degree_nodes(G);
Step 5. If |max_degree_nodes(G)| 1, look up the table T and choose one item z,

such as z max_degree_nodes(G) and its historical degree in the table T is not
smaller than the others;

Step 6. Tier1_AS_SET = Tier1_AS_SET {z};
Step 7. Neighbor_set the neighbor node set of z in G;
Step 8. Get the induced sub graph G’ from G, such that the node set of G’ is

Neighbor_set;
Step 9. G = G’;
Step 10. Quit, if G satisfies the condition

422 P. Zhu et al.

2

|)(|)*1|)((|
 |E(G)|

GVGV −>= α
;

otherwise, go to the step 2. Here, |E(G)| is the edge number of G, |V(G)| is the
node number of G, and α is a coefficient used to control the connection density
of Tier1 set, e.g., G is a fully- meshed graph if α 1.

Method-B: An AS is a stub one if it does not transit traffic between ISPs. Such an AS
lies in the bottom of the Internet hierarchy and only appears at the tail of an AS-
PATH. Using the following algorithm, we can identify stub ASes by scanning the
whole AS-PATH set.

Input: the whole AS-PATH set
Output: the stub AS set (STUB_AS_SET)
Step 1. STUB_AS_SET = ;
Step 2. Get the AS list , AS_LIST, which contains all the ASes in the whole AS-

PATH set;
Step 3. Repeat Step 4, 5, 6, for every node v in AS_LIST;
Step 4. Flag = 0;
Step 5. Examine every AS-PATH, if node v isn’t its last AS, set Flag = 1;
Step 6. If Flag = 0, add node v into STUB_AS_SET.

Method-C: After identifying the top level by Method-A and the bottom level by
Method-B, we can construct the transit-level using all the left ASes. The method is
described formally as follows.

Input: the whole AS-PATH set
Output: transit AS set (TRANSIT_AS_SET)
Step 1. Get the core AS set (Tier1_AS_SET) using Method-A;
Step 2. Get the stub AS set (STUB_AS_SET) using Method-B;
Step 3. Get the whole active AS set of the Internet, AS_SET;
Step 4. TRANSIT_AS_SET AS_SET - Tier1_AS_SET - STUB_AS_SET.

5.2 ISP Commercial Relationship Model and Relevant Rules

5.2.1 ISP Commercial Relationship Model
In general, there are three kinds of commercial relationships between two connected
ASes, i.e. “provider-customer”, “customer-provider” and “peer-peer” [11]. If we
could get the business contracts between ISPs or learn commercial policies of all
ISPs, the commercial relationship model between ISPs will be built easily. However,
all these information are top secrets and inaccessible. Fortunately, there is an algo-
rithm to approximately infer the ISP relationships. And it is described as Method-D in
the paper, which borrows some idea from the literature [11]:

Method-D:

Input: The whole AS-PATH set, every AS-PATH is made up of an AS sequence, it
can be denoted as p = α1α2…αi…αn, 1 i n

Output: the commercial relationship set (Relastion_SET) of AS pairs <α, β>,
where α and β are any AS that occurs in the whole AS-PATH set

 Rule-Based Anomaly Detection of Inter-domain Routing System 423

Step 1. Use Method-A to get the ASes in Tier1_AS_SET; Label the peer-peer rela-
tionship to the AS pair <α, β>, if α, β Tier1_AS_SET;

Step 2. Extract Core_AS- PATH that contains AS in Tier1_AS_SET from the
whole AS-PATH set;

Step 3. If p Core_AS- PATH, suppose αi Tier1_AS_SET
3-1. Label customer-provider relationship to the AS pairs <αj-1, αj> (j i), which

are on the left side of αi in p;
3-2. Label provider-customer relationship to the AS pairs <αj, αj+1> (j i), which

are on the right side of αi in p;
Step 4. If p AS-PATH - Core_AS- PATH

4-1. If the AS pairs in p, <αi-1, αi> and <αj, αj +1> (i j), are customer-provider
relationships, label customer-provider relationship to the pairs between them,
<αr, αr+1> (i r j);

4-2. If the AS pairs in p, <αi-1, αi> and <αj, αj +1> (i j), are provider-customer
relationships, label provider-customer relationship to the pairs between them,
<αr, αr+1> (i r j);

4-3. Repeat step 4-1 and 4-2, until no new customer-provider or provider-
customer relationship need be labeled;

Step 5. If p AS-PATH - Core_AS- PATH
5-1. If the AS pair <αi-1, αi> in p has customer-provider relationship, and <αj,

αj+1> has provider-customer relationship, (i j), label peer-peer relationship to
the pairs between them, <αr, αr+1> (i r j);

5-2. If the AS pairs <αj, αj+1> (j i) in p, which are on the right of αi, are pro-
vider-customer relationship, and the AS pairs <αk-1, αk> (k i), which are on
the left side of αi, haven’t been labeled, label peer-peer relationships to them;

5-3. If the AS pairs <αj-1, αj> (j i) on the left of αi in p are customer-provider re-
lationship, and the AS pairs <αk, αk+1> (k i), which are on the right side of αi,
haven’t been labeled, label peer-peer relationships to them.

5.2.2 Anomaly-Detection Employing the ISP’s Commercial Relationship Model
Routing activities are restricted by the defined commercial relationship models, and
one route should conform to the normal schemes. For example, ISP A and ISP B are
connected to their customer, ISP C, respectively. In this case, ISP A can not reach ISP
B via ISP C, for C as a customer does not provide transit services between A and B. If
a route indicates that A can reach B via C, or vice versa, it can be concluded that the
route violates the commercial relationships between A, B and C [10] . Therefore, if a
route is inconsistent with the commercial relationship model of related ISPs, it is
suspected to be fraud, forged or abnormal. According to the above model of ISP
Commercial Relationships, four SADRs are defined as follows:

Rule s3: If a route passes from a provider-customer edge to a peer-peer edge, then it
is anomalous.

Rule s4: If a route passes from a provider-customer edge to a customer-provider
edge, then it is anomalous.

424 P. Zhu et al.

Rule s5: If a route passes from a provider-customer edge to a customer-provider
edge, then it is anomalous.

Rule s6: If a route passes by a peer-peer edge and another peer-peer edge again,
then it’s anomalous.

6 ISP-Health - A Monitoring System Based on Rule-Based
Detection Framework

ISP-Health is an implementation of our proposed rule-based framework. It detects the
abnormal behaviors of the routing system and finds out susceptible routing attacks
using the detection rules together with the network models. The architecture of ISP-
Health is shown in Fig. 3.

Fig. 3. The architecture of ISP-Health

The detecting procedure is mainly divided into two steps. At the first step, the
General Anomaly-detection Rules are applied to the BGP data from the monitored
networks; then the Special Anomaly-detection Rules are employed to detect more
complex routing anomalies.

Compared with other detection tools, ISP-health can not only detect the average
bogus routes, such as routes with private prefix or AS, but also identify some hidden
anomalous routes, such as the routes breaking the commercial relationships and other
generated network models. Even for the detecting of average bogus routes, ISP-
Health can use the routing information collected from multiple monitored positions

 Rule-Based Anomaly Detection of Inter-domain Routing System 425

and apply the rules comprehensively to the assembled data. The capabilities of ISP-
Health are summarized in Table 1. The symbol “ ” means ISP-Health has the listed
capability and “*” indicates the multiple-view detecting ability.

Table 1. The Capabilities of ISP-Health

Type of Anomalous Routes Capabilities
Containing private prefix
Containing unallocated prefix
Containing reserved prefix
Containing private AS
Containing unallocated AS
Containing AS-Loop
Forged routes
Mismatching the Internet Hierarchy Model *
Violating the ISP Commercial Relationship constrain *
MOAS conflict *

7 Conclusion

The inter-domain routing system is prone to human errors or malicious attacks, and it
is faced with great challenges to run healthily. This paper presents a rule-based
framework to detect the route anomalies and routing attacks. A rich set of detection
rules are defined, and they work together with the Basic Models and the Generated
Models of the Internet to find out hidden routing misbehaviors from the BGP data of
monitored networks. We have implemented ISP-Health, a prototype under the pro-
posed framework, which demonstrates several advantages over other detecting sys-
tems. In the future, we will focus on the definitions of more detection rules and try to
put ISP-Health into practice.

Acknowledgement

We gratefully acknowledge the support from National Natural Science Foundation of
China under Grant No. 90204005, the High-Tech Research and Development Program
under Grant No. 2005AA121570 and 2003AA121510, and the National Laboratory for
Modern Communications Foundation under Grant No. 51436050605KG0102.

References

1. B. Halabi. Internet Routing Architectures. Cisco Press, second edition, 2001.
2. S. Kent and C. Lynn and K. Seo. Secure Border Gateway Protocol (Secure-BGP). IEEE

Journal on Selected Areas in Communications, 18(4): 582-592, April 2000.
3. S. Murphy. Border Gateway Protocol Security Analysis. IETF Internet Draft, draft-

murphy-bgp-vuln-00.txt. November 2001.
4. J. Cowie, A. Ogielski, B. Premore, and Y. Yuan. Global Routing Instabilities during Code

Red II and Nimda Worm Propagation. http://www.renesys.com /projects/bgp_instability

426 P. Zhu et al.

5. S. A. Misel. Wow, AS7007! NANOG mail archives. http://www.merit.edu/mail.archives/
nanog/1997-04/msg00340.html.

6. R.Mahajan, et al. Understanding BGP Misconfiguration. ACM SIGCOMM’ 2002
7. X. Zhao, D. Pei, L.Wang, D. Massey, A. Mankin, S.F. Wu and L. Zhang. An Analysis of

BGP Multiple Origin AS (MOAS) Conflicts. ACM SIGCOMM Internet Measurement
Workshop 2001.

8. G. Huston. BGP Table Statistics. http: //www.telstra.net/ops/bgp/index.html.
9. Di-Fa Chang, Ramesh Govindan, John Heidemann. Locating BGP Missing Routes Using

Multiple Perspectives. ACM SIGCOMM, 2004.
10. A. Broido, E. Nemeth, K. Claffy. Internet Expansion,Rrefinement and Churn. ETT, Jan

2002
11. L. Gao. On Inferring Autonomous System Relationships in the Internet. IEEE Global

Internet Symposium, 2000.
12. L. Subramanian, S. Agarwal, R. H. Katz. Characterizing the Internet Hierarchy from Mul-

tiple Vantage Points. IEEE INFOCOM, 2002.

J. Cao, W. Nejdl, and M. Xu (Eds.): APPT 2005, LNCS 3756, pp. 427 – 434, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Transaction of Web Services Based on Struts*

Gong-Xuan Zhang, Ping-Li Wang, and Wen Chen

Department of Computer Science and Technology,
Nanjing University of Science and Technology,

210094 Nanjing, China
Gongxuan@mail.njust.edu.cn

Abstract. There are many frameworks for web applications and Struts is one of
them with a collection of Java code designed to help you build solid applica-
tions while saving time. It provides the basic skeleton and plumbing, and takes
complex applications as a series of basic components: Views, Action classes,
and Model components. Web services are new technology for next generation
Internet. In this paper, Struts-enabled framework is first described and then a
transaction scenario is discussed for web services applications.

1 Introduction

Internet has been applied over most of our real world. Companies use Internet for their
businesses to provide customers with their products or services. With the explosion of
the number and type of services, some new mechanisms and frameworks are required to
meet the needs of customers with ease. Web services are new technology for us to dis-
cover, deploy, invoke and migrate web resources. There are many web application
frameworks developed to improve business processes and quality of services over Inter-
net, such as BEA WebLogic 8.x, Borland Enterprise Server 6.5, IBM Websphere Appli-
cation Server 5.0, and Oracle 11. All of them support web services technology.

Struts framework, a key infrastructure or model embedded in web application serv-
ers, collaborated with any one of above concerned products, provides the basic skeleton
and plumbing. With struts framework, complex applications, being compliant web
applications based on the Java Servlet specification, are taken as a series of basic com-
ponents: Views, Action classes, and Model components. The rests of this paper are
organized as follows: MVC architecture of struts framework is described in Section 2, a
new model of ISWS (Integrating Struts into Web Services) is discussed in Section 3, the
transactional pool model is given in Section 4. And the last is the conclusion.

2 Struts Components

The Struts framework, first developed in 2001, combines the best of servlets and
JSPs. Being a compliant Web application (or Webapp, for short) implies, among other
things, that Struts application has

* This is partly sponsored by the Educational Fund of Jiang Su, and the project number is

428 G.-X. Zhang, P.-L. Wang, and W. Chen

Browser

Controller
(servlet)

View
(Jsp)

Model
Bean

Event
HTTP

Request

Update
HTTP

Response

Set
Instance

Get

(1) (2)

(3)(4)(5)

Fig. 1. MVC Model 2

• A standard directory structure
• Certain standard configuration files (web.xml and so on)
• Dynamic functionality deployed as Java classes and .jsp pages
• A standard Web Archive (.war file) format for deployment

Although it’s not required reading, it would be very useful to you as a Struts devel-
oper familiar with the Java Servlet specification version 2.3 (or 2.2, depending on the
application server). The Struts open source framework is based on the Model 2, or
Model-View-Controller, approach to software design. The Model 2 framework
evolved from the Model 1 design, which included JavaServer Page technology. With
struts framework, it is easy to build flexible applications and a set of JSP custom tags
for building JSP pages. The Model-View-Controller architecture of Struts simplifies
building Web applications by providing a model into which you plug components.
Take, for example, a simple application for updating a user’s address information. In
this case, the Model-View-Controller architecture might break the application into the
following components [2,3,4]:

Model: A programming model that provides an internal representation of the data.
View: A view to be used to display the user’s information.
Controller: A controller to assist in validating the user’s entries and choosing the

right view to display the results. It determines what processes to perform and what
steps to take next.

For web applications, a proposed MVC architecture can be depicted in Fig.1. with
five steps as following:

1. Users give their requests under HTTP;
2. The Controllers, most of them are servlets, receive the requests and put them

forward to the Models, and get results from the Models;
3. The Models, encapsulate data structures and transactional logics, make actions

on databases. Java Beans are Model Components;
4. After receiving results, the Controllers put them forward to the Views that are in-

terfaces to users. View Components are made of JSPs that are embedded into HTML;
5. The Views show the results back to user’s browsers.

Based on MVC model 2, all components are divided into coordinatve classes, serv-
lets and JSP tags in Struts framework which has the characteristic of ‘business logics
apart from representation logics’.

 Transaction of Web Services Based on Struts 429

Clients
(browsers)

Controller

Action ActionServlet

Struts-
config.xml

ActionForm Model
JavaBean

JSP
JSP
Taglibs

View

1.HTTP
 Requests

3.Dispatch

2.Fill
Req

4.Fill
Business

5.Delive
Control

6.Use

7.Update
Business

8.HTTP
 Responses

Fig. 2. Struts framework

Fig. 2 shows a Struts framework, with which the three components of MVC are fit
together by struts configuration file (struts-config.xml). This means that struts
framework is a series of components and most efforts, for web application developers,
are to break down complex web applications into a series of simpler components.
When a Struts-enabled web application is created, web.xml file is updated, struts-
config.xml and tiles-def.xml deployment descriptor files are created, and then copied
to the WEB-INF directory.

3 ISWS Architecture

With assumption for an Internet with the dynamic business entities can communicate
within them or trade partners. This is the next generation Internet, with which web
services are core techniques gradually. XML, SOAP, WSDL, UDDI and so on, are
key techniques of web services [5,6,7].

Web services allow a business enterprise to publish its on-line applied businesses,
other companies or applied softwares can access the on-line services. The web ser-
vices technology, which can be taken as a kind of deploying the object components on
the Websites, provides remote service invocation mechanism base on XML and
SOAP protocols over the Internet. At first, the services provider gives his services
definitions and builds the services modules interfaces, makes use of the WSDL to
describe the service access entrance (URL) and remote invocation interfaces, and
publishes them on Internet for requesters. And then, the services requester invokes the
remote procedures (web services) by the names and parameters described in the
document WSDL, the web services response his request and execute the function, and
return the results to the requester.

With web services technology, some excellent Struts-based web applications can
be developed [8]. A proposed model, called ISWS--Integrate Struts into Web Ser-
vices, is shown in Fig. 3. It is divided into three parts of MVC model, services con-
troller and Web services implementation. The services controller is a key component

430 G.-X. Zhang, P.-L. Wang, and W. Chen

of which bridges MVC model and Web Services. A client request, for instance, is first
processed in MVC model, and dispatched by services controller then. The controller
invokes related services of web services implementation. Finally, the results are sent
back to MVC model through the services controller and shown on the client screen
with view components of MVC model.

UDDI
registry

Dynamical
Web Service
despatcher

UDDI
Proxy

SOAP Server

user

SOAP
Proxy

ISWS-
config.xml

authenti
cating

errors

transaction buffers

MVC
Model

Web Services
Implementation

SOAP
Proxy

Action Manager

ActionServlet

ActionFormJSPs

Web Services
controller

Fig. 3. ISWS Architecture

In general, web services are invoked statically by WSDL and dynamically by

UDDI. The two typical invocations will be respectively implemented with SOAP
proxy and UDDI proxy in web services implementation of the ISWS model.

4 TPL Transaction

Third Party Logistics (in short, TPL) is a popular, newer pattern for e-commerce. TPL
focuses on goods’ shipping, transporting and storing. Many resources can be opti-
mized and saved during goods’ circulating with TPL pattern. As a general example, a
TPL system consists of 6 parts (called 6 roles) from booking an order to completing
the shopping as fellow:

1. Customer—books orders for his/her shopping on a market website;
2. Market (shopping center)—handles orders, signs invoices and asks shipping;
3. Logistics Center—schedules shipping list according to invoices;
4. Store House—stores all goods in it;
5. Shipping Group—arranges vehicles to transport the ordered goods;
6. Manufacturer—provides goods for the others.

 Transaction of Web Services Based on Struts 431

Customer

Market LogCentry

StoreHouse

Shipping

Manufacturer

MySQL, Oracle

Client tier

Business tier

Backend tier

(ISWS Architecture)

MVC

Services Controller

Web Services Implementation

Fig. 4. ISWS application

Fig. 4 is a application model of ISWS for TPL with six roles, and each of them can
be constructed into three types of components. Note that JSPs are interfaces for cli-
ents to invoke remote services, servlets are controllers with listening clients’ requests,
creating connection and passing messages between JSPs and EJBs, and EJBs are
models to execute SQL statements on database management systems. All the compo-
nents will be programmed in Java and deployed with WebLogic, or other web appli-
cation servers at running time.

Just as discussed above, TPL components, which are developed as Web services and
encapsulated in the YH_TPL.war (Web ARchive, created in building time), work to-
gether by the struts-config.xml of TPL system. In a struts-config.xml, many items, such
as Global Forwards, ActionMappings, ActionForm beans and JDBC DataSources, can
be defined. Bellow are part contents of TPL struts-config.xml.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE struts-config PUBLIC "-//Apache Software Foun-
dation//DTD Struts Configuration 1.1//EN"
"http://jakarta.apache.org/struts/dtds/struts-
config_1_1.dtd">
<struts-config>
<form-beans>
<form-bean name="loginActionForm" type="

com.struts.basic.LoginActionForm"/>
<form-bean name="marketInfoForm" type="

com.struts.admin.enterprise.market.marketInfoForm"/>
<form-bean name="marketGoodsInfoForm" type="

com.struts.admin.enterprise.marketGoods.marketGoodsInfoFo
rm"/>

</form-beans>
<global-forwards>
<forward name="index" path="/index.jsp" redirect="true"/>

432 G.-X. Zhang, P.-L. Wang, and W. Chen

<forward name="noExit" path="/in-
clude/userNotExisted.jsp"/>
<forward name="globalerror" path="/include/error.jsp"/>
<forward name="dialogClose" path="
/include/dialogClose.jsp"/>
<forward name="error" path="/include/error.jsp"/>

</global-forwards>
<action-mappings>

<action name="marketInfoForm" path="/admin/enterprise/
market/marketSaveAction" scope="request" type="
com.struts.admin.enterprise.market.marketSaveAction">
<forward name="success" path="/admin/enterprise
/market/closedialog.jsp"/>
</action>
<action path="/admin/enterprise/market/marketChangeAction
" scope="request" name="marketInfoForm" attribute= "mar-
ketInfoForm" type=
"com.struts.admin.enterprise.market.marketChangeAction">
<forward name="success" path="/admin/enterprise
/market/marketChange.jsp"/>
</action>
<action path="/admin/enterprise/market/marketUpdateAction
" scope="request" name="marketInfoForm" type=
"com.struts.admin.enterprise.market.marketUpdateAction">
<forward name="success" path="/admin/enterprise
/market/closedialog.jsp"/>
</action>
<action path="/admin/enterprise/market/marketAddAction"
scope="request" type=
"com.struts.admin.enterprise.market.marketAddAction">
<forward name="success" path="/admin/enterprise
/market/marketAdd.jsp"/>
</action>
<action
type="com.struts.admin.enterprise.market.marketDeleteActi
on" path="/admin/enterprise/market/marketDeleteAction">
<forward name="success" path="/admin/enterprise
/market/marketListAction.do"/>
</action>

</action-mappings>
<message-resources parameter=
"com.struts.ApplicationResources"/>
</struts-config>

In a web application environment, the number of customers is unfixed and many
requests, especially data change requests, are probably on the same database or differ-
ent ones at same time. So there must be transaction mechanism to keep updated data
coherent. In order to develop and implement the TPL system, we define some data
interfaces with 2PC agreement for its business tier, adapted to WebLogic server,

 Transaction of Web Services Based on Struts 433

TPL Users

MySQL, Oracle

MVC

Services Controller

Web Services
Implementation

DAO

Dao Impl

DaoFac-
tory_Impl

DaoFac-
tory__JDBC

Dao Factory

Transaction
pool VO

Fig. 5. TPL Transaction with ISWS Model

under ISWS architecture. The data interfaces are based on transaction and called
transactional pools located in transaction component next to services controller. Some
data operations are distribued in the Web Services Implementation. TPL transaction
abstract interfaces model is shown In Fig.5. All TPL components access database
tables through VOs (Value Objects) that pass the parameters to DAOs (Data Access
Objects, interfaces). When data access invoked, WebLogic server creates instances
(Dao Factory and its implementing) and the instances access related databases under
DaoFactory_JDBC connections. So many instances may access different data tables
over several databases in different servers. When data access finished, WebLogic
server will destroy the instances and release their resources.

To keep the instances transactional, it is important to configure transaction mecha-
nism in the file of WebLogic’s server.xml as following:

<!-- TPL WebLogic Server Configuration File -->
<Server>

<Context path="/TPL" docBase="TPL" debug="0" reload-
able="true" crossContext="true">
<Resource auth="Container" name="jdbc/TPL" type="
javax.sql.DataSource"/>
<ResourceParams name="jdbc/TPL">
 <parameter>
 <name>factory</name>
 <value>org.objectweb.jndi.DataSourceFactory</value>
 </parameter>
</ResourceParams>
<!-- Description of the resource "UserTransaction -->
<Resource name="UserTransaction" auth="Container" type="
javax.transaction.UserTransaction"/>
<ResourceParams name="UserTransaction">
<parameter>

434 G.-X. Zhang, P.-L. Wang, and W. Chen

<name>factory</name>
<value>org.objectweb.jotm.UserTransactionFactory
</value>

 </parameter>
 <parameter>
 <name>jotm.timeout</name>
 <value>60</value>
 </parameter>
 </ResourceParams>

</Server>

At same time, the ofollowing key java statements must be added into most action
components to activate the transaction mechanism.

Context ctx=new InitialContext();
UserTransaction utx=(UserTransaction)

ctx.lookup(“java:comp/ UserTransaction”);
utx.begin();
MarketDao marketDao1

=DaoAbstractFactory.getFactory().getMarketDao();
Market []market1=new Market[2];
market1[0]=new Market(“22”);
market1[1]=new Market(“33”);
Boolean bTrans= marketDao1.insert(market1);
......
if (bTrans) utx.commit();
else utx.rollback();

5 Conclusion

With Struts-enabled framework, many enterprises can build their web applications
quickly and easily. The reason is that most businesses can be constructed with MVC
components (here Web Services), and then dynamically deployed into a web applica-
tion server. You can update or add some business modules at any time.

References

1. Andrew S. Tanenbaum. Distributed Systems: Principles and Paradigms. Prentice-Hall, Inc
(2002).

2. Chuck Canvaness. Programming Jakarta Struts. O’Reilly Media, Inc (2002).
3. James Goodwill. Mastering Jakarta Struts. Wiley Publishing, Inc (2003).
4. James Turner. Struts Kick Start. Sams Publishing, Inc (2003).
5. Eric Amstrong. The Java Web Services Tutorial. Higher Education Press, Pearson Eduction

(2003).
6. The Website. Design a simple service-oriented J2EE application framework. http://www.

javaworld.com/javaworld/jw-10-2004/jw-1004-soa.html
7. Zhao Qiang. Developing J2EE application (WebLogic+JBuilder). Publishing House of

Electronics Industry (2003).
8. IBM Company. Architect Struts applications for Web services. http://www-106.ibm.com/

developerworks/webservices/library/ws-arcstruts/

J. Cao, W. Nejdl, and M. Xu (Eds.): APPT 2005, LNCS 3756, pp. 435 – 442, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Method of Aggregate Query Matching in Semantic
Cache for Massive Database Applications

Jianyu Cai, Yan Jia, Shuqiang Yang, and Peng Zou

School of Computer, National University of Defense Technology, Changsha, China
jianyucai@163.com

Abstract. Aggregate queries are frequent in massive database applications. Their
execution tends to be time consuming and costly. Therefore efficiently executing
aggregate queries is very important. Semantic cache is a novel method for aiding
query evaluation that reuses results of previously answered queries. But little
work has been done on semantic cache involving aggregate queries. This is a
limiting factor in its applicability. To use semantic cache in massive database
applications, it is necessary to extend semantic cache to process aggregate query.
In this paper, query matching is identified as a foundation for answering aggre-
gate query by semantic caches. Firstly a formal semantic cache model for ag-
gregate query is proposed. Based on this model, we discuss aggregate query
matching. Two algorithms are presented for aggregate query matching. These
two algorithms have been implemented in a massive database application project.
The practice shows the algorithms are efficient.

1 Introduction

Aggregate queries are pervasive in massive database applications, whose execution
tends to be time consuming and costly. Therefore promotion of their efficiency will
largely improve the performance of the system. Semantic cache is a novel scheme for
aiding query evaluation, which can reuse results of previously answered queries [1].
But most of existing solutions research on SPJ (Select Project Join) query and little
work have been done on semantic cache involving aggregate queries [1][2][3][4][5].
This is a limiting factor in its applicability and it is mostly used in small-scale database
applications. In order to utilize semantic cache in massive database applications, it is
necessary to extend semantic cache to support aggregate query. Query matching is
primary for answering query by semantic cache. When a query comes, it has to decide
whether the query be answered by cache. In order to process aggregate queries, se-
mantic cache requires the function of aggregate query matching.

Several works considered the problem of answering queries using views in the
presence of grouping and aggregation. [6] extended the treatment of grouping and ag-
gregation to consider mutli-block queries. They presented a matching algorithm that
break the matching task into many smaller sub-matches replying on a general matching
infrastructure. Their approach is too complex for semantic cache. [7] involved a set of
transformations in the query rewrite phase. In this approach, the algorithm performs
syntactic transformations on query until it is possible to identify a subexpression of the
query that is identical to the view. However, the purely syntactic nature of this approach

436 J. Cai et al.

is a limiting factor in its applicability. [8] relaxed the limitation of [7] and proposed a
more semantic approach that find views related to the query. But [8] only gave a sketch.
[9] considered the formal aspects of answering aggregate queries using views. They
discussed the problem of completion and didn’t give any practical method of query
matching.

Researches on SPJ query matching can’t be used in aggregate query matching.
Other related works have deficiencies in terms of using semantic information or ha-
ven’t found their way into practice. In this paper we propose a method of aggregate
query matching in semantic cache for massive application. We assume that update and
insert operations have little effect on cache in the massive application.

The remainder of the paper is organized as follows. Section 2 describes formally
semantic cache, which supports aggregate query. Section 3 defines containing match
and overlapping match. Based on the definition, two algorithms of query matching,
AQCM and AQOM are given in section 3. Section 4 concludes the paper.

2 Formal Description of Semantic Cache

From a logical point of view, a semantic cache is composed of a set of cache items.
Each cache item is the result of aggregate query. In this research, we assume that both
the queries and the cached items are defined by relational algebra expressions involving
only projections, selections, aggregations, groups and joins. Thus we extend the model
of [3] and give formal definitions of semantic cache in this section. Without a lose of
generality, we ignore ≠ comparison and assume that the problem is in the real domain in
this study. Now we make conventions as follows:

1. Compare Predicate, P, where P = X op c, X is an attribute of a base relation,
op∈{ , ,<,>,=}, c is a domain value or a constant.

2. Join Predicate, P, where P = (X=Y), X, Y are join attribute.
3. Simple Predicate, P, is either a Compare Predicate or a Join Predicate.

Definition 1. Given a database D = {Ri|Ri is a base relation, i=1,2, …,m}, a Semantic
Cache item, S, is a tuple <A,F,T,P,C>, where C=πA,F(σP(Ri1×Ri2×,…×Rin));
T={Ri1,Ri2,…,Rin}⊆D; A={al|al∈Rk,Rk∈D}; F={f(b)|b∈Ri, Ri∈T, f∈Ag}, Ag={MAX,
MIN,SUM,COUNT}; P=p1∧p2∧…∧pj where each pj is a simple predicate.

In definition 1, P indicates the constraints that the tuples in the semantic cache item S
satisfy, while C represents the actual content. T is the base relations that are involved in
the cache item creation. A defines the non-aggregation attributes in S. At the same time,
A represents the grouping attributes in S. F defines the aggregation columns in S. Ag
gives the aggregation functions that is possible in S. Semantic cache items are the result
of Select-Project-Group-Join (SPGJ) operations. For SUM and COUNT can compute
AVG, we don’t discuss AVG in this paper.

Example 1. Consider two base relations in a databae D:Student(Sid, Sname, Age,
Class) and Course(Cid, Cname, Sid, Period). Suppose there is a query Q1 that will
generate the semantic cache item S:

Query Q1: Select Sname, SUM(Period) From Stuent, Course Where Age>20 and
Student.Sid = Course.Sid Group by Sname;

 A Method of Aggregate Query Matching in Semantic Cache 437

Therefore, the semantic cache item S is represented as <A,F,T,P,C>,where
A={Sname}; F={SUM(Period)}; T={Student,Course}; P=(Age>20) ∧ (Stdent.Sid =
Course.Sid); and C is the result of query Q1.

Since semantic cache items are actually the result of query, we can qualify the se-
mantic information of queries in the same way as we specify those for cache items.
There we define a query just as definition 1.

Definition 2. A Query Q is represented by a virtual semantic cache item, <AQ,FQ,
TQ,PQ,CQ>. The fields in the tuple have the same implication as definition 1. CQ is
empty before query execution.

3 Aggregate Query Matching

This section resolves aggregate query matching based on the formal description of last
section. First, discuss some definitions and techniques of aggregate query matching.
Then give two algorithms of aggregate query matching.

3.1 Query Matching

Query matching decides whether the query be answered by cache item. This section
discusses some definitions and techniques of query matching.

Definition 3. Consider a semantic cache item S=<A,F,T,P,C> and a query Q=<AQ,FQ,
TQ,PQ,CQ>. We say Q matches S, if there exists a relational algebra expression E,
containing only project, selection, join, aggregation and group operations, such that
E(C)≠∅, and E(C)⊆CQ. If E(C)=CQ, we say Q can be fully contained by S. This match
type is called containing match.

Group operator is an important factor of query matching. On the premise of that
grouping attributes of aggregate query are contained by those of semantic cache item,
we firstly discuss the conditions that aggregation functions satisfy in present of query
matching. If a query matches a semantic cache item, there are some possible situations
as for their aggregation functions. The equivalence of their aggregation functions is one
of conditions. Otherwise, aggregation functions of query can be computed based on
aggregation functions and grouping attributes in semantic cache item. Definition 4
describes these situations.

Definition 4. Consider a semantic cache item S=<A,F,T,P,C> and a query Q=<AQ,FQ,
TQ,PQ,CQ>.Given an aggregation function f1(a)∈FQ. We say f1(a) is derivable from F
and A, denoted by f1(a)=h(F,A), if there exists another aggregation function f2(b)∈F,
such that one of the following four conditions holds:

(1) f1=f2,a=b, f1≠COUNT;
(2) f1=f2, f1=COUNT;
(3) f1=SUM, f2=COUNT, a≠b, a∈A;
(4) f1=MAX|MIN, a∈A;

438 J. Cai et al.

If there is an aggregation function f1(a) in FQ such that f1(a)=h(F,A), then FQ is deriv-
able from F and A, denoted by FQ←D(F,A). For any aggregation function f1(a) in FQ, if
f1(a)=h(F,A), then FQ is fully derivable from F and A, denoted by FQ=D(F,A). If
FQ=D(F,A) and there exists an aggregation function f1(a) in FQ such that f1(a) ≠h(F,A),
then FQ is partially derivable from F and A, denoted by FQ≈D(F,A).

Theorem 1. Consider a semantic cache item S=<A,F,T,P,C>, and a query Q=<AQ,FQ,
TQ,PQ,CQ>, suppose PA is its predicate attribute set. If it is not specified, PA is the
predicate attribute set of P in this paper. Then we have:

(1)If T=TQ, AQ ⊆A, FQ←D(F,A), PA⊆A, and P∧PQ is satisfiable, then Q matches S.
(2)If T=TQ, AQ ⊆A, FQ=D(F,A), PA⊆A, PQ P, then Q can be fully contained by S.

Proof. Proof of 1: Suppose Q doesn’t match S, there does not exist a relational algebra
expression E, containing only project, selection, group and aggregation operations,
such that E(C)≠∅, E(C)⊆CQ.

Let us construct a query Q′=<AQ,FQ,TQ, P∧PQ,CQ′>.Since every tuple which satis-
fies P∧PQ will always satisfy PQ, thus we have CQ′⊆CQ. Also P∧PQ is satisfiable, thus
CQ′≠∅.

Because T=TQ, AQ⊆A, FQ←D(F,A), PA⊆A, and S=<A,F,T,P,C>, then we have

CQ′= ()()C
QQ PFA σπ ′, , where F′ is a new set of aggregation functions derived from

FQ=D(F,A).Hence we can find a E=
QQ PFA σπ ′, , such that E(C)= CQ′⊆CQ, E(C)≠∅.

This conflicts with the assumption at the beginning, so Q matches S.

Proof of 2: Suppose Q is not be fully contained by S, there exists a tuple tQ∈CQ, and for
tQ, there does not exist a tuple t∈C such that tQ=E(t), E is a relational algebra expres-
sion.

Let us construct a semantic cache item S′=<A,F,T,PQ,C ′>. Since T=TQ, AQ

⊆A,PA⊆A, and PQ P, we have C ′⊆C. Also we have AQ ⊆A and FQ=D(F,A), thus

()CC FAQ Q
′= ′,π , where F ′ is a new set of aggregation functions derived from

FQ=D(F,A). For tuple tQ∈CQ, there exist at least one tuple t∈ C ′, such that

()tt FAQ Q ′= ,π .

Because C ′⊆C, we have t∈ C. This conflict with the assumption made at the be-
ginning, so Q can be fully contained by S.

Query Q matches semantic cache item S, but it isn’t be concluded that S fully
contains Q. That is to say, Q may only retrieve partial results from S. Definition 5
describes the case.

Definition 5. Consider a semantic cache item S=<A,F,T,P,C> and a query Q=<AQ,FQ,
TQ,PQ,CQ>. We say S overlaps Q and this match type is overlapping match, if one of the
following three conditions holds:

(1) FQ=D(F,A) and P∧PQ is satisfiable;
(2) FQ≈D(F,A) and PQ P;
(3) FQ≈D(F,A) and P∧PQ is satisfiable;

 A Method of Aggregate Query Matching in Semantic Cache 439

3.2 Query Matching Algorithms

Query matching is the process that determines whether query is answered by semantic
cache. When a query is compared to a semantic cache item, there can be three different
match types: containing match, overlapping match and disjoint match. Obviously,
disjoint match represents that query can’t retrieve any result from cache. So we focus
on containing match and overlapping match based on the concepts defined before.

3.2.1 Containing Match
Implication problem is central to containing match [10]. We give some concepts of
implication and show how to test containing match.

Definition 6. Consider a predicate P=p1∧p2∧ ∧pj, where each pj is a simple predicate.

For all (X<ci), (X ci) and (X=ci) in P, let ()i
X

up cC min= for variable X and X
upC satisfy

all (X = Y) in P. If X can be equal to X
upC , X

upC is closed; otherwise X
upC is open. For all

(X>ci), (X ci) and (X=ci) in P, let ()i
X

low cC max= for variable X and X
lowC is restricted

by all (X = Y) in P. If X can be equal to X
lowC , X

lowC is closed; otherwise X
lowC is open.

Theorem 2. Given a predicate P, which is a conjunctive of simple predicates. P is

satisfiable if and only if for each variable X in P, X
up

X
low CC < or X

up
X

low CC = and

both X
lowC and X

upC are closed.

Proof. The proof is similar with [10]. We omit it.

Theorem 3. Suppose X
upC and X

lowC are derived from PQ. PQ implies P if and only if

PQ is unsatisfiable, or

(1) for any (X = Y) ∈ P there exists (X = Y) in PQ, or (X = Y) can be derived from PQ;

(2) for any (X<c)∈ P, X
upCc > , or X

upCc = and X
upC is open;

(3) for any (X>c) ∈ P, X
lowCc < , or X

lowCc = and X
lowC is open;

(4) for any (X c) ∈ P, X
upCc ≥ ;

(5) for any (X c) ∈ P, X
lowCc ≤ ;

(6) for any (X=c) ∈ P, X
low

X
up CCc == .

Proof. The proof is similar with [10]. We omit it.

As a result of definition 6, theorem 2 and theorem 3, an algorithm to evaluate if PQ
implies P is provided next.

Algorithm 1 Implication (PQ, P)

Input: PQ and P. Both PQ and P are conjunctive of simple predicates.
Output: If PQ implies P, true is returned. Otherwise, false is returned.

440 J. Cai et al.

Step1: Evaluate if PQ is unsatisfiable.

1.1 Construct the minimum range X
lowC , X

upC for each X by scanning all (X op c) in

PQ.
1.2 Construct the links by scanning all (X = Y) in PQ. The links consist of equivalent

variables.

1.3 Modify X
lowC and X

upC through the equivalent relation of links.

1.4 If any X
up

X
low CC < , or X

up
X

low CC = and both X
lowC and X

upC are closed, PQ is

satisfiable. Otherwise, PQ is unsatisfiable. In this situation, PQ implies P and return true.
Step2: For any (X = Y) in P, if it cannot be concluded from the links in 1.2, return false.
Step3: Process the compare predicates in P.

3.1 For each (X<c), if X
upCc < or X

upCc = and X
upC is closed, then return false.

3.2 For each (X>c), if X
lowCc > or X

lowCc = and X
lowC is closed, then return false.

3.3 For each (X c), if X
upCc < , then return false;

3.4 For each (X c), if X
lowCc > , then return false;

3.5 For each (X=c), if X
upCc ≠ and X

lowCc ≠ , then return false.

Step4: PQ implies P; return true.

On the basis of theorem 1 and algorithm 1, we give algorithm AQCM (Aggregate
Query Containing Match) to evaluate if S contains query Q.

Algorithm 2 AQCM(Q,S)

Input: Query Q, Semantic cache item S.
Output: If S contains Q, return true. Otherwise, return false.
Step1: If T=TQ, go to Step2. Otherwise, return false.
Step2: If AQ ⊆A, go to Step3. Otherwise, return false.
Step3: For each aggregation function f1(a) in Q, evaluate the following situations.

3.1 If f1 is MAX or MIN, then there exists f2(b) in F such that f1=f2 and a=b. If f2 does
not exist and a does not belong to A, then return false.

3.2 If f1 is COUNT, then there exists f2(b) in F such that f2=COUNT. If f2 does not
exist, then return false.

3.3 If f1 is SUM, then there exists f2(b) in F such that f2=SUM and a=b or f2=COUNT
and a∈A. If f2 does not exist, then return false.
Step4: If PA⊆A, use algorithm1 to evaluate if PQ implies P.

3.2.2 Overlapping Match
Definition 5 describes overlapping match. We can modify algorithm 2 to evaluate
condition (2). So we discuss overlapping match that described by condition (1) and (3).
When Q and S overlap, S only provides partial result of Q. Thus Q has to be split into
two subqueries: one part that retrieves the portion of Q satisfied by S, and the other part
that cannot be satisfied. This process is called query trimming [3]. If there exists join
predicate in a query, query trimming must process (X≠Y). For reducing the complexity

 A Method of Aggregate Query Matching in Semantic Cache 441

of query trimming and processing, we assume that the join predicates of PQ are
equivalent to the ones of P. The algorithm AQOM (Aggregate Query Overlapping
Match) for overlapping match is described next.

Algorithm 3 AQOM(S,Q)

Input: Query Q, Semantic cache item S
Output: If Q intersects with S, return true. Otherwise, return false.
Step1: If T=TQ, go to Step2. Otherwise, return false.
Step2: If AQ ⊆A, go to Step3. Otherwise, return false.
Step3: For any aggregation function f1(a) in Q, if one of the following conditions holds,
then go to Step5.

3.1 If f1 is MAX or MIN, then there exists f2(b) in F such that f1=f2 and a=b. If f2 does
not exist, then a∈A.

3.2 If f1 is COUNT, then there exists f2(b) in F such that f2=COUNT.
3.3 If f1 is SUM, then there exists f2(b) in F such that f2=SUM or f2=COUNT and

a∈A.
Step4: If none of condition3.1-3.3 holds, return false.
Step5: If PA⊆A, go to Step 6. Otherwise, return false.

Step6: Construct the minimum range X
lowC , X

upC for each X by scanning all (X op c) in PQ.

Step7: Construct the links by scanning all (X = Y) in PQ. Each link consists of equiva-
lent variables.

Step8: Construct the minimum range X
lowC , X

upC for each X by scanning all (X op c) in P.

Step9: Construct the links by scanning all (X = Y) in P. Each link consists of equivalent
variables.
Step10: Compare the links of Step7 with the links of Step8. If the two link sets aren’t
equivalent, return false.

Step11: Modify X
lowC and X

upC through the equivalent relations of links.

Step12: If any X
up

X
low CC < , or X

up
X

low CC = and both X
lowC and X

upC are closed,

P∧PQ is satisfiable; return true. Otherwise, return false.

4 Conclusions

Existing researches of semantic caches emphasize SPJ query and don’t investigate
aggregate query. But aggregate queries are pervasive in massive database applications.
We have to extend query matching to support aggregation and group operation so that
semantic cache can be used in massive database applications. In this paper, we define
formally semantic cache. Based on the definitions, we discuss when caches can answer
an aggregate query. We focus on containing match and overlapping match. Then two
match algorithms are presented.

All the algorithms in this paper have been implemented in a massive database ap-
plication StarTP. The application has a TB database and a lot of aggregate queries. The
practice shows our algorithms are efficient. For the future research, we intend to work

442 J. Cai et al.

along more complex aggregate query matching, heuristic query matching and consis-
tence maintenance.

Acknowledgments. This research has been supported by the National High-Tech
Research and Development Plan of China under Grant No. 2003AA115410, No.
2003AA115210, No.2003AA111020 and No. 2004AA112020.

References

1. Dar S.,Franklin M. J.,Jonsson B. T.,Srivastava D.,Tan M.: Semantic data caching and re-
placement. In: Proc of 22th Int’l Conf on Very Large Data Bases. Mumbai (Bombay), India:
Morgan Kaufmann, 1996. 330~341

2. Parke Godfrey ,Jarek Gryz.: Answering Queries by Semantic Caches. In: Proc of the 10th
DEXA. Florence, Italy: Springer Verlag, August 1999. 485~498

3. Qun Ren, Margaret H. Dunham, Vijay Kumar.: Semantic Caching and Query Processing.
IEEE Transactions on Knowledge and Data Engineering. 2003,15(1):192~210

4. Basu J.: Associative caching in client-server databases: [PhD dissertation]. Stanford Uni-
versity,1998

5. Dongwon Lee ,Wesley W. Chu.: Semantic caching via query matching for web sources. In:
Proc of the 8th international conference on Information and knowledge management.
Kansas City,Missouri: ACM Press, 1999. 77~85

6. M. Zaharioudakis, R. Cochrane, G. Lapis, H. Pirahesh, M. Urata.: Answering Complex
SQL Queries Using Automatic Summary Tables. In: Proc ACM SIGMOD Int’l Conf on
Management of Data. Dallas: ACM Press, 2000. 105~116

7. A. Gupta, V. Harinarayan, and D. Quass.: Aggregate-query processing in data warehousing
environments. In: Proc of 21th Int’l Conf on Very Large Data Bases. Zurich: Morgan
Kaufmann, 1995. 358~369

8. D. Srivastava, S. Dar, H.V. Jagadish, A. Levy.: Answering queries with aggregation using
views, In: Proc of 22th Int’l Conf on Very Large Data Bases. Mumbai (Bombay),India:
Morgan Kaufmann, 1996. 318~329.

9. S. Cohen, W. Nutt,s and A. Serebrenik.: Rewriting aggregate queries using views. In: Proc
of 18th Symposium on Principles of Database Systems. Philadelphia: ACM Press, May
1999.

10. Sun X H.,Kamel N.,Ni L.M.: Solving implication problems in database applications. In:
Proc ACM SIGMOD Int’l Conf on Management of Data. Portland: ACM Press, 1989.
185~192

A Parallel Modular Exponentiation Scheme for
Transformed Exponents

Chin-Chen Chang1 and Yeu-Pong Lai2

1 Department of Information Engineering and Computer Science,
Feng Chia University, Taichung, Taiwan, 40724, R.O.C.

2 Department of Information Engineering and Computer Science,
Chung Cheng Institute of Technology, National Defense University,

Tauyuan, Taiwan, 335

Abstract. This paper introduces an efficient method to compute modu-
lar exponentiation operations in parallel. For the parallel process of a mod-
ular exponentiation operation, the exponent is transformed into mixed
radix digits first. Each digit is then an exponent for a partial result of
the modular exponentiation operation. Because the computing processes
for these partial results are highly independent, they can be carried out
concurrently. The bases in these partial exponentiation operations can be
pre-computed and used till the exponent moduli set changed. If the largest
mixed radix digit is k-bits with respect to m exponent moduli, the time
complexity for the proposed scheme is then k + log2m. The performing
complexity is very efficient, compared with other methods. Since the com-
parison is based on the same modular multiplication hardware, the per-
formance is better if the fewer operations required. In the scenario of two
exponent moduli, the performance improvment is approximately 40%. Fi-
nally, the proposed scheme is presented with a parallel algorithm for which
the computing architecture is also illustrated in the paper.

Keywords: Mixed radix conversion, modular exponentiation, parallel
computation, residue number system.

1 Introduction

One reason that modular operations are important to computer systems is that
modular operations reduce the scalar of operands. Computing speed is therefore
increased. Another reason for modular operations being important is the ap-
plication of modular operations in cryptosystems. Most cryptosystems perform
with the modular exponentiation and multi-exponentiation operations for secu-
rity reasons, such as those cryptosystems based on RSA scheme[12] or ElGamal
scheme[4] and their varieties[3]. However, for legal users, the massive computa-
tion required in modular exponentiation operations makes the use of these cryp-
tosystems impractical. Thus, many researchers are dedicated to making these
operations performed efficiently using hardware or software approaches[7].

The modular exponentiation operation computes Bx mod N , where the vari-
ables B, x and N are the base number, the exponent, and the modulus, respec-
tively. The operation will be discussed in Section 2. Computation in the modular

J. Cao, W. Nejdl, and M. Xu (Eds.): APPT 2005, LNCS 3756, pp. 443–452, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

444 C.-C. Chang and Y.-P. Lai

exponentiation operation can be divided into two separated parts: modular mul-
tiplication operation and modular square operation. In the sequential computing
hardware, these modular square operations are compulsory. Most researchers fo-
cus on scanting the number of the modular multiplication operations in the
modular exponentiation operation[1][6]. With fewer modular multiplication op-
erations, the modular exponentiation operation can perform more efficiently.
The optimal solution to accelerate computing is therefore to find an addition
chain of the exponent[2][13]. Shorter addition chains mean that fewer modular
multiplication operations are required in the modular exponentiation operation.
However, finding an optimal addition chain is an NP-hard problem[6]. In other
words, this problem can not be solved in polynomial time. Thus, most research
is aimed at finding a feasible addition chain.

Actually, each term of an addition chain is a partial result of the modular
exponentiation operation. These terms are used only once in computing, because
the addition chain is for a certain exponent. For different exponents, the proce-
dure to find addition chain should be performed again. To overcome the short-
coming of re-computing, some researchers then bring out the pre-computation
concept to compute the partial results first and then store them. The most well-
known method is the extended window method, abbreviated EWM[5]. In this
method, the computation cost for partial results is ignored in modular exponen-
tiation operations, since it is considered as a pre-processed procedure.

This paper proposes a parallel method to compute modular exponentiation.
The exponent is presented in a mixed radix number format for certain moduli.
Then, each mixed radix digit of the exponent is inputted into a process element
of a parallel computing architecture. This computing architecture is regular so
that it is easy to set up or be implemented. The multiple of these moduli is the
largest number being presented in the mixed radix number system, so it should
be larger than the scalar of the exponent.

In the next section, numerical examples are provided to explain the mod-
ular exponentiation operation. The proposed exponentiation operation is then
described in Section 3. It is further explained using a parallel algorithm and a
parallel architecture. Subsection 3.1 presents the MR conversion using examples.
Subsection 3.2, then describes the application of the MR digits to computing the
modular exponentiation in parallel. The computing performance of this parallel
scheme and of two others is then presented in Section 4. Finally, the conclusions
are given in Section 5.

2 Modular Exponentiation

Modular exponentiation operations are always performed using modular square
operations and modular multiplication operations. In other words, an exponent
is first transformed into a binary presentation. The modular exponentiation op-
eration can then be performed using modular square operations and modular
multiplication operations by referring to the bits of the exponent from left to
right. The modular multiplication operation is performed when the pointed-to

A Parallel Modular Exponentiation Scheme for Transformed Exponents 445

bit of the exponent is one. When the pointer shifts to the next bit, the modular
square operation is then performed. The modular multiplication operation mul-
tiplies the temporary result by the base number and then performs the modular
operation, where the temporary result is set as 1 initially. The modular square
operation squares the temporary result and then performs the modular opera-
tion, too. This method can be considered to be the left-to-right method, since
the pointer scanning the exponent is from left to right.

45 = 4101 = [(1 × 4)2]2 × 4 = 1024.

Besides, the modular exponentiation operation can be performed in a different
way. The scan order can be from right to left. With this method, the modular
multiplications are performed when the pointed-to bit of the exponent, scanned
from the least significant bit to the most significant bit, is 1. The multiplier is
squared when the pointer shifts further to the next bit. When the scanned bit
is 1, the modular multiplication operation is performed. Otherwise, the modular
multiplication operation is not performed. In the following example, the mul-
tipliers are 41, 42, and 44, which are obtained via a series of modular square
operations.

45 = 4101 = (41)1 × (42)0 × (44)1 = 1024.

Both the left-to-right and right-to-left methods performs sequentially. These in-
structions determine whether modular multiplication is to be carried out or not,
depending on the corresponding bit value of the exponent. For instance, modu-
lar multiplication is performed when the bit value of the exponent is one. When
the bit value is zero, modular multiplication is not performed. The right-to-left
method scans the exponent from right to left. In other words, the scanning order
is from the least significant bit (LSB) of the exponent to the most significant
bit (MSB) of the exponent. The left-to-right method scans the exponent in the
reverse order that is from the MSB to the LSB.

The right-to-left method can be intuitively considered as a kind of parallel
computing methods, since the modular square operations can be performed on
a processor distinct from the one performing the modular multiplication opera-
tion. Thus, the computing performance of the right-to-left method will be better
than that of the left-to-right method if there are two processors available. The
performance of the left-to-right method can be improved by using signed bits to
eliminate the number of 1-bits so as to reduce the number of modular multipli-
cation operations. For the right-to-left method, the computing performance can
be improved only by improving the hardware architecture or by designing an ef-
ficient modular operation technique. The Montgomery multiplication algorithm
is a good solution for accelerating the modular multiplication operation since
the modulus can be transformed to a power number of 2, 2r[10]. The modular
operations are then to simply fetch the least r-bits if the operations performed
in a regular computer architecture.

446 C.-C. Chang and Y.-P. Lai

The left-to-right method is a “strict” sequential method. The most popular
way to improve computing performance is to transform the format of the ex-
ponent, such as by introducing a signed number to representing the exponent.
These techniques minimize the number of non-zero bits in the transformed ex-
ponent so that fewer modular multiplication operations are required[11]. The
exponent is transformed into the non-adjacent form (NAF) or divided into win-
dows (EWM). EWM is the extended window method.

3 The Proposed Scheme

According to the review of modular exponentiation operations in the previous
section, modular exponent operations can be performed in two different ways
according to the scanning order. The right-to-left method performs more effi-
ciently than the left-to-right method, if the computing powers of the process
elements are the same in the two computing architectures for these two meth-
ods. When the right-to-left method performs on two process elements computing
architecture, the computing time is the time spent only in performing the modu-
lar square operations. That is because the modular multiplication operation can
compute concurrently in the other processor while the modular square operation
is performing.

This section presents a more efficient way to compute the modular exponen-
tiation in parallel. Unlike the right-to-left method, the computing performance
of the proposed method can be improved further when more process elements
are provided. However, the exponent should be transformed into mixed radix
digits (MR digits) first. Each process executes a partial modular exponentiation
for a corresponding MR digit of the exponent. Finally, the partial results are
multiplied with each other for the final result.

Subsection 3.1 introduces the mixed radix conversion (MRC) for transform-
ing the exponent into several MR digits. The transformation is simple compared
to the complexity of the modular multiplication (or square) operation, so that
the computing cost for the transformation can be ignored. The parallel archi-
tecture, described in Subsection 3.2, is so regular that the architecture is only a
reconfiguration of the existing parallel architectures.

3.1 Mixed Radix Conversion

Generally, in computing systems, a large scalar is always represented by several
smaller digits. The representation should be reversible so that the original num-
ber can be reconstructed according to these smaller digits. The ways to transform
numbers are the residue number transformation and the mixed radix conversion.
The residue number system is used extensively and efficiently in digital signal
processing. This is because the addition, subtraction, and multiplication opera-
tions on residues of two numbers are equivalent to these operations on these two
numbers. The “equivalent” stands for those two numbers being the same, which
are the number transformed from the operated residues and the result operated

A Parallel Modular Exponentiation Scheme for Transformed Exponents 447

direct on the two numbers. These residues are always smaller than the original
binary number so that the operations on the residues are more efficient than
on the binary numbers. The other representation method, the MR system, also
has this property of smaller scalar operands. Moreover, the MR system is supe-
rior to the RNS in several application areas, such as in the sign determination,
magnitude comparison and overflow detection.

A binary number x can be transformed to a set of numbers (a1, a2, . . . , am)
with respect to the moduli q1, q2, . . . , qm, where x is equal to a1 +a2× q1 + . . .+
am × q1 × q2 × . . .× qm−1 and 0 ≤ ai < mi for i = 1, 2, . . . , m. For example, the
moduli set (q1, q2, q3) is (3, 5, 8) and the number x is 116.

Conversion Phase:

Let the moduli set (q1, q2, q3) be (3, 5, 8) and let the number x be 116. Therefore,
the number x is divided by the moduli, q1, q2, q3, sequentially to obtain the MR
digits. The conversion procedure is as follows:

116 ÷ 3 = 38 · · · 2
38 ÷ 5 = 7 · · · 3
7 ÷ 8 = 0 · · · 7

Thus, the MR presentation of x is (2, 3, 7).

Reversed Phase:

The number x can be derived from (2, 3, 7) with respect to (3, 5, 8) by the fol-
lowing equation.

x = a1 + a2 × q1 + a3 × q1 × q2 = 2 + 3 × 3 + 7 × 3 × 5 = 2 + 9 + 105 = 116.

According to the description of the modular exponentiation operation in the
previous section, the operation consists of modular multiplication and modular
square operation. If the exponent is in the format of the MR system, the expo-
nentiation operation can be divided into several partial exponent computations.
The exponent of each partial computation is the related MR digit, and the base
is the exponentiation of the original base. These varietal bases can be computed
efficiently as the moduli set (q1, q2, . . . , qm) is determined for representing the ex-
ponent. Therefore, these bases, B1, B2, . . . , Bm, can be pre-computed and saved
for any exponent. For the modular exponentiation Ba1

1 ×Ba2
2 × . . .×Bam

m mod N ,
these bases are always in the interval of [0, N − 1]. The partial exponentiation
computation, B

aj

j mod N , is then highly independent so that the parallel com-
putation is used for improving computing performance.

Let the base B be 7 and the exponent be 116. The exponent can be trans-
formed into MR digits, (2, 3, 7) with respect to the moduli set (3, 5, 8). For the
base, the computations 73 and (73)5 can be pre-computed. The computation
of (73)5 is the exponentiation of 73 so that the pre-computation of (73)5 can

448 C.-C. Chang and Y.-P. Lai

be computed very efficiently. The two pre-computations 73 and (73)5 can be
considered as two “bases” for the two corresponding MR digits, 3 and 7. The
computation of 7116 is divided into three partial exponentiation computations
of three bases, 7, 73 and 715.

Therefore,

7116 = 72+3×3+7×3×5 = 72 × (73)3 × (715)7 = (B1)2 × (B2)3 × (B3)7 , where
B1 = 7, B2 = 73 and B3 = 715.

The partial exponents (2,3,7) are the MR digits of the original exponent. The
pre-computations can be used for different computations if there is no change
in the base of the exponentiation operations and in the moduli set used in ex-
ponent transformation. Actually, the base is always fixed in the exponentiation
operation for the cryptosystems based on the ElGamal signature scheme and
its variations. The moduli set is used for transforming the exponent within a
certain field so that the moduli may not be changed after chosen. Thus, the
pre-computations can be stored in ROM for efficiently fetching. Above all, for
accelerating the exponentiation operations, the partial computations can be com-
puted concurrently. Each processing element fetches a certain exponent base
from ROM memory. The parallel computing method will be introduced in the
following section.

3.2 Parallel Computing

Parallel computation is a way to improve computing performance. Sometimes,
parallel computation should be applied to certain computing architectures. The
computing architectures are specific with special interconnections. To generally
apply the parallel computation scheme, the parallel programming grammar is
designed. The program can also manipulate the computation with a parallel
computing hardware or a multi-thread processor. Subsection 3.2.1 proposes an
algorithm for parallel processing. The next subsection describes the hardware
interconnection.

Proposed Algorithm. To enable operations to perform concurrently, the al-
gorithm should specify which computing processors operate at the same time.
The commands are therefore different from the usual ones. Every computing
processor also performs using a memory distinct from others. The following algo-
rithm computes the exponent operation. The depth of this algorithm is �log2m�
, where the variable m is the number of the MR moduli. The first concurrent
level computes all the m partial results of the exponentiation operation. Thus,
it consumes operating time. In other levels, the only operations left are multipli-
cation operations. This algorithm can also be applied to modular exponent op-
erations by replacing the multiplication operations with modular multiplication
operations.

A Parallel Modular Exponentiation Scheme for Transformed Exponents 449

Algorithm // Parallel computing
Begin

Forall processor pi, 1 ≤ i ≤ m do in parallel
Begin

Processor pi: partial = Bai ;
//every processor fetches B from its memory

End
For d = 1 to �log2m� do

Begin
Forall processor pi, i = 1 + 2d × j, 0 ≤ j ≤ �m/2d� − 1 do in parallel
Begin

Processor pi: SendMsg(pi+2d−1 , partial),
ReceiveMsg(pi+2d−1, partial′);

Processor pi+2d−1 : SendMsg(pi, partial),
ReceiveMsg(pi, partial′);

End
Forall processor pi, i = 1 + 2d × j, 0 ≤ j ≤ �m/2d� − 1 do in parallel
Begin

partial = partial × partial′;
End

End
End

In the above algorithm, the temporary results are stored in the variables partial
of each processor and transferred to its couple processor. In every level, the cou-
ple processor for each processor is different. The couple processor of the i-th
processor is the (i + 2d−1)-th processor, where the variable d is the depth of
levels. After every processor receives the desired partial result, the processors
compute and update the data. This procedure is performed for �log2m� times
repeatedly to obtain the final result.

Actually, the exponent operations are only performed at the first level. Every
process fetches a pre-computed base for a certain exponent moduli set from a
distinct memory space. The exponent in the i-th processor is the corresponding
MR digit ai of the original exponent. Since these MR digits are smaller than
the related moduli, the complexity of these partial exponentiation operations is
much less than that of the original exponentiation operation.

Model of Parallel Computation. This section describes the parallel com-
puting architecture. In this architecture, m processors work in parallel, except
during data transmission. Each processor concurrently computes a partial result
that is an exponentiation of a certain base fetched from its memory. The ex-
ponent for this partial exponentiation operation is the corresponding MR digit
of the original exponent. These partial results are then multiplied together to
obtain the final result of the exponentiation operation. Multiplication is per-
formed in parallel within �log2m� levels. The number of interconnection lines

450 C.-C. Chang and Y.-P. Lai

is 2 × (2�log2m� − 1). This architecture is so regular that almost all the parallel
computing hardware can be reconfigured to manipulate the operations.

4 Discussions

In above, numbers can be transformed into mixed radix digits via several division
operations. These division operations are not time consuming compared with the
exponentiation operation. The proposed algorithm consists of two computing
parts: (1) performing the partial exponentiation operations with the exponent
of MR digits and (2) multiplying two partial results in parallel within �log2m�
levels. The time complexity of multiplication operations can be considered to be
the complexity of only �log2m� multiplication operations, since these operations
perform concurrently in different processors. For the same reason, the number
of partial exponentiation operations can be also considered to be one.

However, the computing performance is very hard to analyze, since the per-
formance is highly dependent on the relation between the exponent and the
moduli. If the MR digits are small in scalar, the operation will be more efficient.
The digit corresponding to a modulus with a larger scalar may not be larger
than the digit corresponding to a modulus with a smaller scalar. Although the
previous claim is absolutely correct, the moduli are also sorted in the order q1 <
q2 < . . . < qm. The MR digits therefore satisfies a1 < q1, a2 < q2, . . . , am < qm.
Thus, the MR digit in a preceding position is in a smaller domain than those
after it. In other words, the preceding digit has a higher probability of having a
smaller scalar.

Let the largest MR digit aj be in k bits. The complexity for computing partial
results is then k square operations when the right-to-left scheme is applied, since
the largest exponent dominates the complexity of the concurrent operations.
Table 1 illustrates the performance comparison among Right-to-left scheme, Left-
to-right scheme and the proposed scheme.

For further analyzing the improvement of parallel computing in computing
performance, the complexity comparisons are presented for m = 2. If the com-
puting powers for implementing these three methods are the same, the operation
time proportions to the number of multiplication (or square) operations. To the
proposed scheme, the more process elements are in the parallel architecture, the

Table 1. Performance comparison

Multiplication Square
Right-to-left scheme 0 n♦

Left-to-right scheme n/2 n

Proposed scheme log2m
‡ k�

♦ : The variable n is the number of bits to present the exponent.

‡ : The variable m is the number of moduli.

� :The variable k is the number of bits to represent the larger MR digit.

A Parallel Modular Exponentiation Scheme for Transformed Exponents 451

Table 2. Performance comparison for certain numbers of moduli

bits 1 2 3 4 5 6 7 8 9 10
range 2 4 8 16 32 64 128 256 512 1024

q1 null 2 7 15 31 63 127 255 511 1023
q2 null 3 6 14 29 62 125 254 510 1022

Max 6 42 210 899 3906 15875 64770 260610 1045506
Bits of Max. 2.58 5.39 7.71 9.81 11.93 13.95 15.98 17.99 19.99

R-to-L 3 6 8 10 12 14 16 18 20
L-to-R 5 9 12 15 18 21 24 27 30

Proposed 3 4 5 6 7 8 9 10 11

more improvement is. In the worst scenario, the MR digits are in the same bit
length of the corresponding modulus. The numerical example is tabulated in Ta-
ble 1. The first row is for the maximal bit length of moduli. The moduli should
be within the range from 0 to the range number shown in the second row. For
example, if the bit length is 10, the moduli should be smaller than 1024. The
following rows are then for the co-prime moduli chosen within the range. The
exponent therefore should be less than the number in the “Max” row. The bit
length of the largest exponent is presented in the following row. The last three
rows are the numbers of modular multiplication (or square) operations for these
three methods. Table 2 shows the improvement is magnificent. For example, for
two moduli of 5 bits, the modular multiplication (or square) operations perform
for 6 times only. With the right-to-left method, there are 10 operations. The
improvement of the proposed method compared to the right-to-left method is
40%, which is obtained from (10−6)/10. Thus, the proposed method performed
very efficiently.

5 Conclusions

Cryptography, which has become more and more important recently, requires
that many modular exponentiation operations be performed. Thus, the perfor-
mance of a cryptosystem depends on the performance of computing the modular
exponentiation. Parallel processing is a good strategy to accelerate computing
in computers.

However, modular exponent operations are strictly sequential. The operations
can not be computed using parallel architecture. To overcome this restriction,
a transformation of the exponent was designed. The exponent should be trans-
formed into MR digits as mentioned in Subsection 3.1. Each MR digit is used
as an exponent for computing a partial exponentiation result. These computing
procedures are highly independent so that parallel processing can be applied.
Each process element in parallel architecture computes a partial exponentiation
result. The exponent for the partial exponentiation is the corresponding MR
digit. The range of the exponent for the partial results depends on the scalar
of the moduli. Therefore, the moduli are in increasing order. The larger moduli

452 C.-C. Chang and Y.-P. Lai

are placed in the more posterior positions. This also introduces an advantage
in pre-computing the bases. In addition, in computing systems, large numbers
may be stored in the residue format so that conversion from residues to MR
digits is also important. The conversion procedure was explained in Section 3.1.
If it is assumed that the largest MR digit has k bits, the parallel algorithm
then has a time complexity of k + �log2m�, where m presents the number of
moduli. The performance improvement of the proposed method is very notable.
Thus, this paper introduces a good way to accelerate the computing of modular
exponentiation operations.

References

1. Arno, S., and Wheeler, F. S. Signed digit representations of minimal Hamming
weight. IEEE Transactions on Computers 42 (1993), 1007–1010.

2. Bos, J., and Coster, M. Addition chain heuristics. In Advances in Cryptology-
Proceedings of Crypto ’89 435 (1990), 400–407.

3. Chang, C. C., and Lai, Y. A flexible data-attachment scheme on e-cash. Com-
puters and Security 22 (2003), 160–166.

4. ElGamal, T. A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory 31 (1985), 469–472.

5. Gordon, D. M. A survey on fast exponentiation methods. Journal of Algorithms
27 (1998), 129–146.

6. Joye, M., and Yen, S. Optimal left-to-right binary signed-digit recoding. IEEE
Transactions on Computers 49 (2000), 740–748.

7. Lai, Y., and Chang, C. C. An efficient multi-exponentiation scheme based on
modified Booth’s method. International Journal of Electronics 90 (2003), 221–233.

8. Lai, Y., and Chang, C. C. Parallel computational algorithm for generalized
Chinese remainder theorem. Computers and Electrical Engineering 29 (2003),
801–811.

9. Miller, D. F., and McCormick, W. S. An arithmetic free parallel mixed-radix
conversion algorithm. IEEE Transactions on Circuits and systems–II: Analog and
Digital Signal Processing 45 (1998), 158–162.

10. Montgomery, P. Modular multiplication without trail division. Mathematics of
Computation 44 (1985), 519–521.

11. Okeya, K., and Sakurai, K. Use of montgomery trick in precomputation of
multi-scalar multiplication in elliptic curve cryptosystems. IEICE Transactions on
Fundamentals E86-A (2003), 98–112.

12. Rivest, R. L., Shamir, A., and Adleman, L. A method for obtaining digital
signatures and public-key cryptosystems. Communications of the Association for
Computing Machinery 21 (1978), 120–126.

13. Rooij, P. Efficient exponentiation using precomputation and vector addition
chains. In Advances in Cryptology-Proceedings of Eurocrypt’94 950 (1994), 389–
399.

J. Cao, W. Nejdl, and M. Xu (Eds.): APPT 2005, LNCS 3756, pp. 453 – 460, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Content Selection Model for Adaptive
Content Delivery*

Chen Ding1, Shutao Zhang2, and Chi-Hung Chi3

1 School of Computer Science, Ryerson University, Canada
2 School of Computing, National University of Singapore, Singapore

3 School of Software, Tsinghua University, Beijing, China 100084
chichihung@mail.tsinghua.edu.cn

Abstract. In order to adapt content delivery to different client capabilities and
preferences, we propose a content selection model to automatically classify
HTML content based on its functionality, then map client descriptions on
preferences and device capabilities into our classification scheme, and finally
selectively deliver the content which users want and which devices can handle.
The experiment shows that our content selection model could reduce HTML
object size, object latency and page latency. Therefore, it is effective in saving
network resources and improving clients’ access experiences.

1 Introduction

In today’s web, HTML is the primary language used to create web pages and HTML
traffic is estimated to represent 20% of total web traffic [2]. Most of HTML tags are
designed to help web publishers present their information in a certain format, while
some of them are not. For example, values of “keywords” and “description” attribute
in “meta” tag are used by search engines to identify keywords in the page, while users
may not care about them. Edge Side Includes (ESI) [4] language markups may be
inserted into HTML pages to facilitate content caching and selection, and they are
more for web intermediaries instead of end users. Usually, web clients are only
interested in content which could be presented through browsers. So, if HTML
content is not designed for presentation purpose, it doesn’t have to be delivered to
clients. But servers still need to keep them because they are of interest to other parties
such as search engines or web proxies. Disregarding the content itself, sometimes,
web users may also have their particular preferences when they request web content,
such as language preference, interest on advertisement, privacy preservation, etc.
Therefore, content should be selectively delivered based on client preferences.

In order to deliver the content based on client capabilities and preferences, many of
the current solutions have proposed different transcoding algorithms on multimedia
objects, either by reducing the quality of the object or converting to a different media
[1] [5] [6] [10] [11] [13]. In this paper, we are trying to solve this problem in a more
general way. We work on the container first, which is the HTML page itself, and then
on all the embedded multimedia objects. We propose a content selection model to

* This research is supported by the funding 2004CB719400 of China.

454 C. Ding, S. Zhang, and C.-H. Chi

automatically classify HTML content based on its functionality and deliver only the
content which users want and which devices can handle.

There are several contributions by our proposal: Its aim is to improve the content
delivery performance of the HTML document, which includes both the HTML page
and all the embedded objects. Most of current solutions only focus on one. The
selection model is automatic. The content classification is based on heuristics instead
of human-edited descriptions. There is no overhead on web publishers, both in server
processing power and in manpower. It is especially suitable for those existing HTML
documents. It is flexible. When necessary, web publishers could provide guidance on
content selection, and for those multimedia objects, we could also use existing
transcoding algorithms to further adapt the content.

2 Related Work

To enable web content publishers to provide customized content to different clients,
IETF (Internet Engineering Task Force) have proposed general frameworks in which
web content can be modified on the way from servers to clients, including Internet
Content Adaptation Protocol (ICAP) [7] and Open Pluggable Edge Services (OPES)
[12].

Besides the framework, there are extensive researches on content adaptation. Web
content adaptation can be performed on web servers, web intermediaries (i.e. proxies),
or web clients. Many of the solutions are proxy based [1] [5] [14]. Fox et al. [5]
developed a system to distill or transcode images when they pass through a proxy, in
order to reduce the bandwidth requirements. Chandra and Ellis [1] presented
techniques of quantifying the quality-versus-size tradeoff characteristics for
transcoding JPEG images. Spyglass Prism [14] is a commercial transcoding proxy.
There are also other approaches trying to address the issue of content adaptation on
the server side. They either provide external content annotations or give guidance on
how to process the web content. Hori et al. [6] proposed to annotate HTML pages to
guide the transcoding procedure. Mogul et al. [9] [10] proposed a server directed
transcoding scheme. Most of content adaptation solutions focus on one or two types
of multimedia objects without looking into the whole web document. InfoPyramid
[11] [13] is a representation scheme for handling the Internet content (text, image,
audio and video) hierarchically along the dimension of fidelity (in different qualities
but in the same media type) and modality (in different media types).

In addition, we need descriptions about the client’s preference and capabilities.
W3C has proposed the Composite Capability and Preference Profile (CC/PP) [3] to
achieve this goal. Wireless Application Protocol (WAP) Forum has proposed a similar
approach called User Agent Profile (UAProf) [15] to handle clients’ descriptions.
Both CC/PP and UAProf are based on Resource Description Framework (RDF) and
their goals are describing and managing software and hardware profiles. In this study,
we will use CC/PP or UAProf for client side descriptions.

3 Content Selection Model

The general process of content selection can be viewed as follows. When a client
wants to access certain HTML content from a server, it sends a request to the server

 Content Selection Model for Adaptive Content Delivery 455

together with client descriptions on its preferences and hardware capability
constraints. Upon receiving the request, the web server retrieves the content and
passes it to a content selector, together with client descriptions. The content selector
then selects HTML content based on client descriptions, and passes the selected
content to the client.

To do the content selection, first, HTML content should be classified based on its
functionalities, and we refer to this process as HTML content classification. Since this
classification scheme is not known to clients, as the second step in the content
selection model, we need some mechanisms to convert clients’ own descriptions on
their preferences and device capabilities to our pre-defined content classes.

3.1 HTML Content Classification

HTML documents contain various types of content, and each piece of content has its
own functionalities. Without loss of generality, we define 6 content classes. The
definition is for HTML documents. For dynamic pages written in server-side scripts,
since web servers will convert them to HTML before sending them to clients, this
classification scheme can also apply.

• C_PRESENTATION – content for presentation purposes.
• C_META - meta information of a page, e.g. meta keywords which could be used

by search engines, meta author to recognize page authors.
• C_DYNAMIC – dynamic content which will be executed at client side, e.g.

scripts written in JavaScript, Java Applets, plug-ins.
• C_EXTENSION – extensional markup in a HTML page, e.g. ESI markups.
• C_DOCUMENTATION – comments in a page.
• C_REDUNDANT – redundant content in a page, e.g. blank spaces, new lines,

tabs.

Most of HTML content can be classified into the first big class. We have further
defined its sub-classes. We haven’t exhausted all the situations and only list
commonly used functionalities.

• C_P_HTML_STRUC – the structure information of a HTML page, e.g. <html>,
<head>, <body>, <frame>.

• C_P_HTML_MM – multimedia effect of a page, e.g. background image,
background sound.

• C_P_TEXT – information related to text content in a page, including text itself,
format, style, layout, etc.
• C_P_TEXT_FORMAT – format information of text content, e.g. text font,

color, size or style sheet information.
• C_P_TEXT_LAYOUT – layout and location of text content in a page, e.g.

<table>, <p>, .
• C_P_TEXT_CONTENT – actual text content enclosed by various tags, e.g.

“hello world” in <p>hello world</p>.
• C_P_OBJECT – embedded objects in a HTML page.

• C_P_IMAGE – embedded images in a page. Example sub-classes include:
• C_P_IMAGE_JPG – images with file type .jpg.

456 C. Ding, S. Zhang, and C.-H. Chi

• C_P_IMAGE_GIF – images with file type .gif.
• C_P_IMAGE_PNG – images with file type .png.

• C_P_VIDEO – embedded videos in a page. Example sub-classes include:
• C_P_MPEG – videos with file type .mpeg.
• C_P_REAL – videos with file type .ra.

• C_P_AUDIO – embedded audios in a page.

The following table illustrates classification for some HTML content.

Table 1. HTML Content and Related Classes

HTML content Classes (in the form of class.sub-class)
<p>Good

Morning</p>
<p>, </p> --

C_PRESENTATION.C_P_TEXT.C_P_TEXT_LAYOUT
, --

C_PRESENTATION.C_P_TEXT.C_P_TEXT_FORMAT
“Good Morning” --

C_PRESENTATION.C_P_TEXT.C_P_TEXT_CONTENT
<meta name = “keywords”

content="xml”>

C_META

<object data="canyon.png"
type="image/png">

C_PRESENTATION.C_P_OBJECT.C_P_IMAGE.C_
P_IMAGE_PNG

<SCRIPT type="text/vbscript"
src="http://someplace.com/progs/vbca
lc"></SCRIPT>

C_DYNAMIC.C_DYNAMIC_JS

<!-- comments… --> C_DOCUMENTATION
<esi:when

test="!$(QUERY_STRING)">
<esi:include
src="viewsource.html?rp=
$(REQUEST_PATH)"/>
</esi:when>

C_EXTENSION.C_EXTENSION_ESI

3.2 Preferences and Capability Mapping

We have defined a classification scheme for HTML content. However, clients may
not describe their preferences and device capabilities based on this scheme. We need
some mechanisms to map their descriptions into our classification scheme. First, let us
introduce some definitions.

R: The set containing all the rules.
D: The set containing all the descriptions of client preferences and device

capabilities.
A: The set of transformation actions, “+” for keeping the content, “-” for removing

the content, and “t” for transforming the content.
C: The set of all possible content classes, including ones we might not list.

DESCRIPTION: A description d is a string of characters to describe one of client's
preferences or device capabilities.

 Content Selection Model for Adaptive Content Delivery 457

For example, "the device is image capable" is a description. Usually clients send
their preferences and device capabilities in a sequence of descriptions <d1, d2, …, dn>,
e.g. "image capable, screen size: 15x9 chars".

RULE: A rule Ru is to map a description d to a set S where d ∈ D, S ∈ P(A×C), and
P(A×C) is power set of A×C.

For example, a description d specifies that a client does not need the
documentation. Then there is a corresponding rule Ru:

 Ru(d) = {(“-”, C_DOCUMENTATION)}

It is interpreted as: documentation should not be included in final delivered
content. If the class has sub-classes, this rule should be applied on all sub-classes, too.

Let’s look at another example. A description d specifies that a client can only
process GIF images. Then the rule Ru will be:

Ru(d) = {(“+”, C_P_IMAGE_GIF), (“t”, C_P_IMAGE_OTHER_THAN_GIF)}

where C_P_IMAGE_OTHER_THAN_GIF should be any class which is the sub-class
of C_P_IMAGE and which is not C_P_IMAGE_GIF.

After this rule is applied, all the gif images should be kept and all other types of
images should be transformed. The rule itself does not specify which kind of
transformation will be performed. It depends on the actual implementation of the
transformation engine. It could be transformation into a gif image or simply removing it.

In general, when a client specifies it is capable (incapable) of processing a content
class or (not) interested in a particular class of content, all the content classified into
this class should (not) be delivered to the client, and sometimes, transformation is a
necessary step before the delivery.

The mapping procedure described above is generic and flexible. In the current
stage, we only implemented two actions (keeping or removing content). In our future
work, the policy engine similar to [11] could be implemented for transcoding
embedded objects in HTML documents. In the remaining of the paper, we only
consider these two actions.

3.3 HTML Content Selection

After the mapping, clients’ requirements can be described in the context of our
classification scheme. Then, we can select appropriate HTML content for clients.

Figure 1 illustrates the procedure of making the content selection. Basically, for
each fragment of HTML content, we check its classes and decide whether it should be
selected or removed, based on client’s preferences and other parameters including the
machine’s local conditions and network status. After selecting all necessary
fragments, we can combine them to form a new HTML document. When we define
rules used in mapping procedure, we have to be careful to make sure applying rules
will not affect the completeness of the remaining HTML document.

Below, we list some typical scenarios of applying the content selection model.

Scenario 1: Keep all the content except those classified into C_REDUNDANT.
Typically, with enough resources, a client does not put any limit on the content he/she
will accept. Only redundant content is removed.

458 C. Ding, S. Zhang, and C.-H. Chi

Fig. 1. Content Selection Procedure

Scenario 2: Keep content for presentation only. All the content classified into
C_PRESENTATION is selected and other content removed. A client might be
interested in all the content which can be displayed through a browser, but does not
care about others, for example, documentation in the page source.

Scenario 3: Keep content for presentation only and accept all content except images.
For example, client's device is a mobile phone whose hardware is not image capable.
So, image content has to be filtered out. In this case, we should deliver content in
C_PRESENTATION – C_P_IMAGE.

Scenario 4: Keep static content for presentation only. In this case, scripts or applets in
the content have to be removed. We should deliver content in C_PRESENTATION –
C_DYNAMIC.

Scenario 5: Keep text content only. No embedded objects (images, audio, video, etc.)
and scripts are left. The client is only able to display text content due to its limited
device capability or the client prefers to save cost on obtaining information from the
web. In this case, we should deliver the content in C_P_TEXT+ C_P_HTML_STRUC.

Web content

Web Content with
associated classes

Classification

Content Filter

Content Classes with
Action Tags

Preferences &
Capabilities

Mapping

Client
Description

Total set of
classes:
C_P_TEXT
C_P_OBJECT,
……

Web Server Client Request

Selected Content Client

 Content Selection Model for Adaptive Content Delivery 459

4 Performance Study

In this section, we will study the impact of content selection model on HTML pages
retrieval. The object URLs are from NLANR trace [8] on August 2003. Figure 2
shows the page latency in different scenarios. We observe that page latency reduction
in scenario 1 and scenario 2 are less than HTML object latency reduction for objects
in all size ranges. This is probably because in both scenarios, content selection model
does not filter out any embedded objects. In scenario 3, it reduces the page latency
much more significantly than it does for HTML object latency for objects greater than
1K bytes. There are two possible reasons. One is that in scenario 3, the selection
model filters out the inline images which are the majority of embedded objects. The
other reason is that when a portion of content is filtered out, it makes some of the
embedded objects “nearer” to the beginning of the HTML page. Therefore, browser
can download them earlier. In scenario 4, although it filters out roughly the same
percentage of content from HTML document as in scenario 3, its page latency
reduction is much smaller. This is because sizes of images embedded in a page are
usually much larger than sizes of scripts. Scenario 5 reduces page latency the most.
This is expected as scenario 5 filters out all the embedded objects.

HTML Page Latency Reduction Comparison

0

0.1

0.2

0.3

0.4

0.5

0.6

0-1K 1K-
10K

10K-
20K

20K-
30K

30K-
40K

40K-
50K

Object Size

Latency
Reduction

HTML Page Latency Reduction Comparison

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

50K-
60K

60K-
70K

70K-
80K

80K-
90K

90K-
100K

>100K

Object Size

Latency
Reduction

Fig. 2. HTML Page Latency

5 Conclusions and Future Work

In this paper, we propose a content selection model to address the adaptive content
delivery problem. On the server side, the HTML content is classified based on its
functionality. Client preferences and device capabilities are then mapped to this
classification scheme by a rule engine. Finally, content selection algorithm selects
appropriate content to deliver to the client. From our performance study, we can
conclude that the content selection model is effective in saving network resources and
improve clients’ access experiences by reducing HTML object sizes and page latency.
The model is especially effective in cases where the HTML object size is small and
clients want to filter out some embedded objects.

460 C. Ding, S. Zhang, and C.-H. Chi

References

1. S. Chandra, C. S. Ellis, JPEG Compression Metric as a Quality Aware Image Transcoding,
In Proceedings of the 2nd USENIX Symposium on Internet Technologies and Systems,
1999.

2. ClickZ Internet Statistics and Demographics, http://www.clickz.com/stats/.
3. Composite Capability and Preference Profile, http://www.w3.org/Mobile/CCPP/.
4. ESI language specification 1.0, http://www.esi.org, 2000.
5. Fox, S. D. Gribble, E. A. Brewer, and E. Amir, Adapting to Network and Client Variability

via On-Demand Dynamic Distillation, In Proceedings of 7th International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS),
1996.

6. M. Hori, G. Kondoh, K. Ono, S. Hirose, and S. Singhal, Annotation-Based Web Content
Transcoding, In Proceedings of The 9th WWW Conference, 2000.

7. Internet Content Adaptation Protocol (I-CAP), http://www.i-cap.org.
8. IRCACHE Proxy Traces, http://ircache.nlanr.net.
9. B. Knutsson, H. H. Lu, and J. C. Mogul, Architecture and pragmatics of Server directed

transcoding, In Proceedings of the 7th International Workshop on Web Content Caching
and Distribution, 2002.

10. J. C. Mogul, Server Directed Transcoding, In Computer Communications 24(2):155-162,
2001.

11. R. Mohan, J. R. Smith, and C. S. Li, Adapting Multimedia Internet Content for Universal
Access, In IEEE Transactions on Multimedia, 1(1):104–114, 1999.

12. Open Pluggable Edge Service (OPES), http://www.ietf-opes.org.
13. J. R. Smith, R. Mohan, and C. S. Li, Transcoding Internet Content for Hetero-geneous

Client Devices, In Proceedings of IEEE International Symposium on Circuits and Systems
(ISCAS), 1998.

14. Spyglass-Prism, http://www.opentv.com/support/primer/prism.htm.
15. User Agent Profile, WAP forum, http://www.wapforum.org/what/technical/SPEC-

UAProf-19991110.pdf.

Dynamic Service Provisioning
for Multiplayer Online Games

Jens Müller, Rafael Schwerdt, and Sergei Gorlatch

Westfälische Wilhelms-Universität Münster, Germany

Abstract. Multiplayer online games have become a popular class of distributed
applications with an enormous amount of running Internet-based game sessions.
The basic concept of how to provide game services for users has not changed
for years: High-bandwidth, dedicated game servers are statically set up to con-
tinuously run game sessions, regardless of how many users actually play. This
straightforward approach is inefficient, because it does not take the current user
demand into account, thus wasting resources. In this paper, we present a novel
system architecture for organizing dynamic, on-demand game services for single-
server online games. Our system allows users to book game services for imme-
diate play or some time in advance. The system takes the users’ demands into
account and dynamically sets up the required server resources in an efficient way.
In contrast to the usually offered flat-rate rental of servers on at least a monthly
basis, our system allows to charge users depending on the actual services usage
and to incorporate new pay-per-use business models.

1 Introduction

Hundreds of thousands of users regularly play online games over the Internet using
personal computers or entertainment consoles. With regard to the technical infrastruc-
ture, games can be categorized into two classes: Single-server games and multi-server
games. Especially Massively Multiplayer Online Games (MMORPG), which provide a
persistent game world for thousands of users, require a sophisticated multi-server archi-
tecture in order to ensure a fluent and responsive game experience. The other, not less
popular class of single-server online games consists of action, strategy or sports games
that are played by two to one hundred users in a single game session.

The most important distinction between these two classes of games is that users can
set up their own servers for single-server games while this is not possible for multi-
server MMORPGs. In MMORPGs, the developer does not publish the server software:
Users have to join publisher-operated game sessions and pay a monthly fee to be able
to play on these servers. For single-server games, however, game developers usually
provide the server software for free, and users and third-party service providers can
set up their own game sessions. Third-party game hosters rent out servers for single-
server action games (especially for First Person Shooter (FPS) games like Counterstrike
or Battlefield 1942) to users on a monthly basis. This way, servers continuously run
a session of a particular game independently of the actual user demand. The session
location service gamespy [2] regularly reports over 60.000 statically running sessions
for the ten most popular games, while the number of users actually playing is quite

J. Cao, W. Nejdl, and M. Xu (Eds.): APPT 2005, LNCS 3756, pp. 461–470, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

462 J. Müller, R. Schwerdt, and S. Gorlatch

dynamic and ranges from about 50.000 to 250.000 users depending on weekday and
daytime.

In this paper, we aim at a novel service infrastructure which allows to dynamically
provide the game sessions based on current user demand. Our approach is to transfer
the paradigm of Grid Computing [6] from scientific computing into the area of com-
puter entertainment. In short, a computational Grid provides resources like computation
power or storage space to a user who does not care about where the resources are lo-
cated, as long as all requirements like computation power or security are met. In the area
of multiplayer online games, a Grid built of game servers should provide game sessions
depending on the current user demand in a dynamic way. We focus on the very popular
genre of First Person Shooter (FPS) games which require Internet-based servers with
high-bandwidth connections.

In our service infrastructure, the game sessions running at game service providers
are dynamically managed. For each service provider, a special service accepts user re-
quests to book and start services and schedules the game servers to fulfill this user de-
mand. At the top level, a global directory and account service provides a central access
point for users to all the service providers and lets users choose the best service to make
use of. There exist several techniques for global directory services like UDDI, dynamic
scheduling of applications and single-sign-on end user portals, known in the distributed
computing area. However, a combined architecture for dynamic provisioning of online
computer game services has to deal with several specific problems. Online games, as
we discussed in recent work dealing with game scalability [8,9], are highly responsive,
soft real-time systems that require a large amount of processing power and communica-
tion bandwidth. The novel architecture presented in this paper aims at providing these
required resources to end users in a dynamic way.

The remainder of this paper is organized as follows: In Sect. 2, we present an
overview of our Grid system for dynamic online game provisioning. We describe use
case scenarios for users, administrators and game developers in Sect. 3. Section 4
presents implementation details of our current prototype. Finally, Sect. 5 gives an over-
view of possible extensions of our system, compares our approach to related work and
concludes the paper.

2 System Architecture

In the current hosting approach for Internet-base, single-server game sessions, users rent
a dedicated game server from a service provider on a usually monthly basis. The game
server then runs day and night, regardless of whether there are actually users playing,
which may result in an enormous waste of resources.

In order to make this static approach dynamic, our system runs a lightweight process
called GameService Controller (GSC) on each game server host. A general overview of
the different components of the system are shown in Fig. 1. The GSC is able to start up
and shut down game server processes on its host. Usually, several game server hosts re-
side at a computing centre, where a special GameService Manager (GSM) administrates
all the local GSCs, taking into account current user bookings of servers and the poli-
cies of the computer centre. The technical setup of the system in the computing centre

Dynamic Service Provisioning for Multiplayer Online Games 463

(installed games, informations about GSCs, etc) as well as the provider-specific policies
for setup and service prices are stored in a local GameService Database (GSDB).

The involved computing centres and the corresponding GSM are known to a Game-
Service Web Server (GSWS) which acts as the user portal to the complete system. Users
can query, book and start game sessions via the GSWS. Additionally, a global user
account database ensures a single sign-on mechanism for users: After the initial au-
thentication, a user can access all the functionality of the system spanning several in-
dependent computing centres. Additionally, the GSWS deals with the billing issues for
service usage and this way provides seamless billing for users who have access to sev-
eral independent service providers.

Server
Game

Server
Game

Server
Game

Server
Game

Web
Browser

Game
Client

Web Service/
SOAP

Web Service/
SOAP

[...] [...]GS
Controller

GS
Controller

Database
GS

Manager

GS
Controller

GS
Controller

GS
ManagerDatabase

HTML/
HTTP

GS Web
Server Database

Web Service/
SOAP

Account

GS GS

Provider 1 Provider 2

Internet

Fig. 1. System architecture

We designed this three-tier hierarchy (GSCs, GSMs, GSWS) in order to provide a
good system scalability for a large amount of managed game sessions. From the top-
level view, the GSWS only knows about GSMs which, in turn, manage their local GSCs.
For possible user actions like searching available servers or booking a session, each
tier aggregates the GameService components of the lower tier, rendering a single and
comprehensive service for end users.

3 System Usage

From the user’s point of view, the system provides a general access to game services.
A typical use case for a single user is to set up a game session with/against known peo-
ple at specific rules. Such rules define various aspects of the game like the length of

464 J. Müller, R. Schwerdt, and S. Gorlatch

the session, the number of points required to win, the particular game environment the
session takes place on etc. Unlike real-time strategy games (RTS), First Person Shooter
(FPS) game servers require a lot of processing power and bandwidth, such that usually
an end-user desktop PC can not host a game session. Additionally, a game server hosted
at one of the users’ machines is very problematic in terms of communication latency
(the user playing on that machine has an advantage due to short inter-process communi-
cation time) and cheating (the user could manipulate the game server to gain an unfair
advantage). Due to these facts, online FPS games require a dedicated Internet-based
host machine.

On such a dedicated public server which already runs on the Internet and allows
arbitrary users to connect to, a single user has no possibility to change the rules of
the sessions. If, for example, two friends agree to play a small duel against each other
with only them on a an empty public server, it will be very likely that other players
join the server during their matchtime, disrupting their game experience. Using our
infrastructure, these users are able to start their own, private, password-protected game
session without having to rent a complete server for at least a month.

Our system provides the possibility to users to run game sessions on dedicated hosts
featuring their own ruleset in an on-demand manner. The single operations a user can
perform in our system are as follows:

– login to the system or register a new account
– search for available game servers to start a game session with own rules
– select a specific server based on communication quality
– set up rules before the start of the game session
– immediately start a game session or book a session for a specific time in the future
– manage account and billing information

3.1 Searching a Game Service

Consider as an example a group of users who want to play a game together. One of
the users accesses the GS Web Server of our architecture, searches for an appropriate
game server and defines the ruleset for the game session. Figure 2 depicts the initial
user search for game servers and the corresponding system communication.

In step 1, the user logs in with a username and password, and the GSWS authen-
ticates the user in step 2. After login, the user issues the search operation for the par-
ticular game X in step 3. Additionally, the user in this step transmits information about
the other users which will participate in the actual game later on. In step 4, the GSWS
forwards the search operation to the GSMs at the different service providers, which
check the availability of a game server for the game X, as well as the price at which the
service is offered from their local GS Database in step 5. If a game server is available,
then the GSM will measure the communication quality to all the clients the user has de-
clared to participate. One possible solution for this measurement is to measure latency
and bandwidth with ICMP echo resp. ping messages (we discuss different solutions
for measurement in Sect. 4). The resulting values only serve as a hint for the commu-
nication quality, because the Internet does not offer any quality-of-service guarantees,
and communication quality can change abruptly and frequently. However, although this

Dynamic Service Provisioning for Multiplayer Online Games 465

Database
AccountGS Web

Server

2) authenticate user

Web
Browserclient

machine

client
machine

Database
GS

Manager
GS

1) login

3) search servers for game X

[...]

communication quality
4) search servers

GS
ManagerDatabase

GS

6) measure

8) return result

7) return result and price

5) check availability and price 5) check availability and price

Fig. 2. A user searching and booking a game session

measurement does not provide any guarantees concerning the communication quality,
it provides at least a hint about it and helps the user to differentiate services and allows
providers to advertise their service at least at a “usually, but not guaranteed” communi-
cation quality. The results of the measurement as well as the price at which the service
is offered are sent back to the GSWS in step 7 and forwarded to the user in step 8.
The user now can choose between the offers of different service providers and imme-
diately start the server or book the service for a period of time in the future. Figure 3
shows a screenshot of our current implementation of the user web frontend for step 3
of searching a particular game service to book.

Fig. 3. Screenshot of the prototype user frontend: Search mask for a particular game service

3.2 Starting/Booking a Game Service

Resulting from the search operation, the user received the list of available services ac-
companied with the hint of communication quality and the cost at which each service

466 J. Müller, R. Schwerdt, and S. Gorlatch

is offered. From this list, the user chooses a particular service which can be either im-
mediately started or booked for some time in the future if the user already knows that
he wants to play in the evening or on the next day, for example. In both cases, the user
has to set up the rules for the game session, like points required to win the match, the
overall length of the match and the particular game environments or maps the session
should take place on.

The user submits the service selection and session settings to the GSWS which
stores informations required for billing of service’s usage in the account database. Af-
terwards, the GSWS forwards the session settings to the particular GSM responsible for
the computing centre the chosen game server resides in. Figure 4 illustrates the opera-
tions within a single service provider to store the booking from the user (Fig. 4(a)) and
the actual start of the game service at the scheduled time (Fig. 4(b)).

Database
GS

store booking
and settings

Server A
Game Game

Server B

GS
Manager

booking time,
session settings

[...]
Controller

GS
Controller

save booking

GS

GS
Web Server

(a) Booking a particular service

with user settings
of game X

start session

GS
Controller

Game X

inform users
(game client, email, etc.)

game
client

game
client

connect
to session

GS
ManagerDatabase

GS

notify

[...]

(b) Starting the scheduled service

Fig. 4. Booking and service provisioning at a single provider

In both cases of either immediate starting of the session or booking for a time in
the future, the GS Web Server and the provider-specific GSM store billing-relevant in-
formation like the particular game played, the number of participants and the length of
service usage to charge the user properly. Note that all the system operations performed
to book and start the service do not require any participation of the game server soft-
ware. This way, the system is able to support arbitrary legacy server software and does
require game developers to implement a certain interface. The only required function-
ality of the server software is the possibility to be started via a command-line call and
to read session settings from a configuration file. Actually, these requirements are met
by all existing single-server game software.

3.3 System Administration by Providers

Game service providers need the possibility to administrate the system on their end.
They have to be able to install new games, to track bookings and usage of each game

Dynamic Service Provisioning for Multiplayer Online Games 467

server and to specify maintenance time-frames, for which no user bookings are ac-
cepted. In our Grid infrastructure, these administrative operations are supported by the
GS Manager of the provider, such that an administrator has central access to manage all
the resources and set up policies and prices for the service usage.

4 Technical Design and Implementation

The prototype of our game service infrastructure has been implemented in Java. The
intra-provider communication between the GS Controllers on the game server and the
GS Manager is realized using Java RMI. The central interface of a service provider for
the global GS Web Server is described as a web service using the Simple Object Ac-
cess Protocol (SOAP). This interface allows to be used by a variety of meta-services
in a platform-independent way and makes our architecture easily extensible. For exam-
ple, game companies can create web portals specific for a particular game and easily
integrate an on-demand booking service for game sessions in a seamless way. In the
remainder of this section, we describe our approach for two important problems: how
to describe game session setting in a generic way and how to measure the quality of
communication to user clients during the search of suitable server resources.

4.1 Generic Description of Game-Specific Session Settings

The game server software has to be considered as a legacy application, because there
is no common interface to start a game session and define session rules. Since each
game software has its own syntax for describing rules, we designed a generic XML-
based description to express all the specific settings. This is possible due to the fact
that, although each game has its own syntax for describing the rules, the settings them-
selves like number of points to win, total time of the sessions etc. are the same in all
of these games. For example, the servers for the games Unreal Tournament 2003 [5]
(left example below) and Quake 3 [7] (right example) read the session settings from a
configuration file at startup. The following extracts show some settings for a session.

FragLimit=30
TimeLimit=20
MaxPlayers=8
Maps=DM-Antalus
GamePassword=mygame

Unreal Tournament 2003
configuration file excerpt

fraglimit 30
timelimit 20
set sv_maxclients 8
set map q3dm17
seta sv_privatePassword "mygame"

Quake 3
configuration file excerpt

Although the syntax for the settings in the two games is different, the semantics are
the same. In this example, one game round ends after 20 minutes or when one of the
maximum of eight players achieves a score of 30 points. The game-specific environment
is set to different map names. Both sessions require a player to provide the password
mygame in order to join the session.

We analysed the sessions rules which are defined by users for several games and
designed a generic XML-based description for these settings. Based on the XML de-
scription for a specific game, the GS Web Server asks the user to set up all session

468 J. Müller, R. Schwerdt, and S. Gorlatch

parameters. For the game Unreal Tournament 2003 for example, the TimeLimit set-
ting description in the XML file looks like:

<element numeric="true">
<name> TimeLimit </name>
<character> = </character>
<default-value> 0 </default-value>
<min-constraint> 0 </min-constraint>
<max-constraint> 60 </max-constraint>
<eligible-as> Round Time Limit </eligible-as>

</element>

The GS Web Server displays a text or drop-down field for each setting and is able to
check user inputs depending on the minimum and maximum constraints given in the
XML file. This way, the user easily can input all required parameters and the GS Web
Server does not have to know about the different configuration file characteristics. The
user settings are submitted to the GS Manager, and the GS Controller at the chosen
game server generates the actual configuration file describing the settings in the game-
specific syntax before the startup of the game server.

4.2 Measuring Communication Quality to Clients

As discussed in Sect. 3.1, the architecture has to be able to give the user a hint about the
quality of available services. Multiplayer real-time games are soft real-time systems and
the game experience depends on the communication latency between the clients and
the server. Especially for fast-paced First Person Shooter games, the communication
latency has to be lower than about 120 ms to operate properly, as presented in [4] for
the game Unreal Tournament 2003 and in [3] for the game Quake 3. The user has to
be able to choose a particular service taking into account not only the price but also the
quality of the service.

The Internet does not provide any guarantees about communication quality and,
therefore, the service providers can not guarantee a certain communication latency. Be-
cause of this, our architecture provides only a hint about the communication quality.
However, if there are no unforeseeable and explosive increases in general Internet-
communication, the general best effort latency of a computing centre to an end user
home PC actually depends on the quality of the computing centre link-up. If a provider
makes a larger investment for a better link-up, then he usually can provide a better ser-
vice. Our system allows users to differentiate services not only by price, but also by
the quality of communication and therefore by the technical investment of providers as
well.

There are several technical solutions to measure the communication quality between
hosts on the Internet: ICMP echo messages (sending a ping), the Network Weather
Service (NWS) [11] or direct, socket-based communication between processes residing
at the hosts.

In our current implementation, we use ICMP echo messages to measure the commu-
nication latency to players. The user booking the session has to input the IP-addresses
of all players’ home computers. Each GS Manager pings these hosts and transfers the

Dynamic Service Provisioning for Multiplayer Online Games 469

results accompanied with the price of the service to the GS Web Server. However, this
solution does not work when the players’ PCs reside behind a firewall of a NAT router,
because these hosts are not reachable for the providers’ echo messages. In this situa-
tion, the user searching for the service can specify hosts of the Internet-communication
companies which provide the general Internet link-up for the players with a firewall and
thus obtain a hint about the expected latency in the game.

5 Conclusion and Related Work

There already has been some work to make the setup of the multi-server approach for
MMORPG dynamic. There are two related projects to mention: The commercial But-
terfly.net [1] provides a Grid-system for an efficient usage of game servers at a local
computer centre and is specifically designed for massively multiplayer games which
use several servers for a single game session. However, the Butterfly.net only man-
ages resources which all reside at a single computing centre and, therefore, aims at
a dynamic and efficient setup of game servers at a local area network rather than at
a global, Internet-wide setup of servers. The second project, presented in [10], pro-
poses an Internet-wide Grid infrastructure for a dynamic setup of single-server online
game sessions comparable to our architecture. However, several important issues like
the generic support of a variety of different games or the selection of the “best” resource
for a particular user request are not discussed.

We implemented our architecture as a prototype and currently are testing it exten-
sively. Users are able to search for and dynamically set up game sessions featuring their
own rules, without renting a game server for a long period of time. This way, the over-
all efficiency of game server machines is drastically improved, because hosts which are
not scheduled to run a game session at the moment remain available for other tasks.
This opens the possibility to combine entertainment and scientific Grid-computing run-
ning on the same resources: Hosts without a game session running are available to run
scientific applications and vice versa, leading to a general and efficient usage of high-
performance hosts. The dynamic setup allows to charge users according to a pay-per-use
business model, which promises to attract more customers than the current long term
renting of game servers. The web services interface for accessing services of providers
allow to incorporate search, start and book operations of game sessions into a variety of
portals ran by game companies or independent game sites.

The architecture supports single-server online games in a generic way. Due to our
XML-based description of session configuration, new games can easily be supported.
The game server software itself is not required to implement a certain interface in order
to be compatible with our architecture.

Measuring communication quality for the Internet is problematic due to the lack
of quality-of-service guarantees. However, our architecture allows to use hints about
communication latency. We designed the interface to the measurement module to be
extensible, such that the technical alternatives discussed can be incorporated if required.
Especially the Network Weather System is an interesting alternative to the currently
used ICMP echo messages, because it traces latency regularly and can provide a history
of communication quality, as well as a prediction for the future.

470 J. Müller, R. Schwerdt, and S. Gorlatch

References

1. Butterfly.net <http://www.butterfly.net>.
2. Gamespy <http://www.gamespy.com/>.
3. G. Armitage. Sensitivity of Quake3 players to network latency, imw2001 poster, 2001.
4. T. Beigbeder, R. Coughlan, C. Lusher, J. Plunkett, E. Agu, and M. Claypool. The effects of

loss and latency on user performance in unreal tournament 2003. In Proceedings of ACM
Network and System Support for Games Workshop (NetGames), Portland, Oregon, USA,,
September 2004.

5. Epic Games. Unreal Tournament game series <http://www.unrealtournament.com/>.
6. I. Foster and C. Kesselmann, editors. The Grid: Blueprint for a New Computing Infrastruc-

ture. Morgan Kaufmann, 1998.
7. ID Software. Quake 3 Arena <http://www.idsoftware.com/games/quake/quake3-arena/>.
8. J. Müller, S. Fischer, S. Gorlatch, and M. Mauve. A proxy server-network for real-time

computer games. In M. Danelutto, D. Laforenza, and M. Vanneschi, editors, Euro-Par 2004
Parallel Processing, volume 3149 of Lecture Notes in Computer Science, pages 606–613,
Pisa, Italy, Aug. 2004. Springer-Verlag.

9. J. Müller and S. Gorlatch. GSM: A game scalability model for multiplayer real-time games.
In IEEE Infocom 2005, Miami, Florida / USA, Mar. 2005. IEEE Communications Society.

10. A. Shaikh, S. Sahu, M. Rosu, M. Shea, and D. Saha. Implementation of a service platform
for online games. In Proceedings of ACM Network and System Support for Games Workshop
(NetGames), Portland, Oregon, USA,, September 2004.

11. R. Wolski, N. T. Spring, and J. Hayes. The network weather service: A distributed resource
performance forecasting service for metacomputing. Journal of Future Generation Comput-
ing Systems, 15(5-6):757–768, Oct. 1999.

Principal Component Analysis for
Distributed Data Sets with Updating

Zheng-Jian Bai1,�, Raymond H. Chan1, and Franklin T. Luk2

1 Department of Mathematics, Chinese University of Hong Kong,
Shatin, NT, Hong Kong, China

{zjbai, rchan}@math.cuhk.edu.hk
2 Department of Computer Science, Rensselaer Polytechnic Institute, Troy,

New York 12180, USA
luk@cs.rpi.edu

Abstract. Identifying the patterns of large data sets is a key requirement in data
mining. A powerful technique for this purpose is the principal component analy-
sis (PCA). PCA-based clustering algorithms are effective when the data sets are
found in the same location. In applications where the large data sets are physi-
cally far apart, moving huge amounts of data to a single location can become an
impractical, or even impossible, task. A way around this problem was proposed
in [10], where truncated singular value decompositions (SVDs) are computed lo-
cally and used to reduce the communication costs. Unfortunately, truncated SVDs
introduce local approximation errors that could add up and would adversely af-
fect the accuracy of the final PCA. In this paper, we introduce a new method to
compute the PCA without incurring local approximation errors. In addition, we
consider the situation of updating the PCA when new data arrive at the various
locations.

1 Introduction

Effective clustering of large data sets is a major objective in data mining. Principal
component analysis (PCA) [4,5,9] offers a popular statistical technique to analyze mul-
tivariate data by constructing a concise data representation using the dominant eigen-
vectors of the data covariance matrix. PCA and PCA-based clustering methods play an
important role in various applications such as knowledge discovery from databases [2]
and remote sensing [8]; for more applications, see [7] and the references therein.

PCA is effective for high-dimensional data analysis when the data sets are collo-
cated. However, in present-day applications, the large data sets could be distributed
over a network of distant sites, and PCA-based algorithms may no longer be applicable
since these distributed data sets are often too large to send to a single location. There is
a growing interest in this topic of distributed data sets and here are some relevant works
in the literature: the interaction of huge data sets and the limits of computational fea-
sibility in Wegman [12], parallel methods for spectral decomposition of nonsymmetric

� Current Address: Department of Mathematics, National University of Singapore, 2 Science
Drive 2, Singapore 117543 (matbzj@nus.edu.sg).

J. Cao, W. Nejdl, and M. Xu (Eds.): APPT 2005, LNCS 3756, pp. 471–483, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

472 Z.-J. Bai, R.H. Chan, and F.T. Luk

matrix on distributed memory processors in Bai et al. [1], an efficient out-of-core SVD
algorithm in Rabani et al. [11], an algorithm for data distributed by blocks of columns
in Kargupta et al. [7], and a method for massive data sets distributed by blocks of rows
in Qu et al. [10].

In this paper, we consider the problem described in Qu et al. [10], where the au-
thors use truncated singular value decompositions (SVDs) in the distributed locations
to reduce communications costs. Their approach is very effective when the local data
matrices have low ranks and can be accurately approximated via a truncated SVD (note
that the savings may be nonexistent when the data matrices have high ranks). In addi-
tion, the small local approximation errors may add up substantially when the number of
locations is large. We will present a new algorithm for computing a global PCA of dis-
tributed data sets. In contrast to Qu’s approach [10], our method introduces no local ap-
proximation errors. At the central processor, Qu’s approach works with the approximate
covariance matrix while we work directly with the data matrix. Our technique will likely
require less communication as well. Suppose that there is an ni × p matrix of rank mi

at the ith local site for i = 1, . . . , s. While Qu’s approach [10] requires O(p
∑s

i=1 mi)
communication, our procedure uses O(p2�log2 s�) communication. When s is large, it
is probable that p

∑s
i=1 mi > p2�log2 s� as p � n. We also consider the important

problem of updating, for new data do arise all the time (for example, medical informa-
tion and banking transactions), and we develop a procedure for constructing a global
PCA for distributed data sets with data updating, by suitably combining the PCAs of
past data and the local PCAs of new data.

This paper is organized as follows. Section 2 contains a brief review of the basic
concepts. In Section 3 we present an algorithm for computing the global PCA of dis-
tributed data sets, and we include a numerical example to illustrate the advantages of
our method. In Section 4 we develop a technique for computing the global PCA of dis-
tributed data sets with updating. Load balancing for communications and computation
is discussed in Section 5, and Section 6 concludes the paper.

Remark 1. Throughout this paper, for simplicity, we assume that there is one processor
at each location and so we will use the two words location and processor interchange-
ably.

2 Principal Component Analysis

Let X be an n-by-p data matrix, where rows denote the observations and columns
denote the features with n � p. The data covariance matrix S is given by

nS = XT (I − 1
neneT

n)X, (1)

where
e� ≡ (1, 1, . . . , 1)T

denotes a vector of length �. The PCA of X is given by an eigenvalue decomposition
[3] of nS:

nS = V Σ2V T , (2)

Principal Component Analysis for Distributed Data Sets with Updating 473

where
Σ2 = diag(σ2

1 , σ2
2 , . . . , σ2

p),

with
σ2

1 ≥ σ2
2 ≥ · · · ≥ σ2

p,

and V is an orthogonal matrix. Let

J ≡ I − 1
neneT

n .

As the matrix J is symmetric and idempotent, we may therefore compute a singular
value decomposition (SVD) [3] of the column-centered data matrix JX :

(I − 1
neneT

n)X = UΣV T . (3)

Therefore, it is not necessary to form the covariance matrix S explicitly. We save work
and improve accuracy by working directly with the data matrix X . The matrices Σ and
V we get in (3) are exactly the matrices we need in (2).

One application of the PCA is to reduce the dimensions of the given data matrix
X . To do so, let Ṽ denote the first m columns of V , corresponding to the m largest
eigenvalues of nS. The m principal components of X is given by the n-by-m matrix

X̃ = (I − 1
neneT

n)XṼ .

It is an optimal m-dimensional approximation of (I − 1
neneT

n)X in the least squares
sense [6]. The ratio ηm, given by

ηm ≡ (
m∑

i=1

σ2
i)/(

p∑
i=1

σ2
i),

reflects the total variance of X̃ in the original data. If ηm ≈ 1 for some m � p, the n-
by-p transformed data matrix JX can be well represented by the much smaller n-by-m
matrix X̃ , which forms the crux of the approach described in Qu et al. [10].

3 Distributed PCA Without Updating

We start with the case of no updating. The global data matrix X is distributed among s
locations:

X =

⎛
⎜⎜⎜⎝

X0

X1

...
Xs−1

⎞
⎟⎟⎟⎠ ,

where Xi is an ni-by-p matrix, and resides at Processor i, for 0 ≤ i < s. So,

n =
s−1∑
i=0

ni

474 Z.-J. Bai, R.H. Chan, and F.T. Luk

gives the number of rows in X . Let S be the covariance data matrix corresponding to
X as given in (1). If we are to form S explicitly, then we have to move Xi across the
processors, and the communication cost will be O(np). In [10], Qu et al. compute the
local PCA for each Xi using the SVD. They then send mi, where mi < p, singular
vectors to the central processor where an approximation of S is assembled, and its PCA
is computed. The communication cost of the method is thus O(p

∑s−1
i=0 mi). A draw-

back is that the local SVD will introduce approximation errors. In the following, we
give a method of finding PCA of X exactly using the QR decomposition. For simplic-
ity, we assume that s = 2� and that the global PCA is computed in location 0 (i.e.,
Processor 0).

Algorithm 1:

• At Processor i, for 0 ≤ i < s: Compute the column means of Xi, i.e.,

x̄T
i =

1
ni

eT
ni

Xi.

Form the column-centered data matrix

X̄i = (I − 1
ni

enie
T
ni

)Xi = Xi − eni x̄
T
i . (4)

Then compute its QR decomposition [3]:

X̄i = Q
(0)
i R

(0)
i , (5)

where R
(0)
i are upper triangular p-by-p matrices. Send ni and x̄T

i to Processor 0. If

i ≥ s/2, send R
(0)
i to Processor (i − s/2). There is no need to send any Q

(0)
i .

• At Processor i, for 0 ≤ i < s/2: Compute the QR decomposition of R
(0)
i and

R
(0)
i+s/2 by using Givens’ rotations:

(
R

(0)
i

R
(0)
i+s/2

)
= Q

(1)
i R

(1)
i , (6)

where R
(1)
i are p-by-p upper triangular matrices. If i ≥ s/4, send R

(1)
i to Processor

(i − s/4). Again, there is no need to send any Q
(1)
i .

• Continue until we reach Processor 0 after � = �log2 s� steps.

• At Processor 0: Compute the QR decomposition of R
(�−1)
0 and R

(�−1)
1 by using

Givens’ rotations: (
R

(�−1)
0

R
(�−1)
1

)
= Q

(�)
0 R

(�)
0 , (7)

where R
(�)
0 is an p-by-p upper triangular matrix. Form the following (s + p)-by-

p upper-trapezoidal matrix and compute its QR decomposition by Householder’s
reflections:

Principal Component Analysis for Distributed Data Sets with Updating 475

⎛
⎜⎜⎜⎜⎜⎝

√
n0(x̄0 − x̄)√
n1(x̄1 − x̄)

...√
ns−1(x̄s−1 − x̄)

R
(�)
0

⎞
⎟⎟⎟⎟⎟⎠ = QR. (8)

Here, R is an p-by-p upper triangular matrix and

x̄ ≡ 1
n

s−1∑
i=0

nix̄i

gives the column mean of X . The PCA of S can now be obtained by computing the
SVD of R:

R = UΣV T . (9)

Remark 2. Algorithm 1 works for an arbitrary s > 0 if we replace s by s+, where
s+ := 2�log2 s�. For s+ > s, the matrices {Xi}s+

i=s+1 are empty.

Lemma 1. The covariance matrix S as defined in (1) is given by:

nS = R
(�)
0

T
R

(�)
0 +

s−1∑
i=0

ni(x̄i − x̄)(x̄i − x̄)T = RT R. (10)

In particular, the PCA of S is given by the Σ and V computed in (9).

Proof. The last equality in (10) follow from (8). To prove the first equality, we note that

x̄T = 1
neT

nX.

Hence

(I − 1
neneT

n)X = (I − 1
neneT

n)

⎛
⎜⎝

X0

...
Xs−1

⎞
⎟⎠ =

⎛
⎜⎝

X0 − en0 x̄
T

...
Xs−1 − ens−1 x̄

T

⎞
⎟⎠

=

⎛
⎜⎝

X0 − en0 x̄
T
0 + en0(x̄0 − x̄)T

...
Xs−1 − ens−1 x̄

T
1 + ens−1(x̄s−1 − x̄)T

⎞
⎟⎠ =

⎛
⎜⎝

X̄0 + en0(x̄0 − x̄)T

...
X̄s−1 + ens−1(x̄s−1 − x̄)T

⎞
⎟⎠ ,

where the last equality follows from the definition in (4). By (4), we see that the column
sums of X̄i are all zero, i.e.,

eT
ni

X̄i = 0,

for 0 ≤ i < s. Hence

nS =
(
X̄T

0 + (x̄0 − x̄)eT
n0

| · · · | X̄T
s−1 + (x̄s−1 − x̄)eT

ns−1

)
⎛
⎜⎝

X̄0 + en0(x̄0 − x̄)T

...
X̄s−1 + ens−1(x̄s−1 − x̄)T

⎞
⎟⎠

=
s−1∑
i=0

X̄T
i X̄i +

s−1∑
i=0

ni(x̄i − x̄)(x̄i − x̄)T . (11)

476 Z.-J. Bai, R.H. Chan, and F.T. Luk

Using (5)–(7), we have

s−1

i=0

X̄T
i X̄i =

s−1

i=0

R
(0)
i

T
R

(0)
i =

s/2−1

i=0

R
(1)
i

T
R

(1)
i = · · · =

1

i=0

R
(�−1)
i

T
R

(�−1)
i = R

(�)
0

T
R

(�)
0 .

Put this in (11) and we get (10).
To get the first m principal components of X , we broadcast x̄ and Ṽ (the first m

columns of V) to every processor. Then the m principal components of X are given by
the matrix X̃:

X̃ = (I − 1
neneT

n)XṼ = (X − enx̄T)Ṽ . (12)

In particular, at Processor i, we have the ni-by-m approximation X̃i:

X̃i = (Xi − eni x̄
T)Ṽ ,

for 0 ≤ i < s. Regarding the communication costs, note that there are �log2 s� steps
in the algorithm. In step j, we need to move a total number (=s/2j) of p-by-p upper

triangular matrices R
(j)
i . Hence the communication cost is O(p2�log2 s�). We state

once more that the PCA (i.e., Σ and V) we obtain is exact.
We ran some numerical experiments on synthetic data using MATLAB 7.0.1. They

simulated the scenario of distributed data sets to assess computational accuracy and
communication costs. Execution times are not provided since they are not meaningful
in simulations (cf. [10]).

Example (Synthetic data). The data X are generated as follows (cf. [10]). Let

X = GET + N,

where the n-by-d data matrix G is a d-dimensional Gaussian data, i.e., its entries are
identical, independently distributed (iid) as N (0, 1) (normal distribution with mean 0
and variance 1), E is a p-by-d matrix with 1’s on the diagonal and zeros elsewhere, and
N is a p-dimensional Gaussian noise whose entries are iid as N (0, σ2). We partition
the data X among s processors evenly. If the modulus r after n divided by s is not zero,
let the first r processors contain �n/s�+ 1 observations.

We took n = 6, 000, p = 20, d = 2, and σ = 0.2, and we set the local and global
PC selection thresholds to be

√
0.8 and 0.8, respectively. To further characterize the

data X , we plot the eigenvalue distribution of the theoretical covariance matrix with
these parameters in Figure 1. Ten simulations were run using the distributed principal
component algorithm (DPCA) proposed by Qu et al. [10] (Method a) and our algorithm
(Method b) for various values of s. In Table 1, we report the means and standard devia-
tions (sd) of the quantities given as follows.

Tae =
Ta

Te
, Tbe =

Tb

Te
and Tba =

Tbe

Tae
,

where Ta = (
∑s−1

i=0 mi)(p + 1) + s(p + 3) with mi being the number of PCs selected
from the ith processor, Tb = 1

2p(p + 1)� + s(p + 1) and Te = np. The quantities Tae

and Tbe provide the ratios of the communication costs.

Principal Component Analysis for Distributed Data Sets with Updating 477

da =
‖(I − n−1eneT

n)(X̂ − X)‖2

‖(I − n−1eneT
n)X‖2

,

db =
‖(I − n−1eneT

n)(X̄ − X)‖2

‖(I − n−1eneT
n)X‖2

and

dba =
db

da
,

where X̂ is the dimension reduced data obtained by the DPCA [10] and X̄ = X̃Ṽ T .
Here, X̃ is defined in (12) where m is the number of global PCs which is obtained
based on the global PC selection threshold. da and db are the relative error between
the original data X and the data approximated by Methods a and b, respectively. From

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Va
ria

nc
es

Fig. 1. Eigenvalue distribution of covariance matrix for synthetic data

Table 1. Numerical results for synthetic data

s 1 4 8 16 32 64 128
Tae mean .0025 .0092 .0182 .0348 .0653 .1193 .2065

sd .0000 .0001 .0001 .0004 .0008 .0011 .0017
Tbe mean .0002 .0042 .0067 .0098 .0143 .0217 .0347

sd 0 .0000 .0000 .0000 .0000 0 .0000
Tba mean .0709 .4556 .3645 .2814 .2197 .1819 .1678

sd 0 .0041 .0025 .0036 .0028 .0016 .0014
da mean .2054 .2030 .2025 .2042 .2043 .2049 .2044

sd .0017 .0025 .0018 .0024 .0021 .0016 .0015
db mean .1993 .1976 .1979 .1988 .1988 .1992 .1988

sd .0014 .0018 .0014 .0021 .0021 .0012 .0016
dba mean .9703 .9737 .9778 .9738 .9731 .9726 .9725

sd .0042 .0063 .0061 .0066 .0033 .0042 .0034

478 Z.-J. Bai, R.H. Chan, and F.T. Luk

0 20 40 60 80 100 120 140
0

0.05

0.1

0.15

0.2

0.25

Numbers of data sets (s)

Ra
tio

 of
 co

mm
un

ica
tio

n c
os

ts
T

ae

T
be

Fig. 2. Comparison of communication costs for synthetic data

0 20 40 60 80 100 120 140
0.197

0.198

0.199

0.2

0.201

0.202

0.203

0.204

0.205

0.206

0.207

Numbers of data sets (s)

Ra
lat

ive
 er

ro
rs

be
tw

ee
n a

pp
ro

x.
an

d o
rig

ina
l d

ata

d
a

d
b

Fig. 3. Comparison of data approximate error for synthetic data

Table 1 and Figures 2 and 3, we see that our method behaves better than the DPCA in
terms of both communication costs and data approximation errors.

4 Distributed PCA with Updating

In this section, we develop an algorithm for computing the PCA when new data arise
in the s locations. We assume that the initial time t0 = 0. In our algorithm, we use a
global synchronization to keep track of the updating and the evaluation of the PCA for
the global data matrix. More precisely, we fix the time instants t1, t2, . . ., when updating
is stopped and the evaluation of PCA for the global data commences.

Principal Component Analysis for Distributed Data Sets with Updating 479

In particular, let X
(k)
i denote the block of data of size n

(k)
i -by-p added to Processor

i between tk−1 < t ≤ tk where k ≥ 1. The updated matrix for this time interval is
denoted by

Xn(k) =

⎛
⎜⎜⎜⎜⎝

X
(k)
0

X
(k)
1
...

X
(k)
s−1

⎞
⎟⎟⎟⎟⎠ ,

where n(k) =
∑s−1

i=0 n
(k)
i is the number of rows in Xn(k) . We will use Xn(0) to denote

the data matrix already present at the processors at time t0 = 0. For k ≥ 0, let

x̄T
n(k) = 1

n(k) e
T
n(k)Xn(k) (13)

denote the column means of Xn(k) . The p-by-p covariance matrix Sk corresponding to
Xn(k) is given by

n(k)Sk = XT
n(k)(I − 1

n(k) en(k)eT
n(k))Xn(k) . (14)

We note that for each k ≥ 0, the PCA of Sk can be obtained by Algorithm 1 in Section 3.
We want to compute the PCA of the global data matrix collected from t0 = 0 up to

tk, k ≥ 0. Let Xg(k) denote this global data matrix

Xg(k) =

⎛
⎜⎜⎜⎝

Xn(0)

Xn(1)

...
Xn(k)

⎞
⎟⎟⎟⎠ , (15)

where g(k) =
∑k

j=0 n(j) is the number of rows in Xg(k). We emphasize that the data

blocks {X(j)
i }s−1

i=0 always reside on their respective processors and will not be moved.
The p-by-p covariance matrix Sk corresponding to Xg(k) is given by

g(k)Sk = XT
g(k)(I − 1

g(k)eg(k)eT
g(k))Xg(k). (16)

We now show that Sk can be obtained from the covariance matrices Sj of {Xn(j)}k
j=0.

Theorem 1. For any positive integer k,

g(k)Sk =
k∑

j=0

n(j)Sj +
k∑

j=1

g(j − 1)n(j)

g(j)
(
x̄g(j−1) − x̄n(j)

) (
x̄g(j−1) − x̄n(j)

)T
,

(17)
where Sj and x̄n(j) are given by (14) and (13) respectively, and

x̄T
g(k) = 1

g(k)e
T
g(k)Xg(k), (18)

is the column mean of Xg(k), which can be obtained by x̄g(k) = 1
g(k)

∑k
j=0 n(j)x̄n(j) .

480 Z.-J. Bai, R.H. Chan, and F.T. Luk

Proof. We use induction to prove the lemma. For k = 0, the equation (17) is obviously
true. Let us assume that it is also true for k − 1. We first write

I − 1
g(k)eg(k)eT

g(k) =
(

I − 1
g(k−1)eg(k−1)eT

g(k−1) 0
0 I − 1

n(k) en(k)eT
n(k)

)

+

(
[1
g(k−1) − 1

g(k)]eg(k−1)eT
g(k−1) − 1

g(k)eg(k−1)eT
n(k)

− 1
g(k)en(k)eT

g(k−1) [1
n(k) − 1

g(k)]en(k)eT
n(k)

)

≡ Ek + Fk.

For Ek, using (14) and (16), we have

XT
g(k)EkXg(k) =

(
Xg(k−1)

Xn(k)

)T

Ek

(
Xg(k−1)

Xn(k)

)
= g(k − 1)Sk−1 + n(k)Sk. (19)

For Fk, using (13) and (18), we have

XT
g(k)FkXg(k)

=
1

g(k)

(
Xg(k−1)

Xn(k)

)T
(

n(k)

g(k−1)eg(k−1)eT
g(k−1) −eg(k−1)eT

n(k)

−en(k)eT
g(k−1)

g(k−1)
n(k) en(k)eT

n(k)

) (
Xg(k−1)

Xn(k)

)

=
1

g(k)

(
Xg(k−1)

Xn(k)

)T
(

n(k)eg(k−1)x̄T
g(k−1) − n(k)eg(k−1)x̄T

n(k)

−g(k − 1)en(k) x̄T
g(k−1) + g(k − 1)en(k) x̄T

n(k)

)

=
g(k − 1)n(k)

g(k)

{
x̄g(k−1)x̄T

g(k−1) − x̄g(k−1)x̄T
n(k) − x̄n(k) x̄T

g(k−1) + x̄n(k) x̄T
n(k)

}

=
g(k − 1)n(k)

g(k)
(x̄g(k−1) − x̄n(k))(x̄g(k−1) − x̄n(k))T . (20)

Adding (19) and (20), and invoking the induction hypothesis, we get (17).
For each update matrix Xn(j) , by Algorithm 1 and (10), its covariance matrix Sj is

given by
n(j)Sj = RT

n(j)Rn(j) ,

where Rn(j) is p-by-p upper triangular. Hence by (17),

g(k)Sk =
k∑

j=0

RT
n(j)Rn(j) +

k∑
j=1

g(j − 1)n(j)

g(j)
(x̄g(j−1) − x̄n(j))(x̄g(j−1) − x̄n(j))T .

(21)
Let Rg(0) = Rn(0) . Using Householder’s reflections, we can recursively obtain the QR
decomposition of the following (2p + 1)-by-p matrix:

⎛
⎜⎝

Rg(k−1)√
g(k−1)n(k)

g(k) (x̄g(k−1) − x̄n(k))
Rn(k)

⎞
⎟⎠ = Qg(k)Rg(k), (22)

Principal Component Analysis for Distributed Data Sets with Updating 481

where k ≥ 1 and Rg(k) is an p-by-p upper triangular matrix. It is easy to check from
(21) that

g(k)Sk = RT
g(k)Rg(k).

Hence the PCA of Sk can be obtained by computing the SVD of Rg(k):

Rg(k) = UΣVT ,

where Σ and V are p-by-p matrices. To get the first m principal components of the
global data matrix Xg(k), we broadcast x̄g(k) and Ṽ (the first m columns of V) to every
processor. Then the m principal components of Xg(k) are given by the matrix X̃g(k):

X̃g(k) = (I − 1
g(k)eg(k)eT

g(k))Xg(k)Ṽ = (Xg(k) − eg(k)x̄T
g(k))Ṽ.

From (21), we see that the PCA of the global data matrix Xg(k) at time tk can be
obtained from the R factors Rn(j) of the updated matrices Sj , for j = 0, . . . , k. These
R factors can be computed in turn by Algorithm 1 as in (8). Once these factors are
computed, they can be assembled at a particular processor to form Rg(k) as in (22)
and then the PCA of Sk can be computed. One potential problem is that it may create
bottlenecks at certain processors if the assembling are not scheduled correctly.

5 Load Balancing

In this section, we give a procedure such that the loads among the processors will be
balanced provided that the size of the data blocks are more or less the same on each
processor. For notational simplicity, we will denote the set of all R factors of X̄n(k) by
{R(0)

n(k)} (see (4) and (5)), and the subsequent set of R factors of {R(i)

n(k)} by {R(i+1)

n(k) }
(see (6) and (7)). We illustrate the main idea with s = 8. Figure 4 gives the flowchart

Processor

0

1

2

3

4

5

6

7

Time

X R

X R

X R

X R

X R

X R

X R

X R

X R

X R

X R

X R

X R

X R

X R

X R

X R

X R

X R

X R

X R

X R

X R

X R

X R

X R

X R

X R

X R

X R

X R

X R

X R

X R

X R

X R

X R

X R

X R

X R

X R

X R

X R

X R

X R

X R

X R

X R

X R

X R

X R

X R

X R

X R

X R

R R

R R

R R

R R R R

R R

R R

R R

R R

R R

R R

R R

R R

R R

R R

R RR R

R R

R R

R R

R R

R R R R

R R

t
2

t
0

t
1

t
6

t
3

t
4

t
5

CommunicationComputation

R R

R R R RR R

R R

R R

R R

R R

X R

R R

R R

R R

R R

R R

R R

Fig. 4. Flowchart for the procedure when s = 8

482 Z.-J. Bai, R.H. Chan, and F.T. Luk

of our algorithm when s = 8, i.e. � = log2 s = 3. In the figure, each time interval
(tj−1, tj] is divided into two phases: the computation phase where the QR decomposi-
tion are done, and the communication phase where the R factors are moved across the
processors.

For example, in (t0, t1], we first compute all the R factors {R(0)

n(0)} of X̄n(0) using
Algorithm 1 (marked in the figure by X−
R). There are 8 of them. Then during the
communication phase, half of them will be sent to Processor i, i < s/2 = 4, according
to Algorithm 1 (marked by the solid arrows in the figure). Then in (t1, t2], we compute

all the R factors {R(0)

n(1)} of X̄n(1) (marked by X−
R), and the R factors {R(1)

n(0)} of

{R(0)

n(0)} (marked by R−
R). Half of these R factors will be moved during the com-

munication phase. However, in order to achieve load balancing, the factors {R(0)

n(1)}
should not be moved according to Algorithm 1 again, but according to the figure, i.e. to
Processors 2, 3, 4, and 5 (marked by dashed arrows in the figure).

Continuing in this manner, we see that the R factor Rn(0) of the covariance matrix
S0 will be formed at Processor 0. (Recall that Rn(0) = Rg(0) and S0 = S0.) Also Rn(1)

and Rn(2) will be formed at Processors 4 and 6 respectively (see the marked circles).
Once Rn(k) are formed, they can be combined with previously obtained Rg(k−1) to form
Rg(k) by using (22), provided that Rg(k−1) are sent there from the previous time-step
(marked by curve arrows in the figure).

In this procedure, we assume that once Rn(k) is formed at time step tk+�, it will be
merged with Rg(k−1) to form Rg(k), see the circled-R in Figure 4. However, one can
also send all these Rn(k) to a central processor, where all the Rg(k) are formed. The
nice thing about this alternate approach is that if for some reasons, Rn(k) arrive to the
central processor before Rn(j) , for some j < k, then we can still form the Rg(k) at the
central processor without waiting for Rn(j) . Of course, Rg(k) so formed is the R factors
of Xg(k) without the update block Xn(j) , i.e. it is equivalent to Xn(j) = O in (15). When
Rn(j) arrives at a later time, we can do the updating of Rg(k) first, and then include the
contribution of Xn(j) .

6 Conclusions

In this paper, we propose a new algorithm for finding the global PCA of distributed
data sets. Our method works directly with the data matrices and has a communications
requirement of only O(p2�log2 s�), (i.e., independent of n, the number of observations,
which is very large). As compared against the DPCA algorithm [10], our algorithm
introduces no local PCA approximation errors. We also consider data updating, and we
present a method for computing the PCA for the new extended data sets after new data
are added.

References

1. Z. Bai, J. Demmel, J. Dongarra, A. Petitet, H. Robinson, and K. Stanley, The Spectral De-
composition of Nonsymmetric Matrices on Distributed Memory Parallel Computers, SIAM
J. Sci. Comput., 18(5): 1446–1461, 1997.

Principal Component Analysis for Distributed Data Sets with Updating 483

2. D. Boley, Principal Direction Divisive Partitioning, Data Min. Knowl. Discov., 2(4): 325–
344, 1998.

3. G. H. Golub and C. F. Van Loan, Matrix Computations, The Johns Hopkins University Press,
3rd ed., 1996.

4. H. Hotelling, Analysis of a Complex of Statistical Variables into Principal Components, J.
Educ. Psych., 24 (): 417–441, 498–520, 1933.

5. J. E. Jackson, User’s Guide to Principal Components, Wiley, New York, 1991.
6. I. T. Jolliffe, Principal Component Analysis, Springer-Verlag, 1986.
7. H. Kargupta, W. Y. Huang, K. Sivakumar, and E. Johnson, Distributed Clustering Using

Collective Principal Component Analysis, Knowl. Inf. Syst., 3(4): 422–448, 2001.
8. J. B. Lee, A. S. Woodyatt, and M. Berman, Enhancement of High Spectral Resolution

Remote Sending Data by a Noise-Adjusted Principal Component Transform, IEEE Trans.
Geosci. Remote Sensing, 28(3):295-304, May 1990.

9. K. Pearson, On Lines and Planes of Closest Fit to Systems of Points in Space, Phil. Mag., 2
(6): 559–572, 1901.

10. Y. M. Qu, G. Ostrouchov, N. Samatova, and A. Geist, Principal Component Analysis for
Dimension Reduction in Massive Distributed Data Sets, Proceedings to the Second SIAM
International Conference on Data Mining, April 2002.

11. E. Rabani and S. Toledo, Out-of-Core SVD and QR Decompositions, in Proceedings of the
10th SIAM Conference on Parallel Processing for Scientific Computing, Norfolk, Virginia,
March 2001.

12. E. J. Wegman, Huge Data Sets and the Frontiers of Computational Feasibility, J. Comput.
Graph. Statist., 4 (4): 281–295, 1995.

Priority Conscious Transaction Routing in a
Real-Time Shared Disks Cluster

Kyungoh Ohn, Sangho Lee, and Haengrae Cho

Department of Computer Engineering, Yeungnam University,
Gyungsan, Gyungbuk 712-749, Republic of Korea

{ondal, comman35, hrcho}@yumail.ac.kr

Abstract. A great deal of research indicates that the shared disks (SD)
cluster is suitable to high performance transaction processing. However,
the aggregation of SD cluster with real-time processing has not been
investigated. By adopting cluster technology, the real-time services will
be highly available and can exploit inter-node parallelism. In this pa-
per, we propose a priority conscious transaction routing algorithm for
a real-time SD cluster, which allocates real-time transactions to a node
in the SD cluster. Unlike traditional routing algorithms that consider
transaction affinity and load balancing only, our algorithm also consid-
ers transaction priorities inherent to real-time applications. We evaluate
the performance of our algorithm under a wide variety of real-time work-
loads. The experiment results show that our algorithm outperforms both
pure priority-based algorithms and pure affinity-based algorithms.

1 Introduction

There has been an increasing growth of real-time transaction processing appli-
cations, such as telecommunication systems, stock trading, electronic commerce,
and so on. A real-time transaction has not only ACID properties of traditional
transactions but also time constraints of completing its execution before deadline
[5,6]. The major performance metric of real-time processing is the percentage of
transactions missing their deadlines.

A cluster is a collection of interconnected computing nodes that collabo-
rate on executing an application. A shared disks (SD) cluster is a representative
cluster architecture for high performance transaction processing [1,13]. The SD
cluster allows each node to have direct access to all disks. So it can support dy-
namic load balancing and seamless integration. Furthermore, the rapidly emerg-
ing technology of storage area networks (SAN) makes the SD cluster a preferred
choice for reasons of higher system availability and flexible data access. The re-
cent database systems using the SD cluster include IBM DB2 Parallel Edition
[3] and Oracle Real Application Cluster [11].

Although there has been a great deal of independent research in real-time
processing and SD cluster, their aggregation has very little attention [8]. The
cluster technology enables highly available real-time database services, which
are the core of many telecommunication services. The cluster can also achieve

J. Cao, W. Nejdl, and M. Xu (Eds.): APPT 2005, LNCS 3756, pp. 484–493, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Priority Conscious Transaction Routing in a Real-Time Shared Disks Cluster 485

high performance real-time transaction processing by exploiting inter-node par-
allelism and reducing the amount of disk I/O with judicious data caching.

As a first step to the real-time SD cluster, we propose a real-time transac-
tion routing algorithm in the SD cluster. The transaction routing is a process
by a front-end router to select an execution node of an incoming transaction.
The traditional transaction routing algorithms of the SD cluster have two de-
sign goals: load balancing and transaction affinity [10,14,15]. The load balancing
means to avoid overloading individual node. The transaction affinity means to
execute transactions with similar data access pattern on the same node (affinity
node). To support real-time transactions, we have an additional goal of trans-
action priority. This goal means to reduce the number of transactions missing
their deadlines by considering the deadline as a priority.

Our algorithm extends a well-performed traditional algorithm, named DACA
(Dynamic Affinity Cluster Allocation) proposed by authors [10], to the real-
time transaction processing. DACA can make an optimal balance between the
affinity-based routing and indiscriminate sharing of load in the SD cluster. The
contribution of this paper is to propose how the transaction priority can be
incorporated into DACA. We also compare the performance of DACA and its
real-time extension under a wide variety of real-time workloads.

The rest of this paper is organized as follows. Sect. 2 describes our model
of the real-time SD cluster. Sect. 3 presents our algorithm in detail and Sect. 4
analyzes the experiment results. Concluding remarks appear in Sect. 5.

2 Model of Real-Time SD Cluster

Figure 1 shows our model of the real-time SD cluster. There is a router to
select an execution node for each incoming transaction. The node schedules the
execution of its transactions with earliest deadline first (EDF) policy [6]. We
assume the mixed real-time transaction workload [7], which consists of both real-
time transactions and non real-time transactions. A real-time transaction has a
deadline. Executing the real-time transaction after its deadline is meaningless;
hence, our model assumes firm real-time transactions [6].

The coupling facility of a node provides inter-node caching and global locking.
Specifically, each node in the SD cluster has its own buffer and caches database
pages in the buffer. Caching may substantially reduce the amount of disk I/O
by utilizing the locality of reference. However, since a particular page may be
simultaneously cached in different nodes, modification of the page in any buffer
invalidates copies of that page in other nodes. This necessitates the use of a
cache coherency algorithm so that the nodes always see the most recent version
of database pages [1,2,9].

We assume that a record-level locking is in effect. In real-time applications, a
locking protocol has to handle the priority inversion problem that lower priority
transactions block the execution of higher priority transactions. To resolve the
problem, we adopt the real-time locking protocol of [7]. Specifically, a real-time
transaction aborts non real-time transactions holding locks in conflict mode.

486 K. Ohn, S. Lee, and H. Cho

routerrouter

Buffer

coupling
facility

processes

Buffer

coupling
facility

processes

real-time/non real-time transactions

SAN

Node 1 Node k

Fig. 1. Model of a real-time SD cluster

On the other hand, a non real-time transaction always waits at lock conflict.
The same procedure holds between real-time transactions with different priori-
ties. High priority transactions are always guaranteed to acquire locks without
waiting.

3 Real-Time Transaction Routing

In this section, we propose a new real-time transaction routing algorithm, named
Priority conscious Dynamic Affinity Cluster Allocation (P-DACA). We first
summarize the basic idea of DACA algorithm [10]. Then we describe P-DACA
algorithm that extends DACA for real-time transaction processing.

3.1 DACA Algorithm

To alleviate the routing overhead, DACA considers balancing the load of each
affinity cluster (AC) [14]. An AC collects several transaction classes with high
affinity to a given set of tables. A router maintains routing parameters. Specifi-
cally, when the router allocates a transaction of an affinity cluster ACq to a node
Np, it increments both #T(ACq) and #T(Np), which means the number of ac-
tive transactions at ACq and at Np respectively. Both counters are decremented
when the transaction commits or aborts.

DACA divides the overload state into an AC overload and a node overload.
The AC overload implies a state when transactions of an AC are rushed into the
system. The node overload occurs when a node Np is allocated to several ACs
and #T(Np) is over average. DACA balances the load of each node according
to the overload state. If ACq is in the AC overload state, then DACA allocates
more nodes to ACq by node expansion strategy. If there is no AC overload but
Np is in the node overload state, then DACA distributes some ACs assigned
to Np to other node by AC distribution strategy. DACA can make an optimal
balance between the affinity-based routing and load balancing as follows.

Priority Conscious Transaction Routing in a Real-Time Shared Disks Cluster 487

– DACA tries to reduce the number of nodes allocated to the overloaded AC
if the load deviation of each node is not significant. This allows DACA to
reduce the frequency of inter-node cache invalidations.

– DACA prohibits allocating both an overloaded AC and other ACs to a node.
As a result, DACA can achieve high buffer hit ratio for the overloaded AC.
Even though several non-overloaded ACs may be allocated to a single node,
efficient handling of the overloaded AC is more important to improve the
overall transaction throughput.

3.2 Priority Conscious DACA (P-DACA)

Before describing the details of P-DACA, we first illustrate the problem of DACA
when transactions have priorities. Example 1 shows the problem.

Example 1: Suppose there are two ACs (AC1, AC2) and two nodes (N1, N2).
N1 is an affinity node of AC1 and executes a transaction t1 of priority 100. N2

is an affinity node of AC2 and executes a transaction t2 of priority 60. At this
time, suppose a new transaction t3 of priority 70 arrives, and t3 belongs to AC1.
Then DACA allocates t3 to its affinity node N1 if N1 is not in the node overload
state. However, t3 has lower priority than t1 and cannot be executed until t1
completes. So t3 has a higher probability of missing its deadline. On the other
hand, if t3 is allocated to N2, then it can be executed immediately. �

The goal of P-DACA is (a) to reduce the number of transactions missing
their deadlines, and (b) to take advantages of affinity clustering as DACA. To
achieve this goal, P-DACA performs the following three basic steps sequentially
to decide where a new real-time transaction tr will be routed.

1. If there is an affinity node of tr where the priority of tr becomes the highest
one, then allocates tr to that node.

2. Else if there is a non-affinity node of tr where the priority of tr becomes the
highest one, then allocates tr to that node.

3. Else if there is no node that can execute tr immediately, then allocates tr to
one of its affinity nodes in a round-robin fashion.

The underlying idea of the basic steps is to execute a real-time transaction
at its affinity node only if the deadline of the transaction would not be missed
(Step 1 and 3). By clustering real-time transactions to their affinity nodes, the
amount of inter-node buffer invalidation can be minimized. So this idea can
contribute to reduce the deadline miss ratio of following real-time transactions.
Furthermore, due to the benefit of affinity clustering, it is also possible to improve
the throughput of non real-time transactions.

The basic steps can be optimized if the router maintains a priority list for
each node. The priority list is a sorted list in descending order of priorities of
active real-time transactions at the node. Then a new real-time transaction tr
has to be allocated to a node where tr can be executed faster than other nodes.
P-DACA checks this condition by comparing the relative position of tr in the

488 K. Ohn, S. Lee, and H. Cho

TRANSACTION ROUTING(tr, P (tr), ACr)

1. #T(ACr) = #T(ACr) + 1;
2. If tr is a real-time transaction then

(a) If there is a node Np ∈ S(ACr), where rank(P (tr), Np) < w1 and
rank(P (tr), Np) < rank(P (tr), Ni) for all nodes Ni ∈ S(ACr), i �= p, then
goto step 4;

(b) Else if there is a node ∃Np /∈ S(ACr), where rank(P (tr), Np) < w2 and
rank(P (tr), Np) < rank(P (tr), Ni) for all nodes Ni /∈ S(ACr), i �= p, then
goto step 5;

(c) Else goto step 3.
3. Select Np, where #T(Np) is minimum for all node in S(ACr);
4. If ACr is in the AC overload state, then call node expansion(ACr);
5. Else if Np is in the node overload state, then call AC distribution(Np);
6. #T(Np) = #T(Np) + 1; Insert P (tr) into the priority list of Np;
7. Return Np.

Fig. 2. Transaction routing algorithm of P-DACA

priority list of each node. Suppose P (tr) means the priority of tr, and tr is
included in the affinity cluster ACr. S(ACr) is a set of affinity nodes of ACr .
Figure 2 summarizes the transaction routing algorithm of P-DACA.

At the step 2 of Fig. 2, the function of rank(P (tr), Np) returns the number of
transactions whose priorities are higher than P (tr) at Np. If the function returns
0, the priority of tr will be highest at Np. The values w1 and w2 are window
constraints that limit the acceptable rank of tr. w1 is usually larger than w2

since an affinity node of tr could complete tr faster. Note that if both w1 and
w2 are set to 1, the algorithm works similar to the basic steps. A non real-time
transaction is allocated to one of its affinity nodes with the lightest load (step 3).
If allocating tr would result in AC overload or node overload, then the resolution
strategy of DACA has to be performed (step 4 and 5). Example 2 shows how
P-DACA can resolve the problem of Example 1.

Example 2: Suppose that the information of ACs, nodes, and transactions are
same to Example 1. Suppose also that both w1 and w2 are set to 1. Then the
router allocates t3 to N2 that can execute t3 immediately. This is because (a)
the affinity node of t3 is N1 but rank(P (t3), N1) = 1 = w1 , and (b) even though
N2 is not an affinity node of t3 but rank(P (t3), N2) = 0 < w2. Note that if w1

is set to 2, t3 is allocated to N1. �

The notable features of P-DACA are two-fold. First, P-DACA allocates a
real-time transaction to a node that guarantees higher probability of completing
the transaction within its deadline. Even though the transaction could miss its
deadline due to following transactions with higher priority, the selection strat-
egy is the best choice at the current state. Next, P-DACA tries to allocate a
transaction to its affinity node if possible. So P-DACA can achieve high buffer

Priority Conscious Transaction Routing in a Real-Time Shared Disks Cluster 489

CPU

CPU

DISK DISK

CPU
Network

CPUCPU

CPUCPU

DISKDISK DISKDISK

CPUCPU
NetworkNetwork

Fig. 3. Simulation model of a real-time SD cluster

hit ratio. The high buffer hit ratio in turn contributes to reduce the transaction
execution time. The probability of missing deadline can be reduced as a result.

Maintaining the priority list would incur additional computing overhead. The
first overhead comes from the fact that the router has to keep the priority list of
each node in sorted order. An efficient implementation of ordered list with binary
search can reduce the complexity of insertion, deletion, and search operations
in the priority list. The next overhead comes from the fact that the priority
list includes every active real-time transaction at the node. This means that a
node has to report the commit of a real-time transaction to the router. Note
that DACA also requires the same commit procedure for the router to maintain
#T(ACq) and #T(Np) correctly [10].

4 Experiments

4.1 Simulation Model

To evaluate the performance of P-DACA, we have developed a simulation model
of a real-time SD cluster using CSIM discrete-event simulation package [12].
Figure 3 shows the simulation model.

We model the SD cluster consisting of a single router and a global lock man-
ager (GLM) plus a varying number of nodes, all of which are connected via a local
area network. The router model consists of a transaction generator and a rout-
ing manager. The transaction generator has a role to generate transactions, each
of which is modeled as a sequence of database operations. The routing manager
implements three routing algorithms: P-DACA, DACA, and pure priority-driven
algorithm (PRIO). PRIO does not consider the affinity and load balancing, but
considers the transaction priority only.

The model of each node consists of a buffer manager, which manages the
node buffer pool using an LRU policy, and a resource manager, which models
CPU activity and provides access to the shared disks and the network. For

490 K. Ohn, S. Lee, and H. Cho

Table 1. Simulation parameters

System Parameters
CPUSpeed Instruction rate of CPU 1 GIPS
NetBandwidth Network bandwidth 100 Mbps
NumNode Number of computing nodes 8
NumDisk Number of shared disks 20
DiskTime Disk access time 0.01 ∼ 0.03 sec
PageSize Size of a page 4096 bytes
ClusterSize Number of pages in a cluster 10000
HotSize Size of hot set in a cluster 2000 pages
DBSize Number of clusters in database 8
BufSize Per-node buffer size 5000 pages
FixedMsgInst Number of instructions per messaging 20000
LockInst Number of instructions per locking 2000
PerIOInst Number of instructions per disk I/O 5000
PerObjInst Number of instructions for a DB call 15000

Transaction Parameters
TrxSize Transaction size (# of records) 8 ∼ 12
RTPr Probability of real-time transactions 0.2 ∼ 0.8
UpdatePr Probability of updating a record 0.2
MPL Number of concurrent transactions 640
ACNum Number of affinity cluster 8
ACLocality Probability of accessing local cluster 0.8
HotPr Probability of accessing hot set 0.8

each transaction, the transaction manager forwards lock request messages and
commit messages to the GLM. The disks are shared by every node.

The GLM has a role to perform the real-time concurrency control and the
cache coherency control. The real-time scheduler implements mixed concur-
rency control protocol [7] for real-time locking. The cache manager implements
ARIES/SD algorithm [9], which is a representative cache coherency algorithm
in the SD cluster.

Table 1 shows the simulation parameters. Many of their values are adopted
from [8,15]. Each disk has a FIFO queue of I/O requests and the disk access
time is drawn from a uniform distribution between 0.01 to 0.03 seconds. The
network is implemented as a FIFO server with 100 Mbps bandwidth. The CPU
cost to send or to receive a message is modeled as a FixedMsgInst parameter.

We model that the database is logically partitioned into several clusters. Each
database cluster has 10000 pages (40 Mbytes), and it is affiliated to a specific
AC. The number of ACs is set to 8. The transaction parameter of ACLocality
determines the probability that a transaction operation accesses a data item in its
affiliated database cluster. The HotPr parameter models “80-20 rule”, where 80%
of the references to the affiliated database cluster go to the 20% of the database
cluster (HotSize). The average number of records accessed by a transaction is
determined by a uniform distribution between 8 and 12. The parameter UpdatePr
represents the probability of updating a record. The processing associated with
each record, PerObjInst, is assumed 15000 instructions.

The RTPr fraction of transactions is real-time transactions. For a real-time
transaction, t, we determine its deadline (Dt) as follows [4]: Dt = At + SF ×
Et, where At and Et are the arrival time and estimated execution time of t,
respectively. SF is a slack factor that means tightness of deadlines. Its value is
drawn from a uniform distribution between 1.3 and 10. Et is computed as follows:

Priority Conscious Transaction Routing in a Real-Time Shared Disks Cluster 491

(a) Experiment 1 (b) Experiment 2(a) Experiment 1 (b) Experiment 2

Fig. 4. Experiment results

Et = NumRead t × (PerObjInst + DiskTime) + NumWritet × PerObjInst, where
NumRead t and NumWritet are the number of read and write operations of t,
respectively. Then the priority of a real-time transaction is defined as 1

Dt
.

The performance metric used in the experiments is a deadline miss ratio,
which is the percentage of input transactions that the system is unable to com-
plete before their deadlines.

4.2 Experiment Results

We first compare the performance of P-DACA with other algorithms by varying
the probability of real-time transactions (RTPr). Figure 4(a) shows the experi-
ment results when the input rate of each AC is equal. The system load is evenly
distributed to each node as a result.

As RTPr increases, the deadline miss ratio of every algorithm increases. This
is due to the heavy contention between real-time transactions at high RTPr.
There are more chances for a real-time transaction to be blocked or preempted
by other real-time transactions. P-DACA performs best at every setting of RTPr.
In particular, the performance improvement is substantial when RTPr is high.
P-DACA can prioritize real-time transactions with short deadlines, and thus
the deadline miss ratio is reduced. PRIO also considers the priority of real-time
transactions, but it performs worst. This is because PRIO suffers from frequent
inter-node cache invalidations. The lower buffer hit ratio of PRIO should delay
the average transaction execution time.

The next experiment determines the effect of system dynamics. Specifically,
we evaluate the performance when transactions in a specific AC are surged into
the system. Figure 4(b) shows the experiment results when RTPr is set to 0.5.
Since both NumNode and ACNum are set to 8 and MPL is set to 640, the steady
state load per each AC is 80 transactions. A load surge is expressed as a fraction
of its steady state load. For example, a load surge of 20% implies that the load
of each non-surge AC decreases about 20% (16 transactions) and the total sum
of additional load (112 transactions) goes to the surge AC.

492 K. Ohn, S. Lee, and H. Cho

Every algorithm performs worse as the load surge increases. This is because
at high load surge there are many transactions of the surge AC, and thus the
lock conflict ratio should increase. The performance difference of P-DACA and
DACA becomes marginal as the load surge increases. Their performance is nearly
same at the load surge of 100%. Note that P-DACA could outperform DACA by
allowing real-time transactions to be executed at non-affinity nodes. However, as
the load surge increases, both DACA and P-DACA allocate more affinity nodes
to the surge AC. The probability of executing at non-affinity node decreases as a
result. The performance of PRIO is also similar to that of P-DACA at the load
surge of 100%, since there is only one AC.

5 Concluding Remarks

We proposed a new transaction routing algorithm for the real-time SD cluster,
named P-DACA. The underlying idea of P-DACA is to execute a real-time trans-
action at its affinity node only if the deadline of the transaction would not be
missed. This enables P-DACA to achieve an optimal balance between priority
conscious routing and affinity-based routing. We also evaluated the performance
of P-DACA under a wide variety of real-time workloads. The performance re-
sults show that P-DACA outperforms the pure priority-based or affinity-based
algorithms when (a) the number of real-time transactions is large, or (b) the
system load is evenly distributed.

This work only examined part of overall problem space for the real-time
shared disks cluster, and many problems remain open. Developing a cache co-
herency algorithm for real-time transactions is part of our future work. We will
then examine the hybrid effect of real-time transaction routing and real-time
cache coherency algorithm. Another interesting direction of future work is a
performance study between shared disks cluster and other cluster architectures,
such as shared nothing, with real-time workloads.

Acknowledgements

This research was supported by Korean Ministry of Information and Communi-
cation under the University IT Research Center program supervised by the IITA
(Institute of Information Technology Assessment).

References

1. Cho, H.: Cache Coherency and Concurrency Control in a Multisystem Data Sharing
Environment. IEICE Trans. Information and Syst. E82-D (1999) 1042-1050

2. Cho, H., Park, J.: Maintaining Cache Coherency in a Multisystem Data Sharing
Environment. J. Syst. Architecture 45 (1998) 285-303

3. DB2 Universal Database for OS/390 and z/OS - Data Sharing: Planning and Ad-
ministration. IBM SC26-9935-01 (2001)

Priority Conscious Transaction Routing in a Real-Time Shared Disks Cluster 493

4. Harita, J., Carey, M., Livny, M.: Data Access Scheduling in Firm Real-Time
Database Systems. J. Real-Time Syst. 4 (1994) 203-241

5. Kanitkar, V., Delis, A.: Real-Time Processing in Client-Server Databases. IEEE
Trans. on Computers 51 (2002) 269-288

6. Lam, K-Y., Kuo, T-W. (ed.): Real-Time Database Systems: Architecture and Tech-
niques. Kluwer Academic Publishers (2000)

7. Lam, K-Y., Kuo, T-W., Lee, T.: Strategies for resolving inter-class data conflicts
in mixed real-time database systems. Journal of Syst. and Soft. 61 (2002) 1-14

8. Lee, S., Ohn, K., Cho, H.: Feasibility and Performance Study of a Shared Disks
Cluster for Real-Time Processing. Lecture Notes in Computer Science 3397 (2005)
518-527.

9. Mohan, C., Narang, I.: Recovery and Coherency Control Protocols for Fast Inter-
system Page Transfer and Fine-Granularity Locking in a Shared Disks Transaction
Environment. In: Proc. 17th Int. Conf. VLDB (1991) 193-207

10. Ohn, K., Cho, H.: Cache Conscious Dynamic Transaction Routing in a Shared
Disks Cluster. Lecture Notes in Computer Science 3045 (2004) 548-557

11. Vallath, M.: Oracle Real Application Clusters. Elsevier Digital Press (2004)
12. Schwetmann, H.: User’s Guide of CSIM18 Simulation Engine. Mesquite Software,

Inc. (1996)
13. Yousif, M.: Shared-Storage Clusters. Cluster Comp. 2 (1999) 249-257
14. Yu, P., Dan, A.: Performance Analysis Clustering on Transaction Processing Cou-

pling Architecture. IEEE Trans. Knowledge and Data Eng. 6 (1994) 764-786
15. Yu, P., Dan, A.: Performance Evaluation of Transaction Processing Coupling Ar-

chitectures for Handling System Dynamics. IEEE Trans. Parallel and Distributed
Syst. 5 (1994) 139-153

J. Cao, W. Nejdl, and M. Xu (Eds.): APPT 2005, LNCS 3756, pp. 494 – 504, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Probabilistic Continuous Update Scheme in Location
Dependent Continuous Queries

Song Han and Edward Chan

Department of Computer Science, City University of Hong Kong
han_song@cs.cityu.edu.hk, csedchan@cityu.edu.hk

Abstract. It is difficult to maintain the exact location of mobile objects due to the
limited resources in a mobile network. A consequence of this problem is that the
update cost for a location-dependent continuous query for moving objects can be
quite high using traditional methods. In this paper, we propose a probabilistic
update method to maintain the fidelity of the query results without incurring
significant update cost. Our scheme makes use of two types of updates, one to
keep the uncertainty of the mobile object’s position within a specific confidence
interval, and the other using probability that the moving object’s location
uncertainty will affect the query result as the threshold to decide whether an
update should be generated or not. The effectiveness of our approach is
demonstrated using a series of simulation experiments.

1 Introduction

Many mobile applications rely on the continuous tracking of mobile objects. However,
due to limitations in the bandwidth of wireless networks and battery power of the
mobile devices, it is difficult to maintain their exact location. This uncertainty can
affect the accuracy of answers to a location-dependent continuous query (LDCQ) on
these objects [1]. Researchers have proposed many dead-reckoning methods to handle
the trade-off between update cost and tracking accuracy. However, a major drawback
is that they do not attempt to relate the update frequency to the overall accuracy of the
query. In this paper, we propose a probabilistic continuous update scheme for LDCQs.
It makes use of two types of updates, a location update to keep the uncertainty of the
mobile object’s position within a specific confidence interval and a query accuracy
update which uses the probability that the moving object’s location uncertainty will
affect the result as the threshold to decide whether an update should be generated. We
also demonstrate how to calculate the predicted update time for mobile objects using
the historical motion information stored in database.

2 Related Work

Previous research on techniques for handling LDCQs are typically based on the
simplifying assumption that all moving objects know their locations and send their
updates to a central database server. This line of research focuses on how the accuracy
of the query can be assured given that excessive location updates consumes too much

 Probabilistic Continuous Update Scheme in Location Dependent Continuous Queries 495

bandwidth, and that due to disconnections an object may not be able to continuously
update its position even if ample bandwidth is available. To process LDCQs efficiently,
a Moving Objects Spatio-Temporal (MOST) model was proposed in [3]. In this model,
a location prediction function is defined as a dynamic attribute of a moving object to
facilitate the prediction of the future locations of the object. The locations of the
moving objects are tracked using some efficient dead-reckoning techniques, such as
plain dead-reckoning method in which an update is generated to refresh the location of
an object whenever the deviation of its current position is greater than a pre-defined
threshold. In [5] the authors go beyond the object tracking problem to deal with
efficient techniques in transmitting query results to clients.

Cheng et al. are the first researchers to deal with probabilistic methods in processing
moving object queries [6]. The uncertainty model proposed is used in our current work,
but we focus on formulating of an update strategy that will meet user fidelity
requirements without incurring high update cost. As far as we know, this is the first
paper to propose a probabilistic location update scheme for LDCQs.

3 System Model and Definitions

In this section we describe our system model for the support of LDCQ as well as some
key definitions. Figure 1 depicts the system architecture of a mobile computing system
that supports LDCQ. The system consists of a database server and a number of mobile
objects connected by a mobile network. The server maintains a mobile objects
database, which adopts the moving objects spatial-temporal (MOST) data model to
record the location information of mobile objects dynamically. As an example, we
consider a mobile object MO, whose last update is issued to the database at time t0. At
that time, the position of MO is <x0, y0>; the scalar of the speed vector and the direction
are v0 and 0 respectively. Then the record of MO in the database will be:

Mobile Object Update time Position Speed Direction

MO t0 <x0, y0> v0 0

If the next update from MO is at time t1, then at time t’ in the time period [t0, t1], the
position of MO <x’, y’> can be predicted as: x’ = x0 + v0 * cos 0 * (t’ – t0) and y’ = y0
+ v0 * sin 0 * (t’ – t0).

A mobile object in the system can be a client which issues a LDCQ with begin and
end times to the location database server. At the same time, it is also a potential query
target for a set of LDCQs issued by other mobile objects, in which case it generates
updates to report its current location and other motion information to the database
server as needed. Each update is associated with a time-stamp, which specifies the time
for which the current value is valid. The query is then evaluated according to the
records in the database and will be re-evaluated when there is any change in the
database state during the query period. The results, in the form of a set of tuples, are
collected and grouped by their begin times, each indicating the beginning of the time
period for which the object specified in the tuple satisfies the condition of the query.
Once the results are ready, the server may send the selected tuples to the client
according to a query result transmission approach adopted by the system.

496 S. Han and E. Chan

We can define the query object (OQ) as an object that issues a LDCQ Q and receives
the answer set S from the database server during the period [tbegin, tend] specified by Q.
For the same query Q, all other mobile objects are considered as moving objects (OM

i)
though not all will appear in S. Note that this distinction between query object and
moving objects applies only for the same query, because a query object in Qi may be
considered as a moving object in a different query Qj.

Fig. 1. The system architecture of a mobile computing system

3.1 Uncertainty Model

As the bandwidth of the wireless network is limited, it is prohibitively expensive to
update the location information of all mobile objects in real-time. This leads to a
discrepancy between the actual position of a mobile object and the position calculated
according to information in the server database. The uncertainty in the location of a
mobile object can be characterized as follows [7]:

Definition 1: An Uncertainty Region of mobile object MO at time t, U (p, t), is a
closed region such that MO can be found inside this region with a probability p.

Definition 2: Uncertainty Probability Density Function of a mobile object MO at
time t, f(x, y, t), is the probability density function of MO’s location at time t and

(,)

(, ,)
U p t

f x y t d x d y p=

In this paper we only consider range queries (RQ). An RQ returns a set of tuples in
the form of (OM

i, ti
begin, ti

end), where [ti
begin, ti

end] is the period during which OM
i will be

inside the query boundary and satisfy the RQ. The relationship between a query
boundary (QB) and the query is as follows: if OQ issues a RQ at time t0, QB (t0) for Q is
the circle whose origin is the position of OQ at time t0, and the radius R is specified by
Q. In practice it is the movement of the QB that we are interested in.

3.2 Fidelity

In this section, we present the definition of the fidelity of a query for deviation based
range query, continuous range query and probabilistic range query. Fidelity is a key
user requirement and as well as a major performance metric in our simulation
experiments to be described in a later section.

Location Database

Mobile Objects Wireless
Network

Database

Query
Processor

Query Results

 Probabilistic Continuous Update Scheme in Location Dependent Continuous Queries 497

3.2.1 Fidelity of the Deviation-Based Range Query
Fidelity for deviation-based range query measures the deviation of the results in the
database from the correct results for a range query Q. Its definition is based on the
concepts of false positives and false negatives defined below [7]:

The false positives ratio of Q at time t, f+ (Q, t) and the false negatives ratio of Q at
time t, f - (Q, t) are defined below respectively:

|),(|

|),(),(|
),(

tQS

tQStQS
tQf

dbase

idealdbase −=+
|),(|

|),(),(|
),(

tQS

tQStQS
tQf

ideal

dbaseideal −
=−

where Sdbase (Q, t) is the result set of Q at time t, evaluated using the moving object
database; Sideal (Q, t) is the result set of Q at time t, evaluated using actual location
information. f+ (Q, t) measures the fraction of objects wrongly included into the answer
of Q and f - (Q, t) measures the portion of objects that are missing in the correct answer
of Q.

Definition 3: Fidelity in the result of a deviation-based range query Q is maintained at
time t if E (t) = f+ (Q, t) + f - (Q, t) < where E (t) is the error ratio of Q at time t and ,
the Fidelity Requirement, is a real-valued system parameter for Q.

3.2.2 Fidelity of Continuous Range Query
The fidelity defined above is only for Q at time t. For a continuous query Q, the query
is active during its activation period [tbegin, tend], we need to re-define the definition of
fidelity for a deviation based query to capture the overall fidelity for the full duration of
the query.

Definition 4: The overall fidelity of continuous query Q over its active period is:

()
_ ()

end

begin

t

t

end begin

F t dt
overall fidelity Q

t t
=

−

 and <
=

otherwise

tE
tF

1

)(0
)(

ε

3.2.3 Fidelity of the Probabilistic Range Query
In a probabilistic range query, each moving object is associated with a probability that
the object will satisfy the particular query. The previous definitions for f+ (Q, t) and
f - (Q, t) can be refined for probabilistic range query. First we define:

SIntersection (Q, t) = Sdbase (Q, t) ^ Sideal (Q, t)
SDB (Q, t) = Sdbase (Q, t) - SIntersection (Q, t)
SI(Q, t) = Sideal (Q, t) - SIntersection (Q, t)

We assume the cardinality of SIntersection (Q, t), SDB (Q, t) and SI(Q, t) are l(Q, t),
m(Q, t) and n(Q, t) respectively. Each moving object in Sdbase (Q, t) has a relative
probability pi that it will satisfy the continuous query Q at time t, and for Sideal (Q, t), the
relative probability pi is 1. Now we can define:

||

|))1((|

),(),(),(

1

),(

1

),(

1
sec

+

=

==+

+−
= tQmtQl

k

k
dbase

tQm

j

j
DB

tQl

i

i
tionInter

p

pp

tQf
,

(,)

sec
1

| ((1)) (,) |
(,)

| (,) (,) |

l Q t
i
In ter tion

i

p n Q t
f Q t

l Q t n Q t
− =

− +
=

+

498 S. Han and E. Chan

where pi
Intersection is the probability for the ith object to be in SIntersection (Q, t), pj

DB is the
probability for the jth object to be in SDB (Q, t) and pk

dbase is the probability for the kth
object to be in Sdbase (Q, t).

4 The Probabilistic Continuous Update Scheme

The Probabilistic Continuous Update Scheme (PCU) is used for generating location
updates, and aims at maintaining high fidelity with low location update costs. In
traditional time-based or distance-based schemes, an object is assigned a fixed time or
distance threshold and will update once the threshold is exceeded. However, in PCU,
two kinds of updates are needed to ensure that the required fidelity is maintained,
namely Object Location Update and Query Accuracy Update.

Definition 5: Object Location Update (OLU) is the update issued by a query object or
moving object to guarantee that at time t, its position will not be outside its uncertainty
region U (p, t).

Definition 6: Query Accuracy Update (QAU) is the update issued only by the moving
object when the change of the moving object’s uncertainty region will affect the answer
set for a certain Q with a probability p which is specified by the user.

Fig. 2. Example of OLU Fig. 3. Example of QAU

In Figure 2, at time t2, the actual position of the moving object is outside the
uncertainty region U (p, t2) due to a change in its trajectory, so an OLU will be issued.
In Figure 3, at time t2, though U (p, t2) is not exceeded, the probability that it will cross
the query boundary exceeds p, so a QAU will be issued to guarantee the accuracy of the
query result. It can be seen that a QAU is typically invoked as the moving object
crosses the query boundary, where even minor movement may determine whether it
satisfy Q and hence affect the accuracy of the query answer.

To facilitate discussion of update mechanism, we focus on two groups of moving
objects. The first group, the potential set (PS) of moving objects, is the set of moving
objects which have the chance to satisfy the query conditions during the entire query
duration for a certain query. To determine which objects belong to PS, we simply
consider the worst case in which the moving object and the query object are moving

 Probabilistic Continuous Update Scheme in Location Dependent Continuous Queries 499

face to face at maximum speed. If the moving object has no chance of hitting the query
boundary over the duration of the query, it will be excluded. The second group of
moving objects, called the query boundary set (QBS), is the set of moving objects
whose uncertainty region U (p, t) has an intersection with the query boundary. All other
moving objects need not be considered at that time because the uncertainty in their
location cannot affect the accuracy of the answer to the query. Figure 5 shows two
moving objects in the query boundary set at time t.

Fig. 4. Potential Set for RQ Fig. 5. Query Boundary Set at time t for RQ

Pruning Phase: in this phase, for a certain Q, system will execute following steps:

1. Query object sends its motion information and query parameters to the database.
2. Database calculates Q’s potential set and broadcasts a message to all moving objects

in the set requesting them to issue the OLU in the duration of Q.
3. Based on motion information of the query object and uncertainty region for

each moving object in the potential set, the database decides their initial QAU
time.

Refresh Phase: in this stage, for a certain Q, the system will execute two main steps:

1. If database receives an OLU from a moving object in Q’s potential set, it will
re-calculate the new QAU time for that moving object, and if necessary, other
objects involved in the query.

2. If a moving object is predicted to issue a QAU, database will send a message to
it to request an update on its position to guarantee the accuracy of the query
result.

In the following sections, we will show how to evaluate PS, OLU and QAU and the
latest update records in database for OQ and OM are listed in Table 1.

4.1 Evaluation of the Potential Set

In Figure 6, R is the query boundary, and Vmax is the maximum speed, and other
notations are the same as those defined above.

500 S. Han and E. Chan

S is the set of all moving objects in the
database

 X
for i 1 to |S| do

2 2

max

() ()

2

i i
M Q M Q

i

x x y y
T

V

R

 If (Ti < tend) then X X OM
i

Return X

Fig. 6. Evaluation of Potential Set

Table 1. Latest update records for OQ
and OM

Object OQ OM

Update
Time

tQ tM

Position <xQ, yQ> <xM, yM>

Speed vQ vM

Direction

4.2 Generation of OLU and QAU

4.2.1 Generation of OLU
Because the calculation of OLU is independent and same for moving objects and query
objects, we just need to decide at time t, whether an OLU for a mobile object MO will be
issued to the database. We assume the uncertainty probability density function for the
position of MO is normally distributed and the expectation of the distribution is the
predicted position of MO at time t, the variances of the distribution are parameters specified
by the user. Suppose the last update (either OLU or QAU) of MO is at time t0, and at that
time, the position of MO is <x0, y0> and the scalar and direction of the speed is v and
respectively. The predicted position at time t is <xP, yP> (the calculation is demonstrated in
Section 3). At time t, the position of MO is denoted by <X, Y>, where X and Y are two
independent random variables and they satisfy the normal distribution. Then we have X ~
N (xP, X), Y ~ N (yP, Y) where X and Y are system parameters. MO will issue an update if
its actual position at time t exceeds the predicted position’s confidence interval c and we
can induce that the c confidence intervals of X and Y are respectively:

(xP –u (1-c)/2 * X, xP –u (1-c)/2 * X) and (yP –u (1-c)/2 * y, y
P –u (1-c)/2 * y)

Suppose at time t, the actual position of O is <x, y>. MO will not issue OLU if

x (xP –u (1-c)/2 * X, xP –u (1-c)/2 * X) and y (yP –u (1-c)/2 * y, y
P –u (1-c)/2 * y).

4.2.2 Generation of QAU
At time t, if moving object OM will cross the query boundary of the query object OQ
with a probability which is bigger than the threshold probability p, a control message
will be sent by the central server to OM to ask it generate a QAU immediately to the
server. Since in a range query, all moving objects are independent, we will just
consider the calculation between OM and OQ. Assume the positions of OM and OQ
satisfy normal distributions, at time t (t >= tQ, t >= tM), the position of OM is <XM, YM>
and that of OQ is <XQ, YQ>, where XM, YM, XQ, YQ are independent random variables and

XM ~ N (xM
P, x

2),YM ~ N (yM
P, y

2), XQ ~ N (xQ
P, x

’2), YQ ~ N (yQ
P, y

’2)
xM

P = xM + vM * (t-tM) * cos(), yM
P = yM + vM * (t-tM) * sin()

 Probabilistic Continuous Update Scheme in Location Dependent Continuous Queries 501

xQ
P = xQ + vQ * (t-tQ) * cos(), yQ

P = yQ + vQ * (t-tQ) * sin()

Now we consider the relative movement of OM to OQ, and the relative position is
<X’, Y’>. Since X’ and Y’ are independent random variables, they satisfy:

X’ = XM -XQ => X’ ~ N (xM
P-xQ

P, x
2+ x

’2; Y’ = YM-YQ => Y’ ~ N (yM
P-yQ

P, y
2 + y

’2)

Based on the distribution of the X’ and Y’, now we can calculate the probability PQB
that the OM will cross the query boundary at time t. For simplicity, we set:

μ1 = xM
P - xQ

P, μ2 = yM
P - yQ

P, 1
2 = x

2 + x
’2, 2

2 = y
2 + y

’2

And the probability can be calculated as:

Ω

−
+

−
−

= ''
)()(

2

1

21

2

2

2
'

2

1

1
'

2

1
dYdXeP

YX

QB
σ

μ
σ

μ

σπσ

 is the integration area and is different depending on whether OM is moving out or into
the query boundary. Suppose the confidence interval of OQ is q and the confidence
interval of is r, then:

XM (xM
P-u (1-r)/2 * X, xM

P+u (1-r)/2 * X), YM (yM
P-u (1-r)/2 * Y, yM

P+u (1-r)/2 * Y)
XQ (xQ

P-u (1-q)/2 * X
’, xQ

P+u (1-q)/2 * X
’), YQ (yQ

P-u (1-q)/2 * Y
’, yQ

P+u (1-q)/2 * Y
’)

 Fig. 7. Examples of the integration areas Fig. 8. Calculation Period Case 2

And we can deduce:

X’ (xM
P - u (1-r)/2 * X – (xQ

P + u (1-q)/2 * X
’), xM

P + u (1-r)/2 * X – (xQ
P –u (1-q)/2 * X

’))
Y’ (yM

P - u (1-r)/2 * Y– (yQ
P + u (1-q)/2 * Y

’), yM
P + u (1-r)/2 * Y

 -(yQ
P –u (1-q)/2 * Y

’))

Two examples of the integration area are shown in Figure 7.
After demonstrating how to calculate the probability that OM will enter or leave the

query boundary, now we will describe how to predict when to generate the next QAU
for OM. Suppose at time t, the expected distance between OQ and OM is a, the query
boundary is R; the relative speed and direction are vR and respectively. As it is
difficult to calculate the next update time tP directly, we need to first get the interval

502 S. Han and E. Chan

which bounds tP, we call it the calculation period. Based on different relationships
among a, b, R, vR and , the calculation period [t begin, t end] can be evaluated in the
following table Case 2 is demonstrated in Figure 8. In case 2, there are two calculation
periods [t begin, t end] and [t’ begin, t’ end]. This is because OM’s uncertain region will
intersect with the query boundary twice. Other cases can be explained along the same
line. Based on the information of the calculation period, dichotomy is used to get the
next update time tP.

5 Simulation Results and Performance Analysis

In this section we evaluate the performance of our proposed probabilistic continuous
update scheme using a number of simulation experiments. In particular we compare
our scheme with a distance-based update scheme (DBU) where the moving object will
issue an update to refresh its location information if the deviation of its current position
is greater than the predicted value by a pre-defined threshold. We use the random
waypoint mobility model [2] in our simulation. The continuous query length is set to

Table 2. Evaluation of Calculation Period

2 2 2

2 2 2

2 2 2

2 2 2

' 2 2 2

'

cos 0 (cos 0 () sin) (1)
(cos () sin) /

(cos () sin) /
cos 0 () sin

(cos () sin) /

(co

begin

R
end

begin

R
end

R
begin

end

t now
or and R b a

t a b R a v

t now
R b a b R

t a R b a v
and R b a

t a R b a v

t a

θ θ θ
θ θ

θ θ
θ θ

θ θ

=
≥ < − <

= − + + −

=
− ≤ ≤ +

= − − − −
< − ≥

= − + − −

= − 2 2 2

2 2 2

2 2 2

2 2 2

2 2

2 2 2

(2 *)

s () sin) /

cos 0 (cos 0 () sin) (3)

(cos () sin) /
() sin

(cos () s
cos 0 () sin

R

begin

end

R
begin

end

b R a v

t
or and b R a

t

t a b R a v
R b aa b R

t a R b a
and b R a

θ θ

θ θ θ

θ θ
θ

θ
θ θ

+ + −

= ∞
> ≤ + ≤

= ∞

= − − + −
− ≥> +

= − − − −
< + >

2

2 2 2

2 2 2

2 2 2

2 2 2

2 2 2

(4)
in) /

(cos () sin) /
() sin (5)

(cos () sin) /

(cos () sin) /
(6

(cos () sin) /

R

R
begin

R
end

R
begin

R
end

v

t a b R a v
R b a

t a b R a v

t a R b a v
a R b

t a b R a v

θ

θ θ
θ

θ θ

θ θ

θ θ

= − − + −
− <

= − + + −

= − + − −
< −

= − + + −
)

1000 sec, query boundary is 200 m. 100 moving objects roam a 1000x1000m area.
Fidelity requirement and confidence level are both 95%. Speed is uniformly
distributed between 12 and 60 km.

In Figure 9, we vary the object location variance (OLV) to demonstrate its effect on
the fidelity of the query result. We find that our scheme can maintain the fidelity
requirement while the fidelity calculated using the distance-based update scheme drops
below the fidelity requirement quickly. In Figure 10 and Figure 11, we compare the
number of updates in the system between PCU and DBU scheme. There are two types
of updates in PCU: OLU and QAU. Figure 10 shows that OLU is around 5% less than
the update number under DBU, this is because QAU in our scheme also constraint the
uncertainty of the object location and decrease the number of OLU. Figure 11 shows

 Probabilistic Continuous Update Scheme in Location Dependent Continuous Queries 503

that the total number of update of our scheme is slightly larger than DBU. This is a
tradeoff for maintaining the fidelity of the query result which we think is worthwhile.
In Figure 12, based on the same update number, it can be seen that PCU not only meets
the fidelity requirement but also consistently provides better fidelity.

6 Conclusion

In this paper, we proposed a probabilistic continuous update scheme that goes beyond
traditional location updates schemes which attempt only to maintain the uncertainty of
the moving object’s location to a prescribed value by trying to link the update with
required fidelity in the answer to a LDCQ. Based on simulation experiments, it is
shown to outperform a simple deviation based location update method for probabilistic
range queries. We are currently studying the effectiveness of this scheme for other
mobility models and will report the results in a future paper.

 Fig. 9. Fidelity vs. Object Location Variance Fig. 10. Number of updates vs. OLV

 Fig. 11. Total number of updates vs. OLV Fig. 12. Fidelity vs. Number of Updates

504 S. Han and E. Chan

References

[1] M. H. Dunham and V. Kumar, Location Dependent Data and its Management in Mobile
Database, Database and Expert Systems Applications, 1998, Proc. 9h International
Workshop on Database and Expert Systems Applications, 1998.

[2] D. Johnson and D. Maltz, Dynamic Source Routing in Ad Hoc Wireless Networks. Mobile
Computing (ed. T. Imelinsky and H. Korth), Kluwer Academic Publishers, 1996.

[3] A. P. Sistla, O. Wolfson, S. Chamberlain, and S. Dao, Querying the Uncertain Position of
Moving Objects, Temporal Database – Research and Practice Lecture Notes in Computer
Science 1399, 1998.

[4] O. Wolfson, S. Chamberlain, S. Dao, L. Jiang and G. Mendez, Cost and Imprecision in
Modeling the Position of Moving Objects, Proc. 14th International Conference on Data
Engineering, 1998.

[5] H. G. Gök and Ö. Ulusoy, Transmission of continuous query results in mobile computing
systems, Information Science, vol. 125, no.1 – 4, pp. 37 – 63, 2000.

[6] Reynold Cheng, Dmitri V. Kalashnikov, and Sunil Prabhakar, Querying imprecise data in
moving object environments, IEEE Trans. on Knowledge and Data Engineering, Vol. 16(7),
July 2004.

[7] Jinfeng Ni and C. V. Ravishankar, Probabilistic Spatial Database Operations, Proc. 8th Intl.
Symposium on Spatial and Temporal Databases (SSTD), 2003.

J. Cao, W. Nejdl, and M. Xu (Eds.): APPT 2005, LNCS 3756, pp. 505 – 514, 2005.
© Springer-Verlag Berlin Heidelberg 2005

SIP-Based Adaptive Multimedia Transmissions for
Wired and Wireless Networks*

Weijia Jia and Man-Ching Yuen

Department of Computer Science, City University of Hong Kong,
83 Tat Chee Avenue, Kowloon, Hong Kong, SAR China

itjia@cityu.edu.hk

Abstract. SIP (Session Initiation Protocol) is a signaling protocol standardized
by IETF, aiming to manage the multimedia transmission sessions among differ-
ent parties. This paper illustrates an adaptive multimedia transmission system
for wired and wireless networks based on SIP with protocol selection mecha-
nism for a certain level of QoS guarantee. In our system, SIP is not only used
for call setup signaling but also for carrying the information in the protocol se-
lection. Using Agent Server, our system can select the most suitable protocol
for adapting different situations intelligently during the connections and data
buffering service is also provided for various media data flows between the end
users with acceptable QoS level without any interruption and disconnection re-
gardless of types of devices, platforms and protocols used.

1 Introduction

Mobile multimedia transmissions such as online movies, live TV, network radio and
audiovisual conversation require good quality of service (QoS) anytime and
anywhere. However, it is difficult to attain the targets over the integrated wired -
wireless networks because the wireless devices typically have the limited resources of
processing power or memory. Little work is done to enable dynamic multimedia
communication, especially end-to-end multimedia transmission across wired and
wireless networks. Compared with wired Internet, there are several obstacles for end-
to-end wireless multimedia transmission: (1) Low capability and limited resource of
terminals: A wireless terminal typically has a small display with low resolution, slow
processor and small memory space. However, multimedia applications usually require
high capability of graphic processing, large size of memory space and also a big
screen to display pictures and videos. Obviously, wireless terminals can only support
limited multimedia applications. (2) Diversity of wireless terminals: Wireless termi-
nals often support only a limited set of data formats due to their low capabilities and
limited resources. When two wireless terminals of different types communicate with
each other, their supported data formats may not be compatible and thus communica-
tion cannot succeed. Although it is possible that the data sent from the sender can be

* This effort is partially sponsored by City University of Hong Kong strategic grants 7001587,

and 7001709 and the National Basic Research Program (973) MOST of China under Grant
No. 2003CB317003.

W. Jia and M.-C. Yuen

506

converted into the format supported by the receiver, these conversion often costs
much and is not practical or acceptable to resource-limited wireless terminals. (3)
Low bandwidth of wireless networks: Due to low capability of wireless devices, mul-
timedia data streams created by wireless devices can not be compressed very much
and require high bit rate for real-time transmission. Therefore, it is difficult to develop
dynamic real-time multimedia communication protocols for audiovisual conversation
and videoconferencing. (4) Fluctuated bandwidth and blockouts of wireless connec-
tions: Multimedia data transmission, especially real-time transmission, requires steady
high bit rate and is intolerant of package delay. On the contrary, wireless networks
have fluctuated bandwidth and high probability of traffic congestion. Usually, the
transmission time of multimedia data in a session is quite long, but the blackout of
wireless connection may cause frequent session reconnection and data retransmission.

SIP (Session Initialization Protocol) [12] is a signaling protocol of Application
Layer which is standardized by IETF (Internet Engineering Task Force), and it aims
to manage multimedia sessions among different parties. The principle of SIP is to set
up sessions or associations between two or more end users. SIP is not used for trans-
mitting data, but sessions initiated with SIP can exchange various types of media data
using appropriate protocols such as RTP, RSTP and so on. It can carry out bi-
directional authentication and capability negotiation. SIP is simple and extensible. It
accepts complementary information inserted as SIP payload for other applications.
Currently, SIP is able to set up a call for a multimedia session of complex require-
ments by carrying more detailed information using protocols such as the Session De-
scription Protocol (SDP) [13].

This paper proposes an adaptive protocol selection mechanism for integrated
wired-wireless multimedia transmission mechanism using SIP to maintain a certain
level of QoS guarantees. SIP is not only used for call setup signaling, but also carries
information for protocol selection. SIP usually carries an SDP packet describing an
audio or video session, indicating supported communication protocols, end terminals
capabilities, QoS requirements of applications and session ID which is used for user
identification of multi-parties communication. Besides selecting the most suitable
protocol for adapting different situations intelligently during connection, data buffer-
ing service is provided with Agent Server such that media data flows must transmit
between end users. In this way, the end users can communicate among the others at
their best acceptable QoS level regardless of types of devices, platforms and protocols
they are using.

The rest of this paper is organized as follows. Section 2 introduces some related
works. Section 3, describes the adaptive protocol selection mechanism. Section 4 pre-
sents the multimedia transmission connections on integrated wired and wireless net-
works by using SIP technology. Section 5 concludes the paper.

2 Related Work

WMSTFP [2] is an end-to-end TCP-friendly multimedia streaming protocol, which is
used to detect the status of the wired and wireless parties in the wireless Internet. By
accurately distinguishing the packet losses due to transmission errors from the con-
gestive losses and smoothing out the pathologic round-trip-time values caused by the

SIP-Based Adaptive Multimedia Transmissions for Wired and Wireless Networks

507

highly dynamic wireless environment, higher throughput in wireless Internet can be
achieved and transmission rate can be adjusted in a smooth and TCP-friendly manner.

UPnP™ Forum [3] is an industry initiative designed to enable simple and robust
connectivity among stand-alone devices and PCs from different vendors. The forum
members are engaged in producing standards to describe device specifications usually
in XML format. iMobile [4] is a proxy-based mobile service platform designed to
provide personalized services. iMobile provides a modular architecture that supports
accesses from various mobile devices to various information spaces. However iMo-
bile does not support communications between devices. Transcoding service plays a
very important roll in the design of wireless multimedia system [5-8]. A video
transcoding technology using intermediate data processor is proposed in [5] to en-
hance the quality of transcoded data. A video transcoding proxy for 3G wireless mo-
bile Internet access and a video transcoding gateway for wireless access are proposed
in [6] and [7] respectively. End-to-End Wireless Multimedia Transmission system
(EEWMT) is developed and designed to transcode end-to-end data flows [8].

A lot of other related works have been engaged in wireless access of multimedia
data, but most of them just consider data transmissions between wireless terminals
and servers. In our proposed system, data transmission between wireless terminals is
also considered using Agent Server as the intermediate party to provide a certain level
of QoS guarantees. Moreover, to maintain the best acceptable QoS level, SIP is used
for both call setup signaling and carrying information for processing an adaptive pro-
tocol mechanism, such that the most suitable transmission protocol is selected for
transmission of various multimedia data flow adaptively during connection without
interruption or disconnection.

3 Adaptive Protocol Selection

The adaptive protocol selection mechanism is used to ease the balance of transmission
performance and communication interoperability among various clients and servers in
wired networks and wireless mobile networks. We briefly describe its mechanism.
Based on features and popularities of different existing protocols, the transmission
protocols used in our system are classified as:

TCP (Transmission Control Protocol) or UDP (User Datagram Protocol),

1. Pure HTTP (HyperText Transfer Protocol) [10], and
2. A web services protocol, SOAP (Simple Object Access Protocol).

TCP/UDP may be used to provide efficient and fast data transmission. Especially,
it enables real-time data transmission using UDP with the support of certain protocols
like RTP (Real Time Protocol). However, it is difficult to implement using TCP/UDP
because they may not be interpretable between different OS platforms. As a result,
TCP/UDP implementations in a specific OS platform may not be reused in another
OS platform. Pure HTTP enables communications across different platforms, and also
allows communications penetrating some firewalls. However, it is not flexible for de-
velopers to support new services due to its limited number of services and commands
provided. As web services protocols work based on XML [11], they have similar
functionalities as HTTP. The only difference is that the web services protocols can

W. Jia and M.-C. Yuen

508

provide a consistent and simple interface for developers to support connection ser-
vices in a uniform way. Since both pure HTTP and web services protocols are used in
the application layer, their data transmission rate is low and may not be suitable for
the real-time multimedia transmission.

As these popular transmission protocols have different advantages and disadvan-
tages, they are used under different situations. Table 1 shows performance compari-
son of different natures of data with four types of network protocols (TCP, UDP,
HTTP and web services). There are many ways to select the most suitable protocol for
different situations. One of the examples is to apply fuzzy membership functions [16].
There is a unique membership function associated with each input parameter. The
membership functions associate with weighting factors with each input and the effec-
tive rules. These weighting factors determine the degree of influence or degree of
membership (DOM) for each active rule. By computing the logical product of the
membership weights for each active rule, a set of fuzzy output response magnitudes
are produced. All that remains is to combine and specify these output responses.

Table 1. Performance Comparison of Different Natures of Data with Four Types of Network
Protocols (TCP, UDP, pure HTTP and web services)

 TCP/IP UDP/IP Pure HTTP Web Services

Non-
real
time

Suitable
(Fast data

transmission
rate)

Suitable
(Fast data

transmission
rate)

Most suitable
(relatively slow

data transmission
rate)

Most suitable
(relatively slow

data transmission
rate)

Text
(Data
size:
very

small) Real
time

Suitable
(Fast data

transmission
rate)

Suitable
(Fast data

transmission
rate)

Most suitable
(relatively slow

data transmission
rate)

Most suitable
(relatively low data
transmission rate)

Non-
real
time

Suitable
(Fast data

transmission
rate)

Suitable
(Fast data

transmission
rate)

Most suitable
(relatively low data
transmission rate)

Most suitable
(relatively low data
transmission rate)

Audio
(Data
size:

small)
Real
time

Suitable
(Fast data

transmission
rate)

Suitable
(Fast data

transmission
rate)

Most suitable
(relatively low data
transmission rate)

Most suitable
(relatively low data
transmission rate)

Non-
real
time

Suitable
(Fast data

transmission
rate)

Suitable
(Fast data

transmission
rate)

Most suitable
(relatively low data
transmission rate)

Most suitable
(relatively low data
transmission rate)

Image
(Data
size:

medium
or large) Real

time
Suitable

(Fast data
transmission

rate)

Suitable
(Fast data

transmission
rate)

Most suitable
(relatively low data
transmission rate)

Most suitable
(relatively low data
transmission rate)

Non-
real
time

Suitable
(require more

network
resource)

Most suitable
(Fast data

transmission
rate)

Not suitable
(Very low data

transmission rate)

Not suitable
(Very low data

transmission rate)

Video
(Data
size:

large or
very

large)

Real
time

Suitable
(require more

network
resource)

Most suitable
(Fast data

transmission
rate)

Not suitable
(Very low data

transmission rate)

Not suitable
(Very low data

transmission rate)

SIP-Based Adaptive Multimedia Transmissions for Wired and Wireless Networks

509

To effectively communicate among the different platforms with varies devices, our
adaptive protocol selection mechanism is designed possessing the following function-
alities: (1) Allowing different kinds of client devices to communicate in the integrated
wired and wireless networks while the communication performance is monitored at an
acceptable level most of the time; (2) Allowing clients to dynamically select a suitable
protocol for adapting different situations intelligently without any interruption and
disconnection; (3) Providing consistent APIs for different protocols thus reducing de-
velopment overhead of service modules regardless of platforms and devices, and (4)
Providing simple APIs for different service modules so that the APIs are reusable and
extensible for supporting new services.

We here briefly describe the implementation and design of the adaptive protocol
selection system for handling the interactive communications among integrated net-
works and various client devices. The design issues are categorized into two parts:
connection establishment and transmission protocol selection below:

Connection Establishment consists of two major steps: (1) Initialization of com-
munication session between client devices through agent servers. A set of agent serv-
ers in the networks are responsible to provide data buffering and QoS guaranteed ser-
vices. All communications between end users must pass through the agent servers.
The communication session between agent server and client device can be initialized
using SIP for agent server or client device. By considering different protocols
supported by client devices and characteristics of transmission sessions, the way of
communication between agent servers and client devices is defined during the
communication initialization stage (see Section 4). (2) Notification of both protocol
and platform of all communication parties to agent servers. Whenever communication
is initialized either by agent servers or client devices, agent servers have to know the
type of protocol of client devices, platform of client devices and QoS requirements of
applications. It is because negotiations between agent servers and client devices may
be required for having services of the best performance. It is also useful for selecting
the most adequate transmission protocol in later step.

Transmission Protocol Selection is defined in two respects: (1) Common APIs
(Application Program Interfaces) of supported transmission protocols. To support
most of the services provided by transmission protocols, we have devised the com-
mon APIs of the transmission protocols available in agent servers. Each service mod-
ule has a set of APIs for providing its service to client devices where the APIs are able
to support different protocols, platforms and client devices. (2) Selection of a suitable
transmission protocol in different situations. There exist a number of data type, such
as non real-time text data and real-time video data. To balance the performance
(user’s point of view) and system overhead (developer’s point of view), different
transmission protocols are suitable for different data transmissions. To select the most
suitable transmission protocol according to different situations, we have to define data
transmission, the QoS requirements of session, the available protocols supported by
client devices and the protocols supported by agent servers. Once agent servers have
the information, they determine the most adequate transmission protocol for specific
data transmission and inform client devices by providing an appropriate data trans-
mission process using the most adequate protocol. Our system uses SIP to select the
most suitable transmission protocol adaptively depending on the nature of media
flows and the transmission capability [9] as detailed in next section.

W. Jia and M.-C. Yuen

510

4 SIP Based Multimedia Transmission Control

Our system is designed to provide services to end-to-end multimedia transmission, in-
cluding both real time and non-real time transmission, with certain level of QoS guar-
antees. Fig. 1 shows the framework of our system for wired and wireless networks.
Four main parts of our system are User Agent in client device, SIP Proxy Server, Da-
tabase Server and Agent Server. We here illustrate them as below:

1. User agents (UA) are SIP endpoints that send or receive signaling messages re-
siding on client devices and help client devices to communicate with servers. UA
collect device profile of client devices, capabilities of client devices and QoS re-
quirements of sessions to be requested, and then sends these information to the
servers. UA also convert user commands and application signaling into formats
that can be read by servers and also translate server responses for users and ap-
plications. Device profile is used to describe the technical specifications and ca-
pabilities of the device such as multimedia processing capability and network
transmission capability. Some other device information such as manufacturer
name and device model are also presented in the profile. Device profile must be
in a universal format so that the servers are able to recognize all kinds of devices
and provide appropriate services to them. The device profile is given as a XML
formatted file listing device specifications and capabilities. Fig. 2 presents a sim-
ple example of device profile.

2. SIP proxy servers store the information of all the major SIP proxy servers and
provide DNS services. Each major SIP proxy server further connects to a set of
proxy servers within its network domain. The control data flow through SIP
proxy servers, while all media data in communication between end users flow
through agent servers only.

3. Database servers store the updated information of all agent servers in their do-
mains and respond to the requests from either SIP proxy servers or agent servers.
Examples of the information in database server are user profiles and device pro-
files.

4. Agent servers are application-layer routers and receive call requests from UA or
another proxy, try to locate the receivers via the selected route paths defined by
SIP initially, and forward the requests to another location until the given address
is reached. They execute the adaptive protocol selection mechanism and keep
track the change of situations during data transmission. To achieve the best level
of QoS guarantees, an agent server provides many categories of services to client
devices: the data buffering service prevents transmitters retransfer lost data due
to network congestion or disconnection and the data transcoding service helps the
heterogeneous terminals to communicate with each other seamlessly. All data
flows in communications must go through agent servers until receiving terminals
are reached.

Basically, SIP is a control protocol for establishing media sessions and it is used
for both call setup signaling and session transmission for adaptive protocol selection
mechanism. Five functionalities that support the establishment and termination of
multimedia communications, for the adaptive protocol selection mechanism, are
called:

SIP-Based Adaptive Multimedia Transmissions for Wired and Wireless Networks

511

1. User location detection determinates the end system to be used for communication.
2. User capability detection defines the media and media parameters to be used.
3. User availability detection decides the willingness of the called party to engage

in communications.
4. Call setup establishes call parameters at both called and calling party during

“ringing”.
5. Call handling handles many management operations including transfer and ter-

mination of calls.

The sessions’ addresses to be established are carried out in the body of the application
layer message. It has two types of messages: request and response. SIP messages
carry the descriptions of media sessions in their payload/header using Session De-
scription Protocol (SDP) [13]. Some additional mechanism is needed for payload
modification is defined for the servers below:

1. INVITE: This message is used to invite another participant to a session.
2. ACK: This message confirms session establishment.
3. BYE: This message is used to close a session.
4. CANCEL: This message cancels a pending INVITE message.
5. REGISTER: This message is used to register the current address of a potential

participant.
6. RESPONSE: This message is used to give response to request and indicates suc-

cess or failures and progress updates.

Fig. 1. Framework of SIP based end-to-exnd multimedia transmission for integrated
wired and wireless networks

W. Jia and M.-C. Yuen

512

User

Agent

(Client 1)

Agent

Server

(Client 1)

Database

Server

(Client 1)

Database

Server

(Client 2)

Agent

Server

(Client 2)

SIP Proxy

Server

(Client 2)

User

Agent

(Client 2)

1. SIP INVITE
2. Request

3. Reply
4. SIP INVITE

5. SIP

INVITE
6. SIP OK

7. SIP OK

8. SIP OK
9. ACK

10. Connection request
11. Connection request

12. Connection request

13. Connection reply
14. Connection reply

15. Connection reply

16. Media flow

SIP Proxy

Server

(Client 1)

Fig. 2. Signaling scenario for connection establishment in call setup stage

To establish a connection session, a UA sends a SIP INVITE request to SIP proxy
server. As mentioned before, the SIP proxy server only stores the information of all
other SIP proxy servers and provides DNS services. SIP proxy server sends a request
to database server which searches the information of agent servers among the end
users. Once the connection path is established, the media data flows through agent
servers between end users directly rather than through proxy servers. During commu-
nication, agent servers keep track the status of connection, and deploy the adaptive
protocol selection mechanism. During the connection, the agent server is responsible
to select the most suitable transmission protocol for efficient communications. Note
that for agent server, each communication protocol will reserve a specified port which
is randomly generated. Figs 2-4 illustrate the adaptive connection establishment sig-
naling protocols used in our system for call setup stage, change of transmission proto-
cols or connection path between end users.

Thus, our system has three advantages that support large varieties of devices and
transmission environments, and also provide certain level of QoS guarantees:

(1) Heterogeneous communication: Due to the diversity of wireless terminals, data
formats supported by different terminals may be not compatible with each
other. In our system, data flows go through agent servers that may cause the in-
compatible data formats into acceptable formats according to the device profiles
of the receiving terminals. As a result, terminals can send and receive data in
preferred formats without concerning data format incompatibility problems.

(2) Low cost of terminal resource: Instead of terminals, agent servers are responsi-
ble to convert data formats, retransmission for lost packages, and reconnection
to lost packets and saves resources for terminals more effectively and effi-
ciently. Moreover, a certain level of QoS can be guaranteed.

SIP-Based Adaptive Multimedia Transmissions for Wired and Wireless Networks

513

(3) Faster recovery from disconnection: Connection loss is quite often for wireless
connection due to signal fading, interference and path blackout. Once the connec-
tion between the receiver and its agent server is lost, the transmitter has to wait
until it reconnects and retransmits the lost packages. In our system, since the ter-
minals are connected to the specified agent servers, and data buffering in agent
servers can keep receiving the data from the sender even if the receiver is discon-
nected. Once the receiver is reconnected, the buffered data will be delivered.

1. SIP INVITE

2. SIP OK

4. Notice

5. New connection request
6. New connection request

7. New connection request

8. New connection reply
9. New connection reply

10. New connection reply

3. ACK

11. Media flow in new connection

User

Agent

(Client 1)

SIP Proxy

Server

(Client 1)

Agent

Server

(Client 1)

Database

Server

(Client 1)

Database

Server

(Client 2)

Agent

Server

(Client 2)

SIP Proxy

Server

(Client 2)

User

Agent

(Client 2)

Fig. 3. Signaling scenario for adaptive change of transmission protocols during connection

1. Request

3. SIP INVITE

4. SIP INVITE

5. SIP OK
6. SIP OK

7. ACK

8. New connection request

9. New connection request

10. New connection reply
11. New connection reply

2. Reply

12. Media flow in new connection

User

Agent

(Client 1)

 SIP Proxy

Server

(Client 1)

Agent

Server

(Client 1)

Database

Server

(Client 1)

Newly

Invited

Agent Server

Database

Server

(Client 2)

Agent

Server

(Client 2)

SIP Proxy

Server

(Client 2)

User

Agent

(Client 2)

Fig. 4. Signaling scenario for change of connection path between end users during connection

W. Jia and M.-C. Yuen

514

5 Conclusions

We have proposed an adaptive multimedia transmission system for wired and wireless
networks using SIP technology for call setup signaling, information carrying via agent
servers. Based on SIP, our system can be used in various communication environ-
ments and it is extensible. Through the adaptive protocols, the most suitable connec-
tion mechanism can be selected adaptively based on the dynamic change of traffic or
flows.

References

1. 3GPP, “Open services architecture”, Application Programming Interface, 3G TR 29.998,
http://www.3gpp.org.

2. Yang F., Zhang Q., Zhu W., Zhang Y.-Q., “Bit Allocation for Scalable Video Streaming
over Mobile Wireless Internet”, Proceeding of INFOCOM'2004, Hong Kong, March
2004.

3. Universal Plug and Play Forum, Understanding Universal Plug and Play, 2000,
http://www.upnp.org/download/UPNP_UnderstandingUPNP.doc.

4. Chen Y.-F., Huang H., Jana R., John S., Jora S., Reibman A., Wei B., “Personalized Mul-
timedia Services Using A Mobile Service Platform”, Wireless Communications and
Networking Conference, 17-21 March 2002. vol.2, pp. 918 - 925.

5. Iwasak O., Uenoyama T., Ando A., Nishitoba T., Yukitake T., Etoh M., “Video Transcod-
ing Technology for Wireless Communication Systems”, IEEE Vehicular Technology
Conference Proceedings, Tokyo, 15-18 May 2000. vol.2, pp. 1577 - 1580.

6. Warabino A., Ota S., Morikawa D., Ohashi M., Nakamura H., Iwashita H., Watanabe, F.,
“Video Transcoding Proxy for 3Gwireless Mobile Internet Access”, IEEE Communica-
tions Magazine, October 2000, Vol.: 38 , Issue: 10, pp. 66 - 71.

7. Lei Z., Georganas N. D., “Video Transcoding Gateway for Wireless Video Access”, Elec-
trical and Computer Engineering, Canadian,4-7 May 2003. vol. 3, pp. 1775 - 1778.

8. Shen J., Han B., Yuen M.-C., Jia W., “End-to-End Wireless Multimedia Transmission Sys-
tem”, IEEE Vehicular Technology Conference Fall 2004.

9. Yuen M.-C., Cheng L., Au P.-O., Jia W., “Adaptive Generic Communications for Inte-
grated Mobile and Internet Web-Services”, The 5th International Conference on Web-Age
Information Mangement 2004.

10. Berners-Lee T., Fielding R., Frystyk H., “Hypertext Transfer Protocol -- HTTP/1.0”,
RFC1945, May 1996.

11. Hollenbeck S., Rose M., Masinter L., “Guidelines for the Use of Extensible Markup Lan-
guage (XML) within IETF Protocols”, RFC3470, Mar 2002.

12. Handley M., Schulzrinne H., Schrooler E., Rosenberg J., “Session Initiation Protocol”,
RFC2543, IETF., March 1999.

13. Handly M. and Jacobson V., “SDP: session description protocol”, RFC2327, IETF, April
1998.

14. “H.323 - Packet-based multimedia communications systems”, ITU standard.
15. Schulzrinne H. and Rosenberg J., “A Comparison of SIP and H.323 for Internet Teleph-

ony”, Network and Operating System Support for Digital Audio and Video (NOSSDAV),
Cambridge, England, July 1998.

16. Chen G., Pham T. T., “Introduction to Fuzzy Sets, Fuzzy Logic, and Fuzzy Control Sys-
tems” CRC Press, 2000.

J. Cao, W. Nejdl, and M. Xu (Eds.): APPT 2005, LNCS 3756, pp. 515 – 523, 2005.
© Springer-Verlag Berlin Heidelberg 2005

WM+: An Optimal Multi-pattern String Matching
Algorithm Based on the WM Algorithm

Xunxun Chen, Binxing Fang, Lei Li, and Yu Jiang

Research Center of Computer Networks and Information Security Technology,
Harbin Institute of Technology, Harbin, P.R.C.

{cxx, bxfang, lilei, jy}@pact518.hit.edu.cn

Abstract. The WM algorithm, designed by Sun Wu and Udi Manber, is con-
sidered the fastest multi-pattern string matching algorithm in practice except
when the pattern number is very large or the alphabet size is small[2]. Theo-
retically, the scanning time of WM is average-optimal (i.e. O(nlog (rm)/m)), but
in the worst case, its scanning time can not be evaluated at all. The maximum
shift of the original WM algorithm is m-B+1, where m is the minimum length of
all patterns and B is the q-gram size. The tuned WM algorithm (abbreviated as
WM+) can reach higher performance by improving the shift table building al-
gorithm and combining the AC algorithm with the original WM algorithm. And
the scanning time of the WM+ algorithm in the worst case is predictable. Ex-
periments show that the scanning time of the WM+ algorithm is less or not great
than that of the WM algorithm for varied size of m and number of patterns,
especially in the worst case.

1 Introduction

Multi-pattern searching tries to solve the problem of finding all the starting positions of
any occurrence of sub-strings P={p, p, …, pr} in text T=t1...tn. This is very common in
the fields of information retrieve, gene comparison, virus scanning, intrusion detection
and so on. A series of optimal algorithms have been developed since 1970’s such as
WM[1], AC[3], BM[4], SBOM[5]. Many technologies, such as native comparison,
automata, filtering, n-gram[11] and bit comparison etc, have been employed and im-
proved.

Usually, the discussion of string matching algorithms can be described as follows:

Definition 1: Suppose that P={p1, p2, …, pr} denotes the patterns set pi=ci1ci2..cim, cij ,
 the alphabet table with the size of , m the mean length of patterns, M=rm the total

length of all patterns, and T=t1...tn the text string need to be scaned. The matching algo-
rithm is a function Am(P,T) which has two inputs P and T. The time complexity Ct and
storage complexity Cs are used to evaluate the efficiency of Am. When Ct O(f(n)), in
which f is a function of n and shows the relationship between searching time of Am and
the text length n under the condition that contents and lengths of patterns are fixed, it
means the time complexity of Am(i.e. Ct) reaches the level described by f(n). And when

516 X. Chen et al.

Cs O(g(M)), in which g is a function of M and shows the relationship between the
memory storage occupied by Am and the total length of all patterns(i.e. M), it means that
the storage complexity of Am(i.e. Cs) reaches the level described by g(M).

Generally, when the worst-case time complexity of an Am is proved to be O(n) (i.e.
Ctw O(n)), the Am is considered as a worst-case optimal algorithm; when the aver-
age-case time complexity of an Am is proved to be O(nlog (rm)/m) (i.e.
Cta O(nlog (rm)/m)), the Am is considered as an average-case optimal algorithm[6];
when the pre-processing time complexity of an Am tends to be O(rm), the Am is con-
sidered to have an optimal pre-processing time; and when the storage complexity of an
Am is proved to be O(rm), the Am is considered to have an optimal storage[2].

There are two kinds of exact multi-pattern matching algorithms. One kind is the
DFA based algorithms that are typified by using much storage to save matching time.
Because of having stable time complexity O(n) which is patterns-free and text-free,
very easy to implement on computers, and having less instructions in each step, the
DFA based algorithms are widely used as the base algorithms in many matching algo-
rithms. The typical of them is AC[3] algorithm that is based on KMP[7]. Because the
scanning time complexities are O(n) in both the worst case and average case, and the
pre-processing time complexity is O(rm), the DFA based algorithms are regarded as the
fastest algorithms when nlog (rm)/m n (i.e. when the pattern lengths are very short or
the pattern number is very large) [2].

The other kind is filtering based algorithms that reduce the comparison times by
skipping more characters to the best of their abilities. The typical filtering based algo-
rithm is BM[4] that puts forward the idea of from-right-to-left scanning and not com-
paring all the characters of the text. In practice, because the worst case is very unusual
to appear in the text to be scanned, filtering based algorithms are generally faster than
DFA based algorithms[2]. Presently WM[1] and SBOM[5] are considered as the two
fastest exact multi-pattern matching algorithms[2] in literature, and WM is considered
to be faster than SBOM in practice except that the pattern number is very large or the
alphabet size is very small.

WM algorithm is a filtering based multi-pattern string matching algorithm utilizing
the basic idea of BM. In fact, WM is an extending of BM for multi-pattern matching
problems. WM also scans text from right to left. However, WM uses a B-size block
(also called N-Gram) instead of a single character as the comparison unit, which ex-
tends the alphabet size logically. It’s method can take advantage of computer word
length, which is often no less than 16 bits, for increasing the scanning speed. WM also
employs the idea of Horspool’s[8] improvement for BM, that is, increasing the
searching speed by significantly decreasing the hitting probability(i.e. the probability
of the equality of text character and the last character of patterns) of BM.

There are still several parts of WM that can be improved. First, the result of
pre-processing stage often makes the size of the scanning skip not to be long enough
and the shorter skip size results in taking additional time in scanning step. Second, it is
supposed in WM that the probability of the equality of the first two characters of two
patterns combined with the equality of the B characters in middle of the two patterns is
very small. Then, in some cases when this probability becomes larger, the efficiency of

 WM+: An Optimal Multi-pattern String Matching Algorithm 517

WM is obviously decreased. We developed a new improved algorithm, which is called
as WM+, trying to optimize the pre-processing and scanning stage of WM.

2 Algorithm: WM+

2.1 Pre-processing Stage

In the pre-processing stage of WM, the scanning time is not so easily to reduce due to
the coarse shift table items. In this section, we enlarge the maximum skip size of
scanning stage by fining SHIFT table items and thus the scanning time is reduced.

Definition 2: If a B-size string c1 c2..cB is completely included in the first m characters
(p1 p2..pm, m is minimum pattern length) of a pattern, we call c1 c2..cB a valid B-block. If
the last k characters of c1 c2..cB appear in the head of p1 p2..pm (i.e. cB-k+1 ..cB-1cB = p1
p2..pk), we call c1 c2..cB a k/B-valid B-blocks. And all B-blocks other than these two
cases are called invalid B-block.

In pre-processing stage, WM only constructs indices of valid B-blocks of p1 p2..pm to
build the shift table and uses shorter skip size for the k/B-valid B-blocks[1]. For ex-
ample, suppose we have two patterns which are {p1=“abcd”, p2=“bcdef”} and B=2,
m=4, the shift table are shift(“ab”)=2, shift(“bc”)=1, shift(“cd”)=0, shift(“de”)=0, and
the shift value of all other 2-size strings is m-B+1=3. Since B is no less than 2 and thus
makes m-B+1<m, the average skip step in the best case is m-1 in scanning stage.

The optimizing method used in WM+ is described as follows. Indices of all valid and
k/B-valid B-blocks are constructed to generate the shift table and the shift value of all
invalid B-blocks is m in order to increase the best-case average skip size up to m. And
the scanning performance will be much accelerated if m is small. Theoretically, the
scanning performance of WM+ in the best case can be improved by 1/(m-1) times to
that of WM. For the same example, the shift tables of WM and WM+ are shown in
Table 1.

Table 1. Shift tables constructed by WM and WM+

B-block
 Indices
Algorithm

ab bc cd de ?a ?b
(Excluding

ab)

Others

WM 2 1 0 0 3 3 3
WM+ 2 1 0 0 3 3 4

2.2 Scanning Stage

WM uses knowledge of linguistics probability statistics, that is, WM supposes that the
probability of the equality of the first two characters of two patterns combined with the
equality of the B characters in middle of the two patterns is very small. However, the
probability can be significantly affected by both the minimum pattern length and the

518 X. Chen et al.

pattern number, and it is also sensitive to the similarity of the patterns. In the worst
case, because native comparison is done character by character and pattern by pattern,
the most time-consumed operation in scanning stage is the comparison after the success
of the coarse matching (i.e. the hit of B-block HASH). In practice, if m<4 or r>5000, the
probability of the hit of B-block HASH will greatly increase, which causes the rapidly
dropping of the scanning performance of WM.

WM+ uses prefix automata scanning derived from AC[3] instead of native pattern
comparison after the success of the coarse matching, which decreases the uncertainty of
the matching time in the worst case of scanning stage. In practice, WM+ uses filtering
algorithm combined with automata based algorithm to accomplish the scanning job in
scanning stage. Filtering algorithm is employed to increase the matching speed in the
best case to the best of its ability by skipping the bad characters, and automata is em-
ployed to decrease the matching time in the worst case because the automata based
algorithm is the optimal algorithm in the worst case.

The main body of scanning stage algorithm of WM+ with B=2 on zero-ended text is
described as Figure 1. And the algorithm for fixed length text can be easily acquired by
modifying the ending conditions of two WHILE loops in Figure 1.

w m-B; s 0; p 0;
1:WHILE t[w] 0 DO
 IF shift[WORD PTR *(t+w)]>0 THEN

w w+shift[WORD PTR *(t+w)];
 ELSE IF p<w+B-m THEN p w+B-m;
 WHILE t[p] 0 DO
 IF output[s][t[p]]>0 THEN write(“Found a match.”);
 ENDIF
 IF state[s][t[p]]=0 THEN

w p+m-B+1; p p+1; s 0; GOTO 1;
 ELSE

s state[s][t[p]]; p p+1;
 ENDIF
 ENDDO
 ENDIF
ENDDO

Fig. 1. The main body of scanning stage algorithm of WM+ With B=2 on zero-ended text

In Figure 1, t is the starting address of the text. w is the pointer of the scanning al-
gorithm, which points to the first character of the last B characters in the scanning
window. s contains the current state of the prefix automata. p is the pointer of current
character of the prefix automata and p can exceed w which is an important character-
istic for accelerating the scanning speed. The one-dimensional array shift is the skip-
ping table constructed in the pre-processing stage of WM+. The two-dimensional array
state is the state table of the prefix automata, of which the initiating process can be

 WM+: An Optimal Multi-pattern String Matching Algorithm 519

found in AC[3]. For the same example as shown in section 2.1, the scanning process on
the text “axyzxyzabcdefabab” is described in Figure 2.

Fig. 2. The scanning process of WM+ on text axyzxyzabcdefabab

3 The Coarse Analysis of the Performance of WM+

In order to compare with WM, for simplicity, we suppose that there are r patterns, and
one of them has a length of m, and the other r-1 patterns have a length of k. Let m<k and
M=m+(r-1)k, B=log (rm). Now we will compare the performance of WM+ with that of
WM in pre-processing and scanning stage respectively.

In the best case, all B-blocks in the text are invalid B-blocks. Then the WM’s
maximum skip length of each comparison is m-B+1 and the time consumed by once
computing of hash value of a B-block is O(B). So the best case time complexity of
scanning algorithm of WM can achieve O(Bn/(m-B+1)) = O(nlog (rm)/(m-B+1)),
which slightly inferior than the average case optimal time complexity[2]. The WM+’s
maximum skip length is m, so it can achieve the average case optimal time complexity
(i.e. O(nlog (rm)/m)).

For WM the worst case is that the text is a string of n same character c and the first i
characters of all r-1 k-length patterns are c, and m<<i<k. In this case the hash function
of the coarse matching will hit in every filtering operation of WM (i.e. shift[] = 0) and
native i-length string comparison will be done r times character by character. So the
scanning time complexity of WM in the worst case can achieve O(Bnri) =
O(nlog (rm)ri), which is greatly inferior than O(nlog (rm)rm).

In the same case, WM+ will enter automata matching stage after the hit of coarse
matching and the state of the automata will be zero after matching the i+1 character.
The coarse scanning pointer will skip m-B+1, and the distance from the previous
pointer is i+1+m-B+1-m = i-B+2. So the automata will scanning all n characters, and

520 X. Chen et al.

the scanning time complexity of WM+ in this case is O(Bn/(i-B+2))+O(n)), greatly
superior than O(nlog (rm)/m)+O(n), which is also greatly superior than O(nlog (rm)ri).

The worst case for WM+ is for i=0 in the above example. The scanning time com-
plexity of WM+ is O(Bn)+O(n) = O(nlog (rm))+O(n). In this case, because WM also
needs to calculate the hash value of the prefix B-block, to lookup the prefix table of the
hit patterns set (suppose the size is r’), and to compare the patterns in need, the scanning
time complexity of WM is O(Bn)+O((B+r’)n) = O(nlog (rm))+ O(n(log (rm)+r’)),
which is inferior than O(nlog (rm))+O(n).

In average case, we also suppose the length of all patterns is m, and the text and the
patterns are both random strings comply with even distribution [1]. In scanning stage,
the time complexity of WM+ when coarse scanning not hit (i.e. skip size is great than
zero) is O(Bn/m) which is the same as that of WM[1]. Because the maximum skip size
of WM+ (i.e. m) is greater than that of WM (i.e. m-B+1), the time consumed by WM+ is
less than that of WM in practice. When hitting occurs in coarse scanning, WM needs to
match prefixes and calculate the hash value of the prefix. The time complexity of these
operations is O(B), which is the same as that of the processing on the first B-characters
of the text by the automata in WM+. Because the text and the patterns are both random
strings complying with even distribution, the probability of finding a pattern in the text
is 1/ m-2B after the B-size prefix and suffix of the pattern are both matched. The average
matching times is (m-B)/2 in this case. After the finding of the same prefix, WM needs
to execute native matching character by character for every patterns with the same
prefix (suppose that the number of such patterns is r’) and the time complexity of these
operations is O(r’(m-B)/2). For the same condition, WM+ fulfils the same job by
automata which only scans the text one time and the time complexity is O((m-B)/2).

Summing up the three parts of time consumed described above, we see that in av-
erage case the time consumed by WM+ is less than that of WM. Because of the low
hitting probability in random cases, in practice the average case time complexities of
WM and WM+ are generally the same as O(nlog (rm)).

4 Experiments Result

For verifying the performance of WM+, some experiments are conducted to compare
the scanning speeds of WM and WM+ in several conditions. The WM algorithm is
quoted from Agrep[10]. All codes are written in ANSI C and the hardware platform is
an IBM X31 with one Pentium-M 1.4GHz CPU and 512 MB DDR memory. The OS is
Windows XP professional. For convenient we run Vmware 3.2.0 build-2230 on the OS
and assign 192 MB memory to the virtual machine. The virtual OS is Red Hat Linux
8.0 with kernel version 2.4.18-14smp. The codes are compiled with gcc 3.2-7 for Red
Hat Linux 8.0 with option -O2. The scanning time is obtained by inserting time()
functions from begin and after the scanning code and calculating the difference of their
outputs.

The first experiment is designed to test the scanning performance of WM and WM+
in the best case. The patterns are generated randomly and the minimum pattern length

 WM+: An Optimal Multi-pattern String Matching Algorithm 521

m is 5 and let B=2. No pattern contains character ‘a’ and the text is composed of 112.9
MB character ‘a’. Scanning is done 10 times circularly. Theoretically, WM+ will scan
1/2 of the text and WM will scan 2/3 of the text. So the scanning time of them will be
different by 25% approximately. The experiment result is shown in Table 2.

Table 2. The comparison of the scanning performances of WM and WM+ in the best case

Pattern
Num-
ber

Patterns
Total
Length

Min. Pat-
tern
Length

Max.
Pattern
Length

Scanning
Time of
WM (in
seconds)

Scanning
Time of
WM+ (in
Seconds)

10 155 5 22 67 65
50 860 5 35 67 65
100 1693 5 39 67 65
500 8782 5 48 67 65
1000 17348 5 48 67 65
2000 34956 5 48 67 65
5000 87581 5 48 67 65
8000 141051 5 48 67 65

The result shows that the scanning performances of WM and WM+ are not very
different though WM+ is slightly better than WM. In fact the difference is only about
3% which is greatly different from the theoretical estimate (i.e. 25%). It shows that the
common operations in the implementations of the algorithms occupy a large proportion
of operations and the time consumed by the skipping of the scanning pointer only oc-
cupies a little proportion of the total processing time, which is about 1/8 by practically
and theoretically calculation.

Table 3. The comparison of the scanning performances of WM and WM+ in the average case

Pattern
Number

Patterns
Total
Length

Min.
Pattern
Length

Max.
Pattern
Length

Scanning
Time of
WM (in
seconds)

Scanning
Time of
WM+ (in
Seconds)

10 172 5 25 7 7
50 851 5 34 7 7
100 1702 5 35 7 6
500 8768 5 39 6 6
1000 17686 5 41 7 7
2000 35098 5 41 7 7
5000 87386 5 52 7 7
8000 140508 5 52 10 9

522 X. Chen et al.

The second experiment is designed to test the scanning performance of WM and

WM+ in the average case. The patterns are generated randomly and the minimum

pattern length m is 5 and let B=2 too. The text is a randomly generated string which

length is 100 MB. The experiment result is shown in Table 3.

The result shows that the scanning performances of WM and WM+ are not very
different though WM+ is slightly better than WM again. The reason is the same as that
of the first experiment.

The last experiment is designed to test the scanning performance of WM and WM+
in the worst case. Let i be the length of the duplicated prefix (see also in section 3.2) and
r’ be the number of patterns having the same duplicated prefix. Two pattern sets are
generated.

One set is used to test the effect on scanning time made by different values of i,
which contains three parts. Part one is composed of 10 patterns in which lengths are
from 5 to 22; Part two is the pattern ‘bbaa’; and part three is the pattern ‘aa…aZ’ (the
number of ‘a’ is i). The minimum pattern length is 4 and B = 2 too. The text is com-
posed of 112.9 MB character ‘a’. The experiment result is show in Figure 3a.

The other set is used to test the effect on scanning time by different values of r’,
which is also composed of three parts. Part one and part two are same as that of the
above first two pattern sets. Part three is r’ pattern ‘aaaaZ’ (the Z of every pattern is
different from each other). The minimum pattern length is 4 and B = 2 too. The text is
also composed of 112.9 MB character ‘a’. The experiment result is shown in Figure 3b.

Fig. 3. The comparison of the scanning performances of WM and WM+ In the worst case

The experiment result shows that in the two worst cases, the scanning time of WM
both increases linearly and will increase squarely if combined the two cases together.
At the same time, the scanning time of WM+ keeps approximately changeless which is
stable about three times greater than that7 in the average case. The results of all three
cases validate the conclusion made in the coarse performance analysis.

 WM+: An Optimal Multi-pattern String Matching Algorithm 523

5 Conclusions

Though it does not theoretically change the time complexity obviously, WM+ algo-
rithm can reach higher performance in the best, worst and average case than WM by
optimizing the shift table generation algorithm and combining the AC [3] algorithm
with the original WM algorithm. And the scanning time of the WM+ algorithm in the
worst case is more stable and predictable. The time complexity of WM+ in the ex-
tremely worst case when B=2 is O(3n) and that of WM in the same case is in proportion
to the number of overlay patterns and the overlay length. So the exact scanning time of
WM in this case is not predictable and can be thousands times to that of WM+ in the
extremely worst case, in which case the scanning can hardly work.

The deficiency of WM+ to WM is that the automata in it is storage consumed when
patterns number is very large, and the initiating time is longer than that of WM when
constructing very large automata. However, the storage complexity and the initiating
time of WM+ is no more than that of DFA based algorithms (e.g. AC). For these rea-
sons, WM+ is applicable to chronically running applications having large number of
patterns and patterns not changing very often such as online virus scanning, IDS etc.

References

1. Wu, S., Manber, U.: A Fast Algorithm for Multi-pattern Searching. Report TR-94-17,
Department of Computer Science, University of Arizona (1994)

2. Baeza-Yates, R., Navarro, G.: Text Searching: Theory and Practice, http://citeseer.ist.psu.
edu/605426.htm (2004)

3. Aho, A., Corasick, M.: Efficient String Matching: An Aid to Bibliographic Search. Com-
munications of the ACM, Vol 18 (1975) 333-340

4. Boyer, R., Moore, J.: A Fast String Searching Algorithm. Communications of ACM, 20
(10) (1987) 762-772

5. Allauzen, C., Raffinot, M.: Factor Oracle of a Set of Words. Technical report 99-11, In-
stitute Gaspard-Monge, University de Marne-la-Vallee (1999)

6. Fredriksson, K., Navarro, G.,: Average-optimal Multiple Approximate String Matching. In:
14th Ann. Symp. On Combinatorial Pattern Matching(CPM’03), LNCS Vol. 2676. (2003)
109-128

7. Knuth, D., Morris, J., Pratt, V.: Fast Pattern Matching in Strings. SIAM Journal on Com-
puting, Vol. 6(2). (1977) 323-350

8. Horspool. N.: Practical Fast Searching in Strings. Software-Practice and Experience, Vol
10(6). (1980) 501-506

9. ZHANG Xin, TAN Jianlong, CHENG Xueqi. An Improved Wu-Manber Multi-Pattern
Matching Algorithm(In Chinese). Computer Application, 2003, 23(7): 29-31.

10. Wu, S., Manber, U.: Agrep — A Fast Approximate Pattern-matching Tool. In: Usenix
Winter 1992 Technical Conference. San Francisco, (1992) 153-162

11. Kim, J. Y., Taylor, J. S.: Fast String Matching Using An n-gram Algorithm. Software –
Practice And Experience. Vol. 24(1). (1994) 79-88

Author Index

An, Hong 61
An, Jingbin 226

Bai, Zheng-Jian 471
Bauk, SungUoon 141
Bhowmik, Anasua 31

Cai, Jianyu 435
Cai, Shijie 91
Chalabine, Mikhail 131
Chan, Edward 390, 494
Chan, Raymond H. 471
Chang, Chin-Chen 443
Chen, Chi-Hsiu 101
Chen, Guihai 91
Chen, Haiquan 121
Chen, Jiang 164
Chen, Ming-feng 174
Chen, Wen 427
Chen, Xiaowu 342
Chen, Xunxun 515
Chen, Yuequan 390
Chen, Zhongguo 204
Chi, Chi-Hung 453
Chi, Xuebin 164
Cho, Haengrae 484

Deng, Kun 71
Dillon, Tharam S. 400
Ding, Chen 453
Dong, Haitao 214
Dong, Hao 121
Dong, Xiaoshe 194, 263
Dou, Wanchun 91
Dou, Yong 71

Fang, Binxing 515
Faraahi, Ahmad 409

Gaudiot, Jean-Luc 81
Glily, Mehdi 409
Gong, Wenjun 282
Gorlatch, Sergei 461
Gui, Gui 184

Guo, Hua 263
Guo, Rui 61

Habibipour, Farzad 409
Han, Jung Soo 23
Han, Song 390, 494
He, Xiuqiang 263
Hsu, Ching-Hsien 101
Hu, Chunming 292, 301
Hu, Mingzeng 52
Hua, Yu 151
Huai, Jinpeng 301, 323
Huang, Jin 332
Huang, Min 353

Jeong, Sam Jin 23
Ji, Yi 52
Ji, Zhenzhou 52
Jia, Weijia 505
Jia, Yan 226, 435
Jiang, Yu 515
Jin, Hai 282, 332
Jun, Xia 3

Kessler, Christoph 131
Kuang, Hairong 111

Lai, Yeu-Pong 443
Lau, Francis C.M. 1
Lee, Sangho 484
Li, Jia 353
Li, Jianxin 301
Li, Kuan-Ching 234
Li, Layuan 363
Li, Lei 41, 515
Li, Lu 214
Li, Ming 382
Li, Minglu 204
Li, Qunzhan 373
Li, Xiaoming 273
Liang, Bo 61
Liang, Chiu Kuo 101
Lin, Wilfred W.K. 400
Liu, Chen 81
Liu, Tao 174

526 Author Index

Liu, Xin 417
Liu, Xiping 91
Liu, Yunhao 301
Lu, Fang 61
Lu, Ssu-Hsuan 234
Lu, XiCheng 382
Lu, Xinda 204
Luk, Franklin T. 471
Luo, Xixi 342
Luo, Yin 273

Ma, Xue-ying 253
Ma, Zhiqiang 52
Mu, Lisen 313
Müller, Jens 461

Nagpal, Rahul 31
Nishida, Hiroshi 111

Ohn, Kyungoh 484
Ou, Haifeng 323

Peng, Wei 382

Qi, Li 282
Qian, Depei 194
Qin, Zhongsheng 263

Rothermel, Kurt 2

Schwerdt, Rafael 461
Scott, Paul D. 184
Sheng, Bin-kui 253
Shi, Dian-xi 174
Sun, Caixia 13
Sun, Hailong 301
Sun, Qiang 363

Tang, Hongwei 13
Tang, Jiashan 91
Tang, Yu Xing 71

Wan, Hai 41
Wan, Yu 323
Wang, Chengwei 282
Wang, Dongsheng 214
Wang, Haipeng 244
Wang, Hsiao-Hsi 234
Wang, Huai-min 174
Wang, Kuo-Jen 234
Wang, Lingmin 244

Wang, Ping-Li 427
Wang, Qing 313
Wang, Xiao Dong 71
Wang, Xingwei 353
Wang, Yinfeng 263
Wang, Yong 323
Wang, Zhiying 226
Weng, Chuliang 204
Wong, Allan K.Y. 400
Wu, Chanle 151
Wu, Mengxiao 151
Wu, Song 282, 292
Wu, Weiguo 194
Wu, Yongwei 292, 313

Xiao, Jianyu 121
Xie, Xia 332
Xiong, Muzhou 282
Xu, Ming 417

Yan, Shoumeng 244
Yang, Chun-Chieh 234
Yang, Mingjun 417
Yang, Shuqiang 435
Yang, Xue-Jun 3
Ye, Cheng-qing 253
Yin, Gang 174
Yin, Yong 204
Yu, Chang Wu 101
Yu, Hongliang 214
Yu, Huashan 273, 292
Yu, Kun-Ming 101
Yuen, Man-Ching 505

Zhang, Deyun 121
Zhang, Fan 244
Zhang, Gong-Xuan 427
Zhang, Hu 194
Zhang, Minxuan 13
Zhang, Qin 332
Zhang, Shutao 453
Zhao, Qigang 373
Zhao, Yonghua 164
Zheng, Fang 263
Zheng, Weimin 214, 313
Zhou, Xing Ming 71
Zhou, Xingshe 244
Zhu, Peidong 417
Zhu, Xingguo 273
Zhu, Yanmin 301
Zou, Peng 435

	Frontmatter
	Keynote Speech
	Research Issues in Adapting Computing to Small Devices
	Mobile Context-Aware Systems -- Linking the Physical and Digital World

	Architecture
	A Data Transformations Based Approach for Optimizing Memory and Cache Locality on Distributed Memory Multiprocessors
	A Fetch Policy Maximizing Throughput and Fairness for Two-Context SMT Processors
	A Loop Transformation Using Two Parallel Region Partitioning Method
	Criticality Based Speculation Control for Speculative Multithreaded Architectures
	Design and Implementation of Semantic Caching Coherency Control Scheme Toward Distributed Environment
	Energy Efficient United L2 Cache Design with Instruction/Data Filter Scheme
	Improving Latency Tolerance of Network Processors Through Simultaneous Multithreading
	RIMP: Runtime Implicit Predication
	Static Partitioning vs Dynamic Sharing of Resources in Simultaneous MultiThreading Microarchitectures

	Algorithm and Theory
	Autonomous-Centered Problem Allocation Oriented to Cooperation
	Contention-Free Communication Scheduling for Irregular Data Redistribution in Parallelizing Compilers
	Experiments on Asynchronous Partial Gauss-Seidel Method
	Improved Program Dependence Graph and Algorithm for Static Slicing Concurrent Programs
	Parallelisation of Sequential Programs by Invasive Composition and Aspect Weaving
	Revisiting the Election Problem in Asynchronous Distributed Systems
	Scheduling Scheme with Fairness and Adaptation in the Joint Allocation of Heterogeneous Resources
	Solving the Symmetric Tridiagonal Eigenproblem Using MPI/OpenMP Hybrid Parallelization
	Trust Management with Safe Privilege Propagation
	Vector Space Based on Hierarchical Weighting: A Component Ranking Approach to Component Retrieval

	System and Software
	A High Availability Mechanism for Parallel File System
	A User-Guided Semi-automatic Parallelization Method and Its Implementation
	CAPU: Enhancing P2P File Sharing System with Capacity Aware Topology
	Implementing Component Persistence in CCM Based on StarPSS
	Load Balancing Design Issues on Prefetch-Based DSM Systems
	Task Assignment for Network Processor Pipelines Using GA
	Test-Suite Reduction Using Genetic Algorithm

	Grid Computing
	A Constellation Model for Grid Resource Management
	An Effective Information Service Architecture in Grid Environment
	An Efficient Data Management System with High Scalability for ChinaGrid Support Platform
	CGSP: An Extensible and Reconfigurable Grid Framework
	Early Experience of Remote and Hot Service Deployment with Trustworthiness in CROWN Grid
	Grid Developing Environment in CGSP System
	Grid Job Support System in CGSP
	JFreeSim: A Grid Simulation Tool Based on MTMSMR Model
	OOML-Based Ontologies and Its Services for Information Retrieval in UDMGrid

	Networking
	A Hybrid Integrated QoS Multicast Routing Algorithm in IP/DWDM Optical Internet
	An Efficient Distributed Broadcasting Algorithm for Ad Hoc Networks
	Chaos-Based Dynamic QoS Scheme and Simulating Analysis
	Dynamic Delaunay Triangulation for Wireless Ad Hoc Network
	Energy Efficient Multipath Routing in Large Scale Sensor Networks with Multiple Sink Nodes
	FLC: A Novel Dynamic Buffer Tuner for Shortening Service Roundtrip Time over the Internet by Eliminating User-Level Buffer Overflow on the Fly
	Intelligent Congestion Avoidance in Differentiated Service Networks
	Rule-Based Anomaly Detection of Inter-domain Routing System
	Transaction of Web Services Based on Struts

	Applied Technologies
	A Method of Aggregate Query Matching in Semantic Cache for Massive Database Applications
	A Parallel Modular Exponentiation Scheme for Transformed Exponents
	Content Selection Model for Adaptive Content Delivery
	Dynamic Service Provisioning for Multiplayer Online Games
	Principal Component Analysis for Distributed Data Sets with Updating
	Priority Conscious Transaction Routing in a Real-Time Shared Disks Cluster
	Probabilistic Continuous Update Scheme in Location Dependent Continuous Queries
	SIP-Based Adaptive Multimedia Transmissions for Wired and Wireless Networks
	WM+: An Optimal Multi-pattern String Matching Algorithm Based on the WM Algorithm

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

